
Ambily et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 105

A New Approach to Compute Structural Statistics using

Keywords in Databases
Ambily Jose

1
, Jobin George

2
, Liliya T Jose

 3

1Dept of Computer Science and Engineering,

BTL Institute of Technology, Bangalore, India.

2 Software Engineer,Bangalore, India.

 3Dept of Computer Science and Engineering,

Vimal Jyothy Engineering College, Kerala, India.

Abstract— Query using keywords is one of the user friendly and

widely used forms of querying in recent days. The existing

systems focused on fetching all or a fixed number of top tuples ,

which may directly contain the portion of keywords or

interconnected to other related tuples via foreign key. These

systems will not give any valuable information more than

individual interconnected tuple structures.. In this paper we

focus on compute structural statistics for keyword by extending

the group & aggregate framework. In RDBMS, rows with same

values on specific attributes can be grouped together and

aggregate functions can be used to aggregate the values of the

same group. Tuples are considered as rooted subgraphs, which

represents an interconnected tuple structure among tuples . The

keywords are separated as dimensional keywords and general

keywords. The dimensions of the rooted subgraphs are

determined by dimensional keywords and the general keywords

are used to compute scores. Based on the score computed for

every group, an aggregate function is used to compute the

aggregates.

Keywords - Keyword search, relational database , Structural

 statistics.

І . INTRODUCTION

Search based on keyword in database systems is one of the

commonly used research topic. It helps the users to get results

which match the keywords. Most of the available studies are

based on finding the related values based on the values on the

table and values on other tables which is referred by a foreign

key reference[1]-[3]. These systems may give a large set of

possible results for the given keywords, and sometimes users

may struggle to filter the required information. In this paper,

we are going to evaluate how to compute statistics on the

interconnected tuple- structures using keywords instead of

finding interconnected structures among tuples.

 II. STRUCTURAL STATISTICS

Let GS = {R1,R2, . . .} be a relational database schema.

Here,Ri in GS is a relation schema with a set of attributes.

Keyword search is allowed on any text-attributes. A relation

schema may have a primary key and there are foreign key

references defined in GS. We use Ri → Rj to denote that

there is a foreign key defined on Ri referring to the primary

key defined on Rj. A relation on relation schema Ri is an

instance of the relation schema (a set of tuples) conforming to

the relation schema, denoted r(Ri). A relational database

(RDB) is a collection of relations.

 We model an RDB over GS as a directed database graph

GD(V,E). Here we use two types of labeled nodes tuple

nodes Vt and attribute nodes Va, V = Vt U Va for Vt ∩ Va=

Φ. A tuple-node in r(R’) labeled with its relation name R’and

ti represents a tuple in r(R’). An attribute-node is labeled Aj :

ak where Aj is a text-attribute name and ak is an attribute

value. Consequently, E = Ett U Eta consists of two types of

edges.Ett is the set of edges among tuple-nodes in GD, and an

edge ti → tj in Ett indicates that there exists a foreign key

reference from ti to tj in RDB. Eta is the set of edges from

tuple-nodes to attribute-nodes. There exists an edge from a

tuple-node ti to an attribute-node Aj : ak in Eta, if the tuple ti

has the attribute value ak in the attribute Aj in RDB.Here V

(G) and E(G) to denote the set of nodes and the set of edges of

G, respectively.

 If ki is contained in either the attribute name or the

attribute value in the node label then we can say that there

exist an attribute-node v contains a keyword ki.We also say a

tuple-node u contains a keyword ki if there is a path from

tuple node u to an attribute node v contains Ki.

 Virtual Tuple. A virtual tuple is a tree representation of

the maximum subgraph at a tuple-node tγ in GD and denoted

e as Vtuple, or explicitly Vtuple(tγ) if it is rooted at a tuple-

node tγ. The maximum subgraph of tγ is the induced

subgraph of all nodes that are reachable from tγ in GD. The

tree representation of Vtuple(tγ) is, if a node u links to a node

w which is predecessor of u, the edge (u,w) will be deleted.

Otherwise, if two nodes u and v link to a node w in GD, we

create an additional copy w' of w, and let u link to w and v

link to w'. All leaf nodes in Vtuple(tγ) must be attribute-nodes

A Vtuple(tγ) includes all information a tuple-node tγ can

reach .

