
Rakesh et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 243

Different techniques to Evolve Neural Network for Language processing

 Rakesh Kumar B.S.Purkayastha
Department of computer science Department of computer science
 Assam University Assam University
 Silchar Silchar
rakesh_rbl@rediffmail.com

Abstract

One approach used by researchers trying to develop computer systems capable of understanding natural

languages is that of training a neural network (NN) for the task. For this type of approach, one of the key

questions becomes how to best configure NN parameters such as topology, learning rates, training data, and

other. How to choose values for these parameters is still an open question, especially since the effect these

variables have on each other is not completely understood.

Genetic algorithms (GA) are particularly well suited for finding optimal combinations of parameters, since they

make no assumption about the problem being solved. Different NN configurations are coded as genomes, which

have a fitness function based on how well they can solve a particular task. Genomes are paired and recombined

in the hope that the offspring of good solutions will be even better.

Keyword

Evolving neural network, Word sense disambiguation , Neural Network.

GA for NN Optimization

In recent years researchers have used genetic algorithm techniques to evolve neural network

topologies. Although these researchers have had the same aim in mind (namely, the evolution of

topologies that are better able to solve a particular problem), the approaches they used varied greatly.

For example, de Garis (1996) evolved NN by having a series of growth commands give instructions

on how to grow connections among nodes. Each node in the network processed signals that told it

how to extend its synapses. When two different synapses reached each other, a new node was

formed. The genetic algorithm was responsible for evolving the sequence of growth commands that

controlled how the network developed.

Fullmer and Miikkulainen (1991) developed a GA coding system where pieces of a genotype went

unused, imitating biological DNA processing. Only information stored between a Start marker and an

End marker was used to generate networks. The number of correctly configured Start-End markers

defined how many hidden nodes the network would have. In addition, information between these

Start-End markers defined how the nodes were connected to each other. The meaning conveyed by

each position in the used part of the genome depended on its distance from its corresponding Start

symbol.

For example, the genome shown in figure 1 would generate two nodes, one for string S,a,1,b,5,a,-2,E

and another for string S,b,0,a,3,E , which wraps around the end of the genome. Node a had an initial

activation of 1(because of substring S,a,1), is connected to node b with a weight of 5 (because of

substring b, 5), and to itself with a weight of -2 (because of substring a, -2). Node b had an initial

Rakesh et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 244

activation of 0 (because of substring S,b,0) and a connection to node a with a weight of 3(because of

substring a,3).

Figure 1

Genetic Definition of NN Topology

Each NN in this system has 75 hidden nodes between the input and output layers. These 75 nodes

are divided into N hidden layers, where N is a number between 1 and 30. The exact number of hidden

layers is determined by the first gene of the corresponding genome. This position stores a random

floating point number, with a value between 0 and 1. To determine how many hidden layers a network

has, the value of this gene is multiplied by 30, and rounded to the next highest integer. If the result of

this rounding up is 31, the network uses 30 hidden layers.

The number of hidden nodes in each of these hidden layers is also determined by the network's

corresponding genome. The genome has 30 genes used to code the relative worth of each of the

possible hidden layers. Once the number of hidden layers is determined to be N using the process

described above, the N layers with the highest relative worth are identified. The 75 available hidden

nodes are distributed among each of these N hidden layers according to each layer's worth relative to

the sum of all N worth values.

Figure 2

Rakesh et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 245

For example, if a genome had genes 1-30 as illustrated in figure 2, and it had already been

determined that it would have five hidden layers (as described above), the five layers to use are those

indicated in bold. Since the sum of these five genes is 4.6, the first hidden layer would have

(75*.91/4.6 =) 14 nodes. The other four hidden layers would be allocated hidden nodes in the same

way.

