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Abstract— In this paper on-chip square spiral inductors are 

designed using   ANN modeling techniques. Layout geometries 

form the input of the ANN model and electrical quantities forms 

the output  . The dependency of inductor performances   as 

inductance (L), quality factor (Q) and self-resonance frequency 

(SRF) on geometric dimensions and process technology 

parameters are described. Spirals of wide range of RF 

applications are studied. In our ANN based synthesis  approach 

on-chip spiral inductor layout parameters such as spiral outer 

diameter(D), width of metal trace(W), number of turns in 

spiral(N), spacing between the adjutants metal traces(S) are 

taken as input and Inductance ,Q-factor and Self resonance 

frequency are the output of our model.  Further a PSO based 

searching algorithm is applied with ANN model for optimization 

of layout parameters for the electrical parameters.  We present 

several synthesis results which show good accuracy with respect 

to full-wave electromagnetic (EM) simulations. Since the 

proposed procedure does not require an time consuming EM 

simulation in the synthesis loop, it substantially reduces the cycle 

time in RF-circuit design optimization.  
 

Keywords— Artificial neural networks (ANNs), On-chip 

inductor, MLP, Spiral inductor optimization, Inductance, 

Q-factor, Self Resonance frequency, electromagnetic 

simulation , PSO 

 

I.       INTRODUCTION 

 In today‟s radio frequency integrated circuits (RFICs), on 

chip spiral inductor represents one of the major components of 

the RF ICs that dominates circuit performance and most 

frequently used passive devices in modern RFICs. Silicon 

substrates have been widely used to fabricate this passive 

device(Si/SiGe) using CMOS and BiCMOS technologies. To 

aid in the modeling and design of spiral inductors, many 

researchers have proposed various techniques and equivalent 

circuit models. Wireless communication systems are on rapid 

growth and  has stimulated research in low-cost, low-power, 

and   high-performance CMOS RF integrated-circuit (IC) 

components for system-on-chip solutions. In an RF IC, the 

operating frequency of on-chip inductors is much    lower than 

the self-resonance frequency (SRF). For example, the 

requirement of an inductor used in VCO operating at 3 GHz , 

needs a high Q-factor with self resonance frequency greater 

than or equal to 6.5 GHz.. Long running EM simulation is 

required to fulfill this type of high-SRF requirements in  the 

RF IC design. Previous techniques such as numerical 

approaches that include solution of large number algebraic 

and differential equations are computationally expensive and 

time consuming. Time  efficient techniques like empirical and 

analytical techniques are not sufficiently accurate. Artificial 

neural network (ANN) is a new technique and efficient 

alternative to above mentioned conventional modeling 

techniques. It is popular due to its capability of learning any 

arbitrary nonlinear input–output relationship from 

corresponding data and also because it produces smooth 

approximation results from discrete data. ANN model 

parameters such as weights and biases remain fixed for once 

trained neural network. Hence, the I/O relationship of the 

model make a closed form expression, and due to the low 

latency trained network gives an almost instant output . Neural 

models are, therefore, much faster than physics/EM models 

and have a higher accuracy than analytical and empirical 

models. 

Aim of optimization depend upon the application for 

designing spiral inductors design model .For deciding the 

optimal inductor-layout geometries that give maximum 

quality factor at a particular operating frequency and 

inductance value within a predefined design space long 

running simulations and large no of efforts are required. The 

most commonly used approach is the enumeration technique 

[3] which uses discrete design parameters for simulations and 

selects the geometry parameters corresponding to the highest 

Q value for design. This technique becomes inefficient when 

the number of design variables increases because the 

complexity is exponential. Geometric programming technique 

for inductor-optimization problem in [10] requires a unique 

model formulation based on curve fitting. Sequential-

quadratic-programming-based optimization technique[7] has 

been developed which improves the speed over enumeration. 

But, it has a limitation of getting trapped in the local minima.  