 Dtree, Gtree, and DGtree. Given a set of keywords

{k1,k2, . . .}, a Dtree(tγ) is a minimal subtree of Vtuple(tγ)

which contains all dimensional-keywords by connecting to the

attribute-nodes that contain the given dimensional keyword. A

Gtreer tγ) is also a subtree of Vtuple(tγ) by removing all the

subtrees rooted at a tuple node that do not have any attribute-

node containing general keywords.A Gtree(tγ) matches a

query if it contains at least one general-keyword. A Gtree(tγ)

may not contain all the general-keywords. Given a set of

Ambily et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 106

keywords, there exists one Gtree(tγ), but many distinctive

Dtree(tγ), by definition. A DGtree(tγ) consists of two parts,

where the first part is Dtree(tγ) and the second part is

Gtree(tγ).

 In this paper, we study a new structural statistics keyword

query Q = (Qd,Qg ,α,β)against an RDB over GS.It consists of

two sets of keywords, namely Qd and Qg, for Qd ∩ Qg = Φ ,

a score function α, and an aggregate function β. We call a

keyword in Qd and Qg as a dimensional-keyword and a

general-keyword , respectively. The two sets of keywords, Qd

and Qg, together specify a set of trees T to be computed. A

DGtree Ti in T with root tγ = root(Ti) consists of two subtrees,

a Dtree rooted at tγ for Qd, and a Gtree rooted at the same tγ

for Qg, denoted as Dtree(Ti) and Gtree(Ti), respectively. The

set of trees, T , are grouped into different groups. Let Ti and

Tj be two trees in T . Ti and Tj belong to the same group if

Dtree(Ti) is isomorphic toDtree(Tj). Here score function α to

be any possible algebraic function based on TF-IDF, namely,

tfw(T) and idfw.. Let T ={T1, T2, . . .} be a set of DGtrees in

the same group. We consider every Gtree(Ti) for Ti Є T as a

virtual document, by merging all attribute names and attribute

values in the tree into a multiset. Then, tfw(Ti) is the number

of times the keyword w Є Qg appears in the corresponding

virtual document, and idfw is calculated as follows[5]:

 idfw = | T | (1)

 dfw(T)

 where |T | is the number of Gtrees in T in the group, and

dfw(T) is the number of Gtrees that contain the keyword w Є

Qg in the group. The tree level ranking function[4] is such an

algebraic function based on tfw(T) and idfw. The α function

is to be applied to Gtree(Ti) for Ti Є T to give such Gtree(Ti)

a score. Factors that can be involved in an α function can be,

for example, to give a high score for a term if it is close to the

root. For efficiency consideration we require that factors in an

α function for a tree must be computable from the factors of

its subtrees. The aggregate function β aggregates the scores

computed for DGtrees in the same group. An aggregate

function can be any SQL aggregate functions (min, max, sum,

avg, and count). The output for the group T is (TA,ω) where

TA represents the Dtree for the group, and

w=β({α(Gtree(T1)), α(Gtree(T2)), … }).

III. SOLUTION OVERVIEW

 Given a structural statistics keyword query Q = (Qd,Qg

,α,β) over an RDB, a naive solution is impractical for the

following two main reasons. 1) The number of possible

Dtrees and Gtrees can be very large. It is infeasible to

compute. It is worth noting that all the existing solutions focus

on finding top-k answers if they make use of ranking and

allow some (not all) keywords to be contained in the answers.

2) It is costly to group Dtrees into groups even though tree

isomorphism checking is polynomial.

 In this paper, to compute a structural statistics keyword

query, Q, we propose a two-step approach (Algorithm 1). In

the first step, we generate a set of label-trees for dimensional

keywords (LDs), denoted as L = {LD1, LD2, ..}, such that

every DGtree to be computed will conform to a unique LD.

In the second step, we compute the structural statistics

keyword query Q using L. In brief, for every LDi, we compute

all DGtrees, denoted as T i = {Ti1; Ti2 ; . . .} that conform to

LDi, group all the trees in Ti into groups based on Dtree(Tij)

and compute α (Gtree(Tij)) for every Tij Є Ti, and then

compute β for every group. The main idea behind label-trees

is to avoid tree isomorphism checking and enumerating all

possible DGtrees.

 The algorithms to generate all label-trees and to compute

structural statistics keyword query using the label-trees will be

discussed in the following sections.

