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Abstract— Query using keywords is one of the user friendly and 

widely used forms of querying in recent days. The existing 

systems focused on fetching all or a fixed number of top tuples , 

which may directly contain the portion of keywords or 

interconnected to other related tuples via foreign key. These 

systems will not give any valuable information more than 

individual interconnected tuple structures.. In this paper we 

focus on compute structural statistics for keyword by extending 

the group & aggregate framework. In RDBMS, rows with same 

values on specific attributes can be grouped together and 

aggregate functions can be used to aggregate the values of the 

same group. Tuples are considered as  rooted subgraphs, which 

represents an interconnected tuple structure among tuples . The  

keywords are separated  as dimensional keywords and general 

keywords. The dimensions of the rooted subgraphs are 

determined by dimensional keywords and   the general keywords 

are used to compute scores. Based on the score computed for 

every group, an aggregate function is used to compute the 

aggregates. 

Keywords -  Keyword search, relational  database , Structural  

      statistics. 

І . INTRODUCTION 

Search based on keyword in database systems is one of the 

commonly used research topic. It helps the users to get results 

which match the keywords. Most of the available studies are 

based on finding the related values based on the values on the 

table and values on other tables which is referred by a foreign 

key reference[1]-[3]. These systems may give a large set of 

possible results for the given keywords, and sometimes users 

may struggle to filter the required information. In this paper, 

we are going to evaluate how to compute statistics on the 

interconnected tuple- structures using keywords instead of 

finding interconnected structures among tuples.   

 

              II. STRUCTURAL STATISTICS 

Let GS = {R1,R2, . . .} be a relational database schema.  

Here,Ri in GS is a relation schema with a set of attributes. 

Keyword search is allowed on any text-attributes. A relation 

schema may have a primary key and    there   are foreign key 

references defined in GS. We use Ri → Rj to denote that 

there is a foreign key defined on Ri referring to the primary 

key defined on Rj. A relation on relation schema Ri is an 

instance of  the relation schema (a set of tuples) conforming to 

the relation schema, denoted r(Ri). A relational database 

(RDB) is a collection of relations. 

    We model an RDB over GS as a directed database graph 

GD(V,E). Here we use two types of  labeled nodes tuple 

nodes Vt and attribute nodes Va, V = Vt U Va for Vt ∩ Va= 

Φ. A tuple-node in r(R’) labeled with its relation name R’and 

ti represents a tuple in r(R’). An attribute-node is labeled Aj : 

ak where Aj is a text-attribute name and ak is an attribute 

value. Consequently, E = Ett U Eta consists of two types of 

edges.Ett is the set of edges among tuple-nodes in GD, and an 

edge ti → tj in Ett indicates that there exists a foreign key 

reference from ti to tj in RDB. Eta is the set of edges from 

tuple-nodes to attribute-nodes. There exists an edge from a 

tuple-node ti to an attribute-node Aj : ak in Eta, if the tuple ti 

has the attribute value ak in the attribute Aj in RDB.Here V 

(G) and E(G) to denote the set of nodes and the set of edges of 

G, respectively. 

    If  ki is contained in either the attribute name or the 

attribute value in the node label then we can say that there 

exist an attribute-node v contains a keyword ki.We also say a 

tuple-node u contains a keyword  ki  if there is a path from 

tuple node u to an attribute node v contains Ki.  

    Virtual Tuple. A virtual tuple  is a tree representation of 

the maximum subgraph at a tuple-node tγ in GD and denoted 

e as Vtuple, or explicitly Vtuple(tγ) if it is rooted at a tuple-

node tγ. The maximum subgraph of  tγ is the induced 

subgraph of all nodes that are reachable from tγ in GD. The 

tree representation of Vtuple(tγ) is, if a node u links to a node 

w which is predecessor of u, the edge (u,w) will be deleted. 

Otherwise, if two nodes u and v link to a node w in GD, we 

create an additional copy w' of w, and let u link to w and v 

link to w'. All leaf nodes in Vtuple(tγ) must be attribute-nodes 

A Vtuple(tγ) includes all information a tuple-node tγ can 

reach  . 