Optimization technique in[14] is Q–contour is time 



Amarpreet et al. / IJAIR  Vol. 2  Issue 8  ISSN: 2278-7844 

© 2013 IJAIR. ALL RIGHTS RESERVED   2 

 

consuming and technology parameter dependent.Search 

methods for the optimization that search over all the geometry 

parameters satisfying a set of constraints are binary search [1] 

incremental search [2], and genetic algorithm [17] .We have 

developed a multilayer perceptron (MLP)  based neural model 

of on-chip square spiral inductors and apply the particle-

swarm optimization (PSO) algorithm [13],[11],[4][18] to 

search the layout space for optimization. In exploration, the 

ANN model is used to compute the inductance (L), Q, and 

SRF of each spiral. The synthesis based model procedure 

provides number of  sets of layout parameters for a given 

inductance value within acceptable error limits. Synthesis 

results facilitate the designer with more freedom for tradeoff 

analysis between objectives, such as area, Q, and SRF for 

inductors. The rest of the paper is organized as follows: 

Section II presents neural network structures. In Section III 

the spiral- inductor-synthesis procedure. It also gives a brief 

overview of ANN modeling and PSO. In Section IV  

modeling and synthesis results are discussed. Finally, the 

conclusions are drawn in Section V. 

II.     NEURAL-NETWORK STRUCTURES 

For understand what neural networks are and why they have 

the ability to represent RF and microwave component 

behaviors neural-network structural issues are described. We 

study neural networks from the external input–output 

processing point-of-view. Modeling accuracy dependence on 

structural issues are discussed. MLP which is popularly used 

neural-network structure is described in detail.  

 

A. Neural network-Basic Components  

A typical neural-network structure has two types of basic 

components, namely, the processing elements and the 

interconnections between them. The processing elements are 

called neurons and the connections between the neurons are 

known as links or synapses. Each synapses has a 

corresponding parameter associated with it known as weight. 

Each neuron receives stimulus from other neurons connected 

to it, processes the information, and produces an output. 

Neurons that receive stimuli from outside the network are 

called input neurons, while neurons whose outputs are 

externally used are called output neurons. Neurons that 

receive stimuli from other neurons and whose outputs are 

stimuli for other neurons in the network are known as hidden 

neurons. Different neural-network structures can be 

constructed by using different types of neurons and by 

connecting them differently. 

 

B. Concept of a Neural-Network Model 

Suppose „m‟ and „n‟ represent the number of input neurons 

and number of output neurons respectively of a neural 

network . Suppose „X‟ be a n-vector containing the external 

inputs to the neural network, and „Y‟ be a m-vector containing 

the outputs from the output neurons, and „W‟ be a vector 

containing all the weight parameters representing various 

interconnections in the neural network. The definition of W, 

and the manner in which Y is  computed from X and W, 

determine the structure of the neural network. This  concepts 

is used in our model for deciding the structure for the neural 

model. 

 

C. Neural Network Modeling Versus Conventional Modeling 

The neural-network approach can be compared with 

conventional approaches for a better understanding. The first 

approach is the detailed modeling approach (e.g., 

electromagnetic (EM)-based models for passive components 

and physics-based models for active devices), where the 

model is defined by a well-established theory. The detailed 

models are accurate, but could be computationally expensive. 

The second approach is an approximate modeling approach, 

which uses either empirical or equivalent-circuit-based models 

for passive and active components. These models are 

developed using a mixture  of simplified component theory, 

heuristic interpretation and representation, and/or fitting of 

experimental data. Evaluation of approximate models is much 

faster than that of the detailed models. However, the models 

are limited in terms of accuracy and input parameter range 

over which they can be accurate. The neural-network 

approach is a new type of modeling approach where the model 

can be developed by learning from detailed (accurate) data of 

the RF component. After training, the neural network becomes 

a fast and accurate model representing the original component 

behaviors. 