The connections between layers are also determined by the network's genome. For each of the thirty

possible layers, there is a gene that indicates where the layer takes its input from. Each of these

genes stores a random oating point value between 0 and 1. To determine where each hidden layer

takes its input from, its takes-its-input from gene value is multiplied by N+2 (where N is the number of

hidden layers this network will have, as determined by the procedure outlined previously), and

rounded to the nearest integer. The resulting number points to which layer this one takes its input

from. We multiply by N+2 to allow a hidden layer to take its input from any of the N hidden layers, as

well as either the input or the output layer. A value of 1 would mean the layer takes its input from the

input layer. A value of N+2 would mean the layer takes its input form the output layer. For values

between 2 and N+1, the layer would take its input from the layer with the (N-1)th highest relative

worth.

Figure 3

For example, if the same genome used for the example above had genes 31-60 as illustrated in figure

3, we would look at the corresponding 5 takes-input-from genes, shown in bold in figure 3. Multiplying

each of the selected genes by 6, we would obtain 4.14, 1.44, .06, 2.22, and 1.26. This would mean

that hidden layer 1 would take its input from hidden layer 4, hidden layer 2 would take its input from

hidden layer 1, hidden layer 3 would take its input from the input layer, hidden layer 4 would take its

input from hidden layer 2, and hidden layer 2 would take its input from hidden layer 1.

Where each layer sends its output is determined in a similar way, using positions 61-90 of the

genotype. Each of these genes stores a random floating point value between 0 and 1. To determine

where each layer sends its output, its sends-output-to gene value is multiplied by N+1 and rounded to

the nearest integer. The resulting number points to which other layer this one will send its output to.

We multiply by N+1 to allow for hidden layers sending their output to any of the N hidden layers, as

well as to the output layer. A value of N+1 would mean the layer sends its output to the output layer.

Rakesh et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 246

For values between 1 and N, the layer sends its output to the layer with the Nth highest relative worth.

No layer sends its output back to the input layer.

 Word Sense Disambiguation

Their tolerance for noise, their ability to generalize, and their well-known suitability for classification

tasks [1] make NNs natural candidates for approaching WSD. A large number of successful

applications demonstrates that NN design is improved by considering it in conjunction with EAs, since

neural and evolutionary techniques can be combined in a synergetic way [14]. The most promising

approach to using EAs to design and optimize NNs is the one which jointly evolves network

architecture and weights: a completely functioning network can be evolved without any intervention

by an expert [1].

The algorithm presented in Section 3 evolves a specific NN specializing in disambiguating one given

target polysemous word. The same process must be repeated for each polysemous word one is

interested in disambiguating. Since our aim here is to demonstrate the feasibility of this approach,

we will focus on a small, but representative, set of target polysemous words. We used IXA Group‟s

web corpus [2], which comprises all WordNet noun senses. Its construction is inspired by the

“monosemous relatives” method [10]. The method usually relies on information in WordNet in order to

retrieve examples from large corpora or the web. The advantage of using this corpus instead of other

traditional corpora specifically designed for WSD is that, due to the way the corpus is constructed,

we get an extensive coverage of word usage in all domains. Furthermore, since the corpus is not

tagged by hand, it gives wider guarantees of accuracy and objectivity.

Two kinds of representations commonly used in connectionism are distributed [9] and localist

schemes [7]. The major drawback of the latter is the high number of inputs needed to disambiguate a

single sentence, because every input node has to be associated to every possible sense; in fact, this

number increases staggeringly if one wants to disambiguate an entire text.

Examples of distributed schemes are microfeatures [13] and the word-space model [12]. Distributed

schemes are very attractive in that they represent a context as an activation pattern over the input

neurons. Therefore, unlike with localist schemes, the number of input neurons required does not have

to equal the size of the vocabulary. On the contrary, there is an intrinsic idea of compression, whereas

each input neuron encodes a given feature of a word or sentence and thus can be reused to

represent many different words or senses. Of course, the more the input patterns are compressed

into a low-dimensional space, the more information is lost. However, despite such information loss,

enough information may still be there to allow meaningful processing by the NN.We used two

distributed representation schemes, both based on the way words are written, corresponding to two

different degrees of compression: (i) a positional scheme, whereby 156 input neurons, divided in six

groups of 26 input neurons each, encode the first six letters of a word, after deleting as many vowels,

starting from the last one but except the first one, as required to reduce the word to six letters,

because consonants carry a heavier distinctive load; if, even after deleting all the vowels but the first,