     Dtree, Gtree, and DGtree. Given a set of keywords 

{k1,k2, . . .}, a Dtree(tγ) is a minimal subtree of Vtuple(tγ) 

which contains all dimensional-keywords by connecting to the 

attribute-nodes that contain the given dimensional keyword. A 

Gtreer tγ) is also a subtree of Vtuple(tγ) by removing all the 

subtrees rooted at a tuple node that do not have any attribute-

node containing general keywords.A Gtree(tγ) matches a 

query if it contains at least one general-keyword. A Gtree(tγ) 

may not contain all the  general-keywords. Given a set of 
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keywords, there exists one Gtree(tγ), but many distinctive 

Dtree(tγ), by definition. A DGtree(tγ) consists of two parts, 

where the first part is Dtree(tγ) and the second part is 

Gtree(tγ). 

   In this paper, we study a new structural statistics keyword 

query Q  = (Qd,Qg ,α,β)against an RDB over GS.It consists of 

two sets of keywords, namely Qd and Qg, for Qd ∩ Qg = Φ , 

a score function α, and an aggregate function β. We call a 

keyword in Qd and Qg as a dimensional-keyword and a 

general-keyword , respectively. The two sets of keywords, Qd 

and Qg, together specify a set of trees T to be computed. A 

DGtree Ti in T with root tγ = root(Ti) consists of two subtrees, 

a Dtree rooted at tγ for Qd, and a Gtree rooted at the same tγ 

for Qg, denoted as Dtree(Ti) and Gtree(Ti), respectively. The 

set of trees, T , are grouped into different groups. Let Ti and 

Tj be two trees in T . Ti and Tj belong to the same group if 

Dtree(Ti) is isomorphic toDtree(Tj).   Here score function α to 

be any possible algebraic function based on TF-IDF, namely, 

tfw(T) and  idfw.. Let T ={T1, T2, . . .} be a set of DGtrees in 

the same group. We consider every Gtree(Ti) for Ti Є T as a 

virtual document, by merging all attribute names and attribute 

values in the tree into a multiset. Then, tfw(Ti) is the number 

of times the keyword w Є Qg appears in the corresponding 

virtual document, and  idfw  is calculated as follows[5]: 

                   idfw   =    | T |                                                       (1) 

                            dfw(T)    

    where |T | is the number of Gtrees in T in the group, and 

dfw(T)  is the number of Gtrees that contain the keyword w Є  

Qg in the group. The tree level ranking function[4]   is such an 

algebraic function based on tfw(T) and  idfw. The  α function 

is to be applied to Gtree(Ti) for Ti Є T to give such Gtree(Ti) 

a score. Factors that can be  involved in an α function can be, 

for example, to give a high score for a term if it is close to the 

root. For efficiency consideration we require that factors in an  

α function for a tree must be computable from the factors of 

its subtrees. The aggregate function  β  aggregates the scores 

computed for DGtrees in the same group. An aggregate 

function can be any SQL aggregate functions (min, max, sum, 

avg, and count). The output for the group T is (TA,ω)  where 

TA represents the Dtree for the group, and  

w=β({α(Gtree(T1)), α(Gtree(T2)), … }). 

 

III. SOLUTION OVERVIEW 

    Given a structural statistics keyword query Q  = (Qd,Qg 

,α,β) over an RDB, a naive solution is  impractical for the 

following two main  reasons. 1) The number of possible 

Dtrees and Gtrees can be very large. It is infeasible to 

compute. It is worth noting that all the existing solutions focus 

on finding top-k answers if they make use of ranking and 

allow some (not all) keywords to be contained in the answers. 

2) It is costly to group Dtrees into groups even though tree 

isomorphism checking is polynomial.  

    In this paper, to compute a structural statistics keyword 

query, Q, we propose a two-step approach (Algorithm 1). In 

the first step, we generate a set of label-trees for dimensional 

keywords (LDs), denoted as L = {LD1, LD2, ..},  such that 

every DGtree to be computed will conform to a  unique LD. 

In the second step, we compute the structural statistics 

keyword query Q using L. In brief, for every LDi, we compute 

all DGtrees, denoted as T i = {Ti1; Ti2 ; . . .} that conform to 

LDi, group all the trees in Ti into groups based on Dtree(Tij) 

and compute  α (Gtree(Tij)) for every Tij Є Ti, and then 

compute β  for every group. The main idea behind label-trees 

is to avoid tree isomorphism checking and enumerating all 

possible DGtrees. 