 

D. MLP Neural Network 

1) Structure and Notation :  

MLP is a popularly used neural network structure. In the MLP 

neural network, the neurons are grouped into layers. The first 

and the last layers are called input and output layers, 

respectively, and the remaining layers are called hidden 

layers. Typically, an MLP neural network consists of an input 

layer, one or more hidden layers, and an output layer, as 

shown in Fig. (1). For example, an MLP neural network with  

an input layer, one hidden layer, and an output layer, is 

referred to as three-layer MLP (or MLP3).Suppose the total 

number of layers is L. The first layer is the input layer, and the 

Lth layer is the output layer, and  layers 2 to  ( L-1) are hidden 

layers. Let the number of neurons in the l
th 

layer be Nl, l= 1, 2, 

3…..L . Let W
l

ij
  represent the weight of the link between the 

j
th

 neuron of the (l-1)
th

 layer and the i
th 

neuron of the l
th

 layer. 

Let Xi represent the i
th

 external input to the MLP Z
l

i
 
 
and be 

the output of the i
th

 neuron of the l
th

 layer. There is an 

additional weight parameter for each neuron (W
l

i0
 ) 

representing the bias for the i
th

 neuron of the l
th

 layer. As such, 

W of the MLP includes W
l

ij
    j=0,1,2,3…. ,Nl-1 i=0,1,2,3…. 

,Nl and  l=2,3,…..,L , i.e W=[W
2

10 
   W

2

11 
  W

2

12
 .........W

L

NLNL-1
  

]
T
 .The parameters in the weight vector are real numbers, 

which are initialized before MLP training. During training, 
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they are changed (updated) iteratively in a systematic manner 

[8]. Once the neural-network training is completed, the vector  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1  MLP neural-network structure. Typically, an MLP network 

consists of an input layer, one or more hidden layers, and an output 

layer. 

 

remains fixed throughout the usage of the neural network as a 

model 

2)  Framework of Neurons: 

 In the MLP network, each neuron processes the stimuli 

(inputs) received from other neurons. The  process is done 

through a function called the activation function in the neuron, 

and the processed information becomes the output of the 

neuron. For example, every neuron in the l
th

 layer receives 

stimuli from the neurons of the (l-1 )
th

 layer,  ie  Z
l-1

1
 ,Z

l-1

2

,Z
l-1

3
,…..Z

l-1

Nl-1
 . A typical i

th
 neuron in the l

th
 layer processes 

this information in two steps. Firstly, each of the inputs is 

multiplied by the corresponding weight parameter and the 

products are added to produce a weighted sum α
l

i
 , ie   α

l

i 
 = 

Nl-1

j=0  
∑W

l

ij 
 Z

l-1

j 
. In order to create the effect of bias parameter 

(W
l

i0
 ) , we assume a  fictitious neuron in the (l-1)

th
 layer, 

whose output is Z
l-1

0
 =1. Secondly, the weighted sum in () is 

used to activate the neuron‟s activation function {σ(.)}  to 

produce the final output of the neuron Z
l

i
 = σ(α

l

i
) . This output 

can, in turn, become the   stimulus to neurons in the ( l+1)
th

 

layer. The most commonly used hidden neuron activation 

function is the sigmoid function given by  

                                      

                                          σ(α)=1/(1+exp
-α

)                       (1) 

 

Other functions that can also be used are the arc-tangent  

,hyperbolic -tangent function, etc. All these are smooth switch 

functions that are bounded, continuous, monotonic, and 

continuously differentiable. Input neurons use a relay 

activation function and simply relay the external stimuli to the 

hidden layer neurons, i.e, Z
1

i
=Xi, i=1,2,3,…..n . In the case of 

neural networks for RF design, where the purpose is to model 

continuous electrical parameters, a linear activation function 

can be used for output neurons. An output neuro computation 

is given by      

 

                               σ (α
L

i
)=α

L

i
 = { 

NL-1

j=0
ΣW

L

ij
 Z

L-1

j
}           . (2) 

 

3)  Feedforward  structure  working out : 