ALGORITHM 1. Structural-Statistics(GS, Q, GD)

1: L =LD-Gen(GS,Q);

2: for every LDi Є L do

3: LD-Eval(Q, LDi,GD);

 First, we define a label-graph, Gs(V,E), for keyword search

for a database schema GS. Here, V is a set of nodes such that

V = VR U VA, where VR is a set of nodes labeled with relation

names, called relation nodes, and VA is a set of nodes labeled

with attribute names for those text-attributes only. E is a set of

edges such that E = ERR U ERA. An edge Ri → Rj appears in

RR if there is a foreign key reference from Ri to Rj. An edge

Ri → Aj appears in ERA if Ri has an attribute Aj. Second, we

define a rooted tree for every relation Ri in Gs, denoted as

LV(Ri), which is a labeled tree for all virtual tuples rooted at

tγ Є r(Ri). LV(Ri) is a connected tree representation of the

maximum subgraph rooted at Ri in Gs.The tree representation

is done as follow. In LV(Ri),if a node u links to a node w

which is an ancestor of u, the edge (u,w) will be deleted.

Otherwise, if two nodes u and v link to a node w in GS, we

create an additional copy w' of w, and let u link to w and v

link to w'.

 Consider a structural statistics keyword query Q =(Qd,Qg, α,

β) against the data graph GD using the label-graph Gs. We

further give a specific LV for computing Dtrees. A label-tree

for dimensional-keywords LDi(Rj) is a subtree of LV(Rj)

rooted at Rj that contains at most |Qdj| attribute-nodes as leaf

nodes. The attribute-nodes in LDi(Rj) possibly contain all the

dimensional-keywords in Qd.

IV.GENERATE ALL LDs

 The solution is as follows , first, we precompute all LVs

for GS because the set of LVs is query independent. The

algorithm to compute all LVs is shown in Algorithm 2 [5]. For

each node R in GS, we calculate LV(R) using a breadth first

search from R in GS until all nodes that can reach from R are

added into LV(R). For node u that is visited more than once in

the breadth-first search, we create an extra copy in LV(R) if u

is not visited from its descendant. Second, in order to

efficiently generate all LDs for all possible dimensional-

keywords, we construct an inverted index, called the

dimensional inverted index (DII), using the names and values

of the attributes in the RDB. The inverted index helps to find

the attributes in a relation that a dimensional-keyword di

Ambily et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 107

matches. In detail, for each possible dimensional-keyword, w,

in DII, there is a list of entries to describe the attributes in a

relation the keyword w matches. We denote the list for w as

list(w). Each entry e Є list(w) has three fields: e = {Type, Rel,

Attr). Here, Type can be either Name or Value. When Type =

Name, it means w is an attribute name. When Type = Value, it

means w is an attribute value. Rel and Attr indicate the

relation and the attribute that w matches.

ALGORITHM 2. LV-Gen(GS)

Input: The label-graph GS (VR U VA; ERR U ERA)

Output: The set of all LVs.

1: S ← Φ;

2: for all R Є VR do

3: add R with links to all its text-attributes into LV(R);

4: Q ← Φ;

5: Q:enqueue(R);

6: while Q ≠ Φ do

7: R1 ←Q.dequeue();

8: for all R1 → R2 Є E(Gs) do

9 let R’2be a copy of R2;

10: add an edge in LV(R) from R1 to R’2

11: add links from R’2 to to all its text-attributes;

12: Q:enqueue(R’2);

13: S ←S U {LV(R)};

14: return S

 We design a new algorithm to generate all LDs using

list(di) for di Є Qd, as shown in Algorithm 3. The

algorithm[5] generates all LDs for a structural statistics

keyword query. First, it collects information if a keyword di

matches the relation nodes in each LV (lines 2-6). Given the

set of LVs S, for each LV in S, we use LV.listi to maintain the

set of candidate entries in list(di) that may contribute to

generating LDs from LV. Second, in a for loop (lines 7-10),

for each combination of nodes e1, . . . , e|Qd| that contain

keywords d1,, d|Qd|, respectively, in a certain LV Є S, we

generate a LD by constructing a minimum tree that contains

nodes e1 . . . e|Qd| in LV. Given LV and e1, . . . e|Qd|, the LD is

unique and can be computed as follows: for each leaf node of

LV, we remove all the leaf nodes that do not belong to

{e1..e|Qd|}. We do this iteratively until no leaf node is

removed. The result is a minimum tree that contains nodes e1,

. . . , e|Qd| in LV

 ALGORITHM 3. LD-Gen(GS, Q, S, DII)

Input: The label-graph GS, a query Q =(Qd,Qg, α, β),

the dimensional inverted index DII and the set of LVs, S.