   The algorithms to generate all label-trees and to compute 

structural statistics keyword query using the label-trees will be 

discussed in the following sections. 

 

ALGORITHM 1. Structural-Statistics(GS, Q, GD) 

 

1: L =LD-Gen(GS,Q); 

2: for every LDi Є L do 

3: LD-Eval(Q, LDi,GD); 

 

 First, we define a label-graph, Gs(V,E), for keyword search 

for a database schema GS. Here, V is a set of nodes such that 

V = VR U VA, where VR is a set of nodes labeled with relation 

names, called relation nodes, and VA is a set of nodes labeled 

with attribute names for those text-attributes only. E is a set of 

edges such that E = ERR U ERA. An edge Ri  → Rj appears in 

RR if there is a foreign key reference from Ri to Rj. An edge 

Ri → Aj appears in ERA if Ri has an attribute Aj. Second, we 

define a rooted tree for every relation Ri in Gs, denoted as 

LV(Ri), which is a labeled tree for all virtual tuples rooted at  

tγ Є r(Ri). LV(Ri) is a connected tree representation of the 

maximum subgraph rooted at Ri in Gs.The tree representation 

is done as follow. In LV(Ri),if a node u  links to a node w 

which is an ancestor of  u, the edge (u,w) will be deleted. 

Otherwise, if two nodes u and v link to a node w in GS, we 

create an additional copy w' of w, and let u link to w and v 

link to w'.  

  Consider a structural statistics keyword query Q =(Qd,Qg, α, 

β ) against the data graph GD using the label-graph Gs. We 

further give a specific LV for computing Dtrees. A label-tree 

for dimensional-keywords LDi(Rj) is a subtree of LV(Rj) 

rooted at Rj that contains at most |Qdj| attribute-nodes as leaf 

nodes. The attribute-nodes in LDi(Rj) possibly contain all the 

dimensional-keywords in Qd.  

    

IV.GENERATE ALL LDs 

         The solution is as follows , first, we precompute all LVs 

for GS because the set of LVs is query independent. The 

algorithm to compute all LVs is shown in Algorithm 2 [5]. For 

each node R in GS, we calculate LV(R) using a breadth first  

search from R in GS until all nodes that can reach from R are 

added into LV(R). For node u that is visited more than once in 

the breadth-first search, we create an extra copy in LV(R) if u 

is not visited from its descendant. Second, in order to 

efficiently generate all LDs for all possible dimensional-

keywords, we construct an inverted index, called the 

dimensional inverted index (DII), using the names and values 

of the attributes in the RDB. The inverted index helps to find 

the attributes in a relation that a dimensional-keyword di 
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matches. In detail, for each possible dimensional-keyword, w, 

in DII, there is a list of entries to describe the attributes in a 

relation the keyword w matches. We denote the list for w as 

list(w). Each entry e Є list(w) has three fields: e = {Type, Rel, 

Attr). Here, Type can be either Name or Value. When Type = 

Name, it means w is an attribute name. When Type = Value, it 

means w is an attribute value. Rel and Attr indicate the 

relation and the attribute that w matches.  

 

ALGORITHM 2. LV-Gen(GS) 

Input: The label-graph GS (VR U VA; ERR U  ERA ) 

Output: The set of all LVs. 

 

1: S   ← Φ; 

2: for all R Є VR do 

3: add R with links to all its text-attributes into LV(R); 

4: Q ← Φ; 

5: Q:enqueue(R); 

6: while Q ≠  Φ do 

7:      R1 ←Q.dequeue(); 

8:      for all R1  → R2  Є E(Gs)  do 

9                   let R’2be a copy of R2; 

10:                add an edge in LV(R) from R1 to R’2 

11:                add links from  R’2 to  to all its text-attributes; 

12:                 Q:enqueue(R’2); 

13: S   ←S U {LV(R)}; 