 Given the input vector X=[X1,X2,X3,X4…….Xn]
T
and the 

weight vector W , neural network feedforward computation is 

a process used to compute the output vector 

Y=[Y1,Y2,Y3,Y4,…..Ym]
T
. Feedforward computation  is useful 

not only during neural-network training, but also during the 

usage of the trained neural model. The external inputs are first 

fed to the input neurons (i.e., first layer) and the outputs from 

the input neurons are fed to the hidden neurons of the second 

layer. Continuing this way, the outputs of the L-1th layer 

neurons are fed to the output layer neurons (i.e., the Lth 

layer). During feed forward computation, neural-network 

weights W remain fixed. The computation is given by 

 

Z
1

i
=Xi      i=1,2,3…….N1;     n=N1                                             (3) 

 

Z
l

i
 = σ {(

Nl-1

j=0  
∑W

l

ij 
 Z

l-1

j 
)},  ;                                                 (4) 

 

 i = 1,2,3,….Nl  ;  l = 2,3,4,…..L  

 

Yi = Z
L

i
   i=1,2,3,….NL       m=NL  .                                         (5) 

 

4) Vital Features:  

It may be noted that the simple formulas in (3)–(5) are now 

intended for use as RF component models. It is evident that 

these formulas are much easier to compute than numerically 

solving theoretical EM or physics equations. This is the reason 

why neural-networkmodels are much faster than detailed 

numerical models of RF components. for employing neural 

networks to approximate RF behaviors, which can be 

functions of physical/geometrical/bias parameters. MLP 
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neural networks are distributed models, i.e., no single neuron 

can produce the overall X–Y relationship. For a given X , 

some neurons are switched on, some are off,  and others are in 

transition. It is this combination of neuron switching states 

that enables the MLP to represent a given nonlinear input–

output mapping. During training process, the MLP‟s weight 

parameters are adjusted and, at the end of training, they 

encode the component information from the corresponding X–

Y  training data. 

 

E. Network Size and Layers 

 

For the neural network to be an accurate model of the problem 

to be learned, a suitable number of hidden neurons are needed. 

The number of hidden neurons depends upon the degree of 

nonlinearity  of F and the dimensionality of X and Y (i.e., 

values of n and m ). Highly nonlinear components need more 

neurons and smoother items need fewer neurons. However, 

the universal approximation theorem does not specify as to 

what should be the size of the MLP network. The precise 

number of hidden neurons required for a given modeling task 

remains an open question. Users can use either experience or a 

trial-and-error process to judge the number of hidden neurons. 

The appropriate number of neurons can also be determined 

through adaptive processes,  which add/delete neurons during 

training [16], [5]. The number of layers in the MLP can reflect 

the degree of hierarchical information in the original modeling 

problem. In general, the MLPs with one or two hidden layers 

[15] (i.e., three- or four-layer  MLPs) are commonly used for 

RF applications. 

 

III. SPIRAL-INDUCTOR SYNTHESIS 

 

A . Development- ANN Model  

We use the above explained Multilayer perceptron (MLP) 

feedforward network is one of the most effective neural 

network structures .We consider four inductor-layout 

parameters,  namely, outer diameter (d), number of turns (N), 

metal width (W), and spacing between metal traces (s), forms 

input of our  neural model.  As for a given fabrication process 

designer cannot control the technology parameters hence the 

are not included in the input parameters of the neural model. 

The output layer of NN model  represent electrical attributes 

of the inductor which are L, Q, and SRF. Number of hidden 

layers and  neurons in each hidden layer are decided on the 

platform of best performance of and Quality of the neural 

model. Wide combinations of hidden layers with neurons in 

each hidden layer are employed and the best combination is 

chosen out. We used   hyperbolic-tangent activation function 

for hidden layers and linear activation function for output 

neurons. For the generation of training and testing data sets, 

planar square spiral inductors were constructed in the range of  

geometric dimensions shown in Table(1) for the CMOS 

technology . This range covers the layout Geometries for the  

typical wireless-communication applications. On the basis of 

uniform grid distribution sampling planning, each input 

parameter is sampled at an equal interval using the step sizes 

given in Table I. In nonlinear problems, more refinement or 

but this costs in increase in the number of spirals to be 

simulated, thus requiring higher training-time investment. less 

step size  of the  data samples is desired to improve the input–

output mapping accuracy      

 