Output: The set of all LDs.

1: Q ← Φ;

2: for each keyword di in Qd do

3: for each e Є list(di) do

4: for each LV Є S do

5: if e.Rel Є LV then

6: LV.listi ←LV.listi U {e};

7: for each LV Є S do.

8: if LV.listi ≠ Φ for any 1≤ i ≤|Qd|. then

9: for all (e1 . . . , e|Qd|) Є LV.list1X…….XLV.list|Qd|

 do

10: construct a minimal LD that only contains

 attribute-nodes (e1,. . . ,e|Qd|);

11: Q ← Q U { LD};

12: return Q;

V. EVALUATE ALL LDS

 Here , for a structural statistics keyword query Q=

(Qd,Qg, α, β), we give a two-phase approach to compute

structural statistics for all the groups under a given LD.

 A. Two-Phase Approach

 We propose a new two-phase approach, namely, bottom-up

followed by top-down, after pruning unnecessary nodes/ edges

from GD that need to evaluate an LD(R). For a given LD(R)

to be evaluated, let LV(R) be the labelled LV that generates

LD(R). In the bottom-up phase, we collect statistics for TF-

IDF, namely, tfw(T) and idfw using general-keywords. The

statistics collection is done in a bottom-up fashion, and will

finish when it finally evaluates the relation R which is the root

of LD(R). Let R’ be the set of tuples in R that contain

statistics for at least one general-keyword in Qg. At the end of

this phase, we have a set of {Gtree(tγ)} for tγ in R’, and we

compute all α(Gtree(tγ)). In the top-down phase, we start from

those tuples tγ in R’.We retrieve all leaf attribute nodes that tγ

can reach using the depth first search from tγ. If the leaf

attribute nodes contain all the required dimensional keywords

in Qd, then tγ has a valid Dtree(tγ). At the end of this top-down

process, we compute γ for all such tγ in R’ that has a valid

Dtree(tγ).

 We first discuss the pruning process using dimensional

keywords before the two-phase approach. Given adimensional

keyword di, a node v in GD can be pruned by di if there does

not exist a Dtree that contains both keyword di and node v.

We call v an unnecessary node if v can be pruned by any

dimensional keyword in the query. Given an LD, we consider

whether a keyword di Є Qd has enough pruning power using

Pow(di,LD) which is computed as follows[5]: suppose X(A,B)

is the join selectivity in relation A that can join a tuple in

relation B, i.e., the fraction of tuples of A that have a matching

tuple in B. Suppose the attribute in relation Ri in LD contains

di, and assume Pi is the path from the root of LD to Ri. We

have

 Pow(di) = 1 (2)

 Ri.c(di).∏(A,B)ЄPiX(A,B)

 Here Ri.c(di) is the number of tuples in Ri that contain the

keyword di in the specified attribute of Ri in LD. The basic

idea behind is as follows: for any join sequence A B C,

we assume that for any tuples a Є A, b Є B,and c Є C,

whether a can be joined with b and whether b can be joined

with c are independent to each other. Ri.c(di).∏(A,B)ЄPi X(A,B)

is the expected number of root nodes to reach a node with

keyword di. Intuitively, a keyword that ends up with a smaller

expected number of the root nodes has higher pruning power.

Ambily et al. / IJAIR Vol. 2 Issue 8 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 108

For any general-keyword gjЄQg, suppose for any text-

attribute Ai, R(Ai) is the relation of Ai, and P(Ai) is the path

from the root of LD to the relation R(Ai).We compute the

pruning power of a general-keyword as follows[5]:

Pow(gi,LD) = 1 (3)

 ∑AiЄLDR(Ai).c(gi).∏(A,B)ЄP(Ai)x(A,B)

Based on the equations, we decide whether a dimensional

keyword di ЄQd has enough power to prune, or in other words,

it is cost-effective to reduce GD. We sort all dimensional-

keywords di Є Qd in decreasing order . If the pruning power

of di is larger than the largest pruning power of all general-

keywords in Qg, then we use di to reduce GD by removing all

the tuple-nodes that cannot reach any attribute nodes

containing di.