14: return S 

    We design a new algorithm to generate all LDs using 

list(di) for di Є Qd, as shown in Algorithm 3. The 

algorithm[5] generates all LDs for a structural statistics 

keyword query. First, it collects information  if a keyword di 

matches the relation nodes in each LV (lines 2-6). Given the 

set of LVs S, for each LV in S, we use LV.listi to maintain the 

set of candidate entries in list(di) that may contribute to 

generating LDs from LV. Second, in a for loop (lines 7-10), 

for each combination of nodes e1, . . . , e|Qd| that contain 

keywords d1, . . . ., d|Qd|,  respectively, in a certain LV Є S, we 

generate a LD by constructing a minimum  tree that contains 

nodes e1 . . . e|Qd|   in LV. Given LV and e1, . . . e|Qd|, the LD is 

unique and can be computed as follows: for each leaf node of 

LV, we remove all the leaf nodes that do not belong to  

{e1..e|Qd|}. We do this iteratively until no leaf node is 

removed. The result is a minimum tree that contains nodes e1, 

. . . , e|Qd| in LV 

 

 ALGORITHM 3. LD-Gen(GS, Q, S, DII) 

 

Input: The label-graph GS, a query Q =(Qd,Qg, α, β ),               

the dimensional inverted index DII and the set of LVs, S. 

Output: The set of all LDs. 

 

1: Q  ← Φ; 

2: for each keyword di in Qd do 

3:    for each e Є list(di) do 

4:          for each LV  Є S do 

5:              if e.Rel Є LV then 

6:                 LV.listi ←LV.listi U {e}; 

7: for each LV Є S do. 

8:         if LV.listi ≠ Φ  for any 1≤ i ≤|Qd|.  then 

9:             for all (e1 . . . , e|Qd|  ) Є LV.list1X…….XLV.list|Qd|  

                   do 

10:                  construct a minimal LD that only contains 

                         attribute-nodes (e1,. . . ,e|Qd|   ); 

11: Q ←  Q  U { LD}; 

12: return Q; 

 

V. EVALUATE ALL LDS 

        Here , for a structural statistics keyword query Q= 

(Qd,Qg, α, β ), we   give a  two-phase approach to compute 

structural statistics for all the groups under a given LD.  

    A. Two-Phase Approach 

     We propose a new two-phase approach, namely, bottom-up 

followed by top-down, after pruning unnecessary nodes/ edges 

from GD that need to evaluate an LD(R). For a given LD(R) 

to be evaluated, let LV(R) be the labelled LV that generates 

LD(R). In the bottom-up phase, we collect statistics for TF-

IDF, namely, tfw(T) and  idfw  using general-keywords. The 

statistics collection is done in a bottom-up fashion, and will 

finish when it finally evaluates the relation R which is the root 

of LD(R). Let R’ be the set of tuples in R that contain 

statistics for at least one general-keyword in Qg. At the end of 

this phase, we have a set of {Gtree(tγ)} for tγ in R’, and we 

compute all α(Gtree(tγ)). In the top-down phase, we start from 

those tuples tγ in R’.We retrieve all leaf attribute nodes that tγ 

can reach using the depth first search from tγ. If the leaf 

attribute nodes contain all the required dimensional keywords 

in Qd, then tγ has a valid Dtree(tγ). At the end of this top-down 

process, we compute γ for all such  tγ in R’  that has a valid 

Dtree(tγ). 

    We first discuss the pruning process using dimensional 

keywords before the two-phase approach. Given adimensional 

keyword di, a node v in GD can be pruned by di if there does 

not exist a Dtree that contains both keyword di and node v. 

We call v an unnecessary node if v can be pruned by any 

dimensional keyword in the query. Given an LD, we consider 

whether a keyword di Є Qd has enough pruning power using 

Pow(di,LD) which is computed as follows[5]: suppose X(A,B) 

is the join selectivity in relation A that can join a tuple in 

relation B, i.e., the fraction of tuples of A that have a matching 

tuple in B. Suppose the attribute in relation Ri in LD contains 

di, and assume Pi is the path from the root of LD to Ri. We 

have 

 Pow(di) =                               1                                             (2) 

                           Ri.c(di).∏(A,B)ЄPiX(A,B) 

 