Table I 

Range Distribution Input 

 Minimum Maximum Step Size 

Outer-

Diameter 

d(um) 

 

 

100 

 

 

340 

 

 

20 

Width 

W(um) 

 

4 

 

32 

 

4 

No. of 

turns 

N(um) 

 

2.5 

 

8.5 

 

2 

Spacing 

S(um) 

 

1 

 

5 

 

2 

 

Out of all the theoretically possible combinations, we have 

considered a large number of inductors (400 realizable spirals) 

have been designed and simulated using commercially 

available high frequency structure simulator tool Ansoft 

(HFSS v11.0). The Q-factor and Inductance  

 

 

          L  =  Im (1/Y11)      ,   Q = Im(1/Y11) 

                    2π*freq                    Re(1/Y11)                       (6) 

 

Here, Y11 is the input admittance of the two-port Y parameters. 

As at the SRF is the reactance becomes zero. Hence at SRF 

inductance becomes  zero and  the Q-value becomes zero. 

Thus SRF was measured from the Q plot at the frequency 

point where the Q-value becomes zero. Although various 

methodologies for  neural-network-training ,we use the hold-

out method for building the neural model to reduce the total 

cycle time. In this there is no perceptible loss in accuracy. Out 

of 400 spirals, 80% were used for training, and the remaining 

20% were used for testing the neural network. Due to the wide 

range of  the input-parameters for building the neural model  

the corresponding output-parameter values of the inductors 

are also quite different. We used a preprocessing step, in 

which input and output data were normalized to [−1 1] with 

respect to the minimum and the maximum of the data range. 

This is done by linear scaling. During neural-network training, 

the weight and bias values are adjusted to minimize the 

training error which is a measure of the correlation between 

the ANN-model output and the training data. We have used 

the Levenberg–Marquardt method as the training algorithm in 

MATLAB‟s neural-network tool for our Model [12]. We set 

the learning rate as 0.01 which is found adequate, setting it too 

large leads to oscillations, and setting it too small value results 

in longer training time for reaching the level of accuracy. The 

training error goal was set to 0.001. Further lowering of the 

error limit reduces the generalization capability of the model. 
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On the other hand, setting it too high would lead to lower 

mapping accuracy. 

 

B. Particle-Swarm Optimization 

In this subsection, we give a brief introduction to PSO. Fig.(2)  

shows the basic flowchart of PSO. It is an evolutionary 

technique based on the social behavior, movement, and 

intelligence of swarms searching for an optimal location. PSO 

works on a population of potential solution candidates referred 

to as particles. Each particle in a swarm is represented by a 

position and velocity vector. Like other evolutionary 

algorithms, PSO uses a fitness function to search for the best 

position. Each particle is initialized with a random position 

and velocity. In every simulation run, the fitness function is 

evaluated by taking the current position of the particle in the 

solution space. The particles keep track of two best values.  

 

 
 

             Fig.2 Flowchart PSO seach Algorithm 

 

The first one is the best fitness value obtained so far by the 

particle, the corresponding position being termed as personal 

best (pbest). The other is the best fitness value achieved so far 

considering all the particles in the swarm. The location of the 

best fitness value in a whole swarm is called global best 

(gbest). At each run, there is only one gbest, and all the 

particles are attracted toward gbest. In an iteration, particle 

velocity and position are updated based on pbest and gbest 

positions as :- 

 

V
n+1

id
=W*V

n

id
 +C1rand1( ) * (p

n

best
 − X

n

id
 )  +  C2rand2( 

)*(g
n

best
 − X

n

id
 )                                                               (7) 

X
n+1

id
 =X

n

id
 + V

n+1

id
                                                       (8) 

 

Here, d = 1, 2, . . . , D; i = 1, 2, . . . , Z; D being the number of 

design parameters, Z the swarm size, and n the iteration 

number. The acceleration factors C1 and C2 in (2) indicate the 

relative attraction toward pbest and gbest, respectively. The 

functions rand1() and rand2() generate random numbers that 

are uniformly distributed between zero and one. To assign 

equal weight to the relative pulls of pbest and gbest,  each of 

C1rand1() and C2rand2() was constructed to have an average 

value of one by making C1=C2=2. The inertia-weight 

parameter w controls the tradeoff between the global and local 

search capabitity of the swarm. We start with a large inertia 

weight of 1.0 for an initial bias toward the global search and 

decrease it linearly to a minimum value of 0.4 through 

different iterations to facilitate more local explorations [6]. 