The algorithm is shown in Algorithm 4[5]. We assume that

the structure of the data graph is held in memory. First, we

prune unnecessary nodes from GD using Qd if they have

enough pruning power (lines 5-7). Second, in the bottom-up

phase, we compute trees in a sense to collect all needed

information to compute α for every Gtree using Qg. It is done

from the leaf toward the root which is a tuple in r(R) for the

LV(R) that generates the given LD (lines 9-25).Finally, in a

top-down phase, we aggregate for each group based on Qd

(lines 27-31).

ALGORITHM 4. LD-Eval(Q, LD, GD)

Input: A query Q ={Qd,Qg, α, β }, LD

 and a database graph GD(V ,E).

Output: Aggregates for all groups

1: Ґ← Φ;

2: let LV(R) be the LV that generates LD;

3: for all relation node P Є LV(R) do

4: P.set ← Φ;

5: for all di Є Qd sorted by decreasing order

 of Pow(di,LD) do

6: if Pow(di,LD) > maxgi Є Qg (Pow(gi,LD)) then

 GD ← prune(GD,di,LD);

8: // The bottom-up phase

9: for all relation node P Є LV(R) in the order from

 leaves to the root do

10: for i=1 to |Qg| do

11: for all tuple-node tP Є P.contain(gi) do

12: tP .cnti ← tP .cnti + tp.count(gi)

13: P.hasi ← P.hasi U {tP};

14: P.set ← P.set U {tP};

15: for all child of P, C, in LV(R) do

16: for all node tC Є C.set do

17: for all node tP Є P such that tP → tC Є E(GD) do

18: P.set ← P.set U {tP};

19: for i= 1 to |Qg| do

20 tp.cnti ← tP :cnti + tc.cnti;

21: if tC.cnti > 0 then P.hasi P.hasi ← P.hasi U {tp}

22: for all tuple-node t Є R.set do

23: for i = 1 to |Qg| do

24: tfgi (t) ← t.cnti; dfgi (LV(R) ←|R:hasi|;

25: t.score ← α(t) using all tfgi(t) and dfgi(LV(R));

26: // The top-down phase

27: for all t Є R.set do

28: let ai be the attribute value in the attribute

 Ai Є att(LD) that contains di, for all di Є Qd;

29: let γ be a group represented by (a1, a2,.. a|Qd|)

30: γ. score = β(γ. Score, t.score);

31: Ґ← Ґ U {γ} if γ not in Ґ;

32: return Ґ

VI. CONCLUSIONS

 In this paper, we studied how to compute structural statistics for

all groups of tuples in RDB using the keyword query. By using a

new two-step approach, we compute all label-trees for a

structural statistics keyword query, and a new two-phase

algorithm used to compute group-&-aggregate using the label-

trees computed.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A System for
 Keyword-Based Search over Relational Databases,” Proc. 18th Int’l

 Conf. Data Eng. (ICDE ’02), 2002.

[2] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IRStyle
 Keyword Search over Relational Databases,” Proc. 29th Int’l

 Conf. Very Large Data Bases (VLDB ’03), 2003

[3] V. Hristidis and Y. Papakonstantinou, “DISCOVER: Keyword
 Search in Relational Databases,” Proc. 28th Int’l Conf. Very Large

 Data Bases (VLDB ’02), 2002.

[4] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: Top-K Keyword
 Query in Relational Databases,” Proc. ACM SIGMOD Int’l Conf.

 Management of Data (SIGMOD ’07), 2007

[5] Lu Qin,Jeffrey Xu Yu, and Lijun Chang ,“Computing Structural
 Statistics by Keywords in Data bases”,IEEE transactions on knowledge

 And Data Engg.,oct 2012
[6] L. Qin, J.X. Yu, and L. Chang, “Computing Structural Statistics by

 Keyword in Databases,” Proc. IEEE 27th Int’l Conf. Data Eng.

 (ICDE ’11), 2011.
 [7] L. Qin, J.X. Yu, and L. Chang, “Keyword Search in Databases: The

 Power of Rdbms,” Proc. ACM SIGMOD Int’l Conf. Management of

 Data (SIGMOD ’09), 2009

Ambily Jose received the B.Tech. degree in Computer

Science and Engineering from Cochin University of Science

and Technology, Cochin, Kerala. At present persuing the

Master of Technology in Computer Science and Engineering

Department at BTL institute of Technology, Bangalore.

Jobin George currently working as a Senior Software

Engineer in Wipro Technologies,Bangalore, India

 Liliya T Jose currently working as an Assistant Professor in

Vimal Jyothy Engg.College affiliated to Kannur University,

Kerala