  Here Ri.c(di) is the number of tuples in Ri that contain the 

keyword di in the specified attribute of Ri in LD. The basic 

idea behind is as follows: for any join sequence A   B  C, 

we assume that for any tuples a Є A, b Є B,and c Є C, 

whether a can be joined with b and whether b can be joined 

with c are independent to each other. Ri.c(di).∏(A,B)ЄPi  X(A,B)  

is the expected number of  root nodes to reach a node with 

keyword di. Intuitively, a keyword that ends up with a smaller 

expected number of the root nodes has higher pruning power. 
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For any general-keyword gjЄQg, suppose for any text-

attribute Ai, R(Ai) is the relation of Ai, and P(Ai) is the path 

from the root of LD to the relation R(Ai).We compute the 

pruning power of a general-keyword as  follows[5]: 

                                                    

Pow(gi,LD) =                          1                                            (3)          

                             ∑AiЄLDR(Ai).c(gi).∏(A,B)ЄP(Ai)x(A,B) 

 

Based on the equations, we decide whether a dimensional 

keyword di ЄQd has enough power to prune, or in other words, 

it is cost-effective to reduce GD. We sort all dimensional-

keywords di Є Qd in decreasing order . If the pruning power 

of di is larger than the largest pruning power of all general-

keywords in Qg, then we use di to reduce GD by removing all 

the tuple-nodes that cannot reach any attribute nodes 

containing di. 

The algorithm is shown in Algorithm 4[5]. We assume that 

the structure of the data graph is held in memory. First, we 

prune unnecessary nodes from GD using Qd if they have 

enough pruning power (lines 5-7). Second, in the bottom-up 

phase, we compute trees in a sense to collect all needed 

information to compute α  for every Gtree using Qg. It is done 

from the leaf toward the root which is a tuple in r(R)  for the 

LV(R) that generates the given LD (lines 9-25).Finally, in a 

top-down phase, we aggregate for each group based on Qd 

(lines 27-31). 

 

ALGORITHM 4. LD-Eval(Q, LD, GD) 

Input: A query Q ={Qd,Qg, α, β }, LD 

          and a database graph GD(V ,E). 

Output:  Aggregates for all groups 

 

1: Ґ← Φ; 

2: let LV(R) be the LV that generates LD; 

3: for all relation node P Є LV(R)  do 

4: P.set ← Φ; 

5: for all di  Є Qd sorted by decreasing order 

           of Pow(di,LD) do 

6:            if Pow(di,LD) > maxgi Є Qg (Pow(gi,LD)) then 

            GD  ← prune(GD,di,LD); 

8:     // The bottom-up phase 

9: for all relation node P Є LV(R)  in the order from 

     leaves to the root   do 

10:       for i=1 to |Qg| do 

11:          for all tuple-node tP Є P.contain(gi) do 

12:           tP .cnti ← tP .cnti + tp.count(gi) 

13:           P.hasi  ←  P.hasi U  {tP}; 

14:  P.set ←  P.set U {tP}; 

15: for all child of P, C, in  LV(R) do 

16:      for all node tC  Є  C.set do 

17:       for all node tP Є  P such that tP → tC  Є  E(GD) do 

18:        P.set ←  P.set U {tP}; 

19:      for  i= 1 to |Qg| do 

20 tp.cnti ← tP :cnti + tc.cnti; 

21:       if tC.cnti > 0 then P.hasi P.hasi ← P.hasi  U {tp} 

22: for all tuple-node t Є R.set do 

23:    for i = 1 to |Qg| do 

24:      tfgi (t) ← t.cnti; dfgi (LV(R) ←|R:hasi|; 

25:     t.score ← α(t)  using all tfgi(t) and dfgi(LV(R)); 

26: // The top-down phase 

27: for all t  Є  R.set do 

28:     let ai be the attribute value in the attribute 

          Ai Є  att(LD) that contains di, for all di Є Qd; 

29:      let  γ  be a group represented by (a1, a2,.. a|Qd|) 

30:     γ. score = β( γ. Score, t.score); 

31:    Ґ← Ґ U {γ} if γ  not in  Ґ; 

32: return  Ґ 
  

VI. CONCLUSIONS 

 In this paper, we studied how to compute structural statistics for  

all groups of tuples in RDB using the keyword query. By using a  

new two-step approach, we compute all  label-trees for a 

structural statistics keyword query, and a new two-phase 

algorithm  used to compute group-&-aggregate using the label-

trees computed. 
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