Another important PSO parameter is the maximum/minimum 

limit on particle velocity. Without any such limit, particles can 

go out of the solution space. Since there is no actual 

mechanism to control the velocity of a particle, an external 

condition is imposed. Ten percent of a particle‟s position 

value is set as the limit of its velocity. A position bound of the 

particles is also similarly imposed. The number of particles in 

PSO is less critical than in other population-based algorithms. 

The number typically varies from 10 to 60 depending on the 

number of design variables and the complexity of the 

optimization problem. For our problem, it was found that 50 

particles were enough to have good convergence. It may be 

noted that we use the global best version of PSO. This was 

considered instead of other variants like local best version to 

improve the speed of processing. It has been shown in [9] that 

the PSO formulation of (2) is sufficient for avoiding being 

trapped in the local minima. 

 

C. Synthesis Methodology 

On-chip spiral-inductor synthesis is the process of 

determining the layout geometric parameters from electrical 

specifications. As it is obvious, a target-inductance value can 

be realized by many different combinations of layout 

parameters. Out of these, only the set of inductor-layout 

parameters that meet all the design constraints is considered. 

We have developed a spiral-inductor-synthesis procedure that 

helps the designer to make a tradeoff analysis between the 

competing objectives, namely, Q, SRF, and outer diameter, 

for a given L. Our synthesis procedure uses ANN and PSO. 

The PSO optimizer generates a swarm of particles, each 

representing a combination of layout parameters in the given 

design space. The ANN takes each combination of layout 

parameters and produces L, Q, and SRF as output. Cost 

function is computed using these electrical parameter values. 

Particles of the optimizer are then updated according to the 

minimum cost. This process continues until a desired cost 
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function objective is achieved or the maximum number of 

iterations executed. Usually, the spiral-inductor-design-

optimization problem is formulated to maximize the Q value 

for a target inductance subject to certain constraints. Since, in 

this synthesis procedure, our aim is to find a set of layout 

parameters which will give the desired inductance value with 

in acceptable error, the cost function is to  

             

             Minimize  LT – LANN 

 

             subject to  Nmin ≤ N ≤ Nmax 

                              Dmin ≤ D≤ Dmax 

                              Wmin ≤ W ≤ Wmax 

                              Smin ≤ S ≤ Smax 

 

Here, LT, LANN, are the target inductance, the inductance 

computed from the trained ANN, and the given minimum 

SRF, respectively. Nmin, Nmax, Dmin ,Dmax, Wmin, Wmax, 

Smin, and Smax are the minimum and the maximum bounds 

of the corresponding optimization variables. PSO algorithm 

provides multiple solutions of layout parameters for a target-

inductance value due to the random initialization of particles 

and the random variables associated with the velocity and 

position-update process during our synthesis. The search 

process is terminated if the objective function is less than an 

acceptable error value or if the number of iterations reaches  

the maximum. For the synthesis of our spiral inductors, we set 

the error value is set to 10% and the maximum number of 

iterations is taken to be 1000.   

 

 

IV. RESULTS AND DISCUSSION 

 

A. ANN-Model Accuracy 

 

In this paper, we used 400 inductor geometries for training 

and 100 inductors for testing the neural network. To verify the 

accuracy of the neural models, statistical measures, such as 

the average relative error and the correlation coefficient 

between the outputs and targets were calculated for each 

output parameter. The average relative error and the 

correlation coefficients are calculated as follows: 

 

Average Relative Error   

         =   Σ
n

1
(x-y)/ny                                                      (9) 

 

Correlation Coefficient  

                                       

      = {(nΣxy- Σx Σy)/{[n Σx
2
- (Σx)

2
][n Σy

2
- (Σy

2
)]}

0.5
}  (10) 

 

Here, n, x and y are the number of samples in the data set, the 

ANN-model output, and the corresponding EM simulated 

value, respectively. 