Rakesh et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 247

the word is still more than six letter long, only the first six letters are actually represented (thus

representation would be encoded as REPRSN, but cotton would be encoded as COTTON); if the

word is shorter than six letters, the representation is padded with blanks; and (ii) a letter count

scheme, which brings the distributed representation idea to one extreme, by using the number of

occurrences of the 26 letters of the alphabet as features. In both cases, the activations of the input

neurons are obtained by summation of the activation patterns representing the words occurring in a

given context, excluding the target word, after removing stop words and stemming the remaining

words. Additional fields of the training set (one for each output neuron) correspond to the n senses of

the target word. They are all set to zero except the one corresponding to the correct sense. For

example, starting from a sentence „part aqueduct system‟, where the target word, tunnel, has two

senses, (1) “a passageway through or under something” and (2) “a hole made by an animal”, the

associated record would be • for the letter count encoding,

2 0 1 1 2 0 0 0 0 0 0 0 1 0 0 1 1 1 2 3 2 0 0 0 1 0

->1 0,

in which the first 26 numbers represent the occurrences of the letters of the alphabet, and the last 2

the two output senses (here n = 2); • for the positional encoding, after reducing all words

to their 6-letter representatives „PART ‟, „ACQDCT‟, and „SYSTEM‟,

where the numbers on the left-hand side of the arrow represent the occurrences of the letters in the

six positions, i.e., A1, . . . , Z6, here displayed according to the template

Rakesh et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 248

The rationale for this type of sentence encoding is that, since every word can be regarded as an

activation pattern of the input layer of a NN, the overlap of different patterns from the same sentences

allows the network to detect significant information about the context. The success of the experiments

presented in Section 4 will serve as an empirical proof that even such extremely compressed

representations preserve enough context information to allow disambiguation of word sense

Conclusion

This paper has presented a mathematical methodology for predicting the effectiveness of a GA in

processing NN topology. The methodology is used to predict the effectiveness of several GA coding

schemes. These predictions are shown to correspond with actual results. In addition, different ways of

representing sentences at a NN output later are presented. Advantages of using non-binary

representations are discussed, both from the point of view of expanding sentences that can it can

process and efficiency of GA used to evolve them.

References

de Garis, H. (1996). CAM-BRAIN: The Evolutionary Engineering of a Billion Neuron Artificial Brain by
2001 Which Grows/Evolves at Electronic Speeds Inside a Cellular Automata Machine (CAM), In
Lecture Notes in Computer Science - Towards Evolvable Hardware, Vol. 1062, pages 76-98. Springer
Verlag, pages. 76-98.

Davila, J. (1999) Exploring the Relationship Between Neural Network Topology and Optimal Training
Set by Means of Genetic Algorithms. In International Conference on Artificial Neural Networks and
Genetic Algorithms, pages 307-311. Springer-Verlag.

Daavila, J. (2000) A New Metric for Evaluating Genetic Optimization of Neural Networks. In
Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural
Networks. pages 52-58. IEEE

Fullmer, B., Miikkulainen, R., (1991). Using marker- based genetic encoding of neural networks to
evolve _nite-state behavior. In Proceedings of the first European Conference on Artificial Life, pages.
253-262.

Rakesh et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 249

Kitano, H., (1994). Designing Neural Networks using Genetic Algorithm with Graph Generation
System. In Complex Systems, 4. pages 461-476.
Weiss, S., Kulikowski, C. (1991). Computer Systems that Learn. Classification and Prediction
Methods from Statistics. In Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufmann.

Yao, X. (1993). A review of evolutionary artificial neural networks. In International Journal of
Intelligent Systems, 4. pages 203{222.