 

 

Table II 

                ANN Model Accuracy and Quality                                           

ANN Model-

Operating 

Frequency 

 

   1 GHz 

     

   2GHz 

 

2.5GHz 

Training Epochs 27 42 51 

Time of Each 

Epoch in sec. 

1.3315 1.5342 1.7935 

Data set  Training Training Training 

Percentage 

Average Relative 

Error in „L‟ 

0.9837 1.5342 1.5751 

Percentage 

Average Relative 

Error in „Q‟ 

5.2433 4.3121 6.4543 

Percentage 

Average Relative 

Error in „SRF‟ 

2.4533 3.7123 4.2341 

 

 

 

Table III 

ANN Model Accuracy and Quality 

ANN Model-

Operating 

Frequency 

 

   1 GHz 

     

   2GHz 

 

2.5GHz 

Training 

Epochs 

27 42 51 

Time of Each 

Epoch sec 

1.3315 1.5342 1.7935 

Data set  Testing Testing Testing 

Percentage 

Average 

Relative Error 

in „L‟ 

1.5628 1.9813 1.5554 

Percentage 

Average 

Relative Error 

in „Q‟ 

4.8977 6.6613 6.2334 

Percentage 

Average 

Relative Error 

in „SRF‟ 

4.9398 4.7888 5.4366 
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Table IV 

ANN Model Accuracy and Quality 

ANN Model-

Operating 

Frequency 

 

   1 GHz 

     

   2GHz 

 

2.5GHz 

Training Epochs  

sec 

27 42 51 

Time of Each 

Epoch 

1.3315 1.5342 1.7935 

Data set  Training Training Training 

Percentage 

Correlation 

Coefficient „L‟ 

 

0.9999 0.9999 0.9999 

Percentage 

Correlation 

Coefficient „Q‟ 

0.9899 0.9991 0.9299 

Percentage 

Correlation 

Coefficient „SRF‟ 

0.9999 9.8988 0.9967 

                                       

                                      Table V 

               ANN Model Accuracy and Quality                                           

ANN Model-

Operating 

Frequency 

 

   1 GHz 

     

   2GHz 

 

2.5GHz 

Training Epochs 27 42 51 

Time of Each 

Epoch sec 

1.3315 1.5342 1.7935 

Data set  Testing Testing Testing 

Percentage 

Correlation 

Coefficients‟L‟ 

0.9999 0.9991 0.9989 

Percentage 

Correlation 

Coefficients‟Q‟ 

.98991 0.98888 0.9291 

Percentage 

Correlation 

Cofficient„SRF‟ 

0.9991 0.9962 0.9991 

 

  

 

The relative error signifies the closeness of the ANN outputs 

to the EM simulated values. The correlation coefficient is a  

measure of how closely the neural output fits with the target 

values. If this number is equal to 1.0, then there is a perfect fit   

between the targets and the outputs. Table II and III  shows 

the percentage average error and Table IV and V shows the 

correlation coefficient of each neural-model output with 

respect to the EM simulated value. The average relative errors 

of L, Q, and SRF were found to be less than 7%. This 

indicates good accuracy of the trained neural network. In our 

examples, correlation coefficients are very close to 1.0, which 

indicates a good fit. 

 

                                          

Table VI 

SYNTHESIS RESULTS FOR 2.5-nH SPIRAL INDUCTORS 

AT 2 GHz WITH DESIGN SPECIFICATIONS: SRF >10 

GHz, d = 100−300 μm, W = 8−24 μm, N = 2.5−6.5, AND s = 

1−4  μm  respectively. 

  
 

L(nH) 

 

D(um) 

 

W(um) 

 

N 

 

S(um) 

 

Q 

 

SRF(GHz) 

 

 

2.6756 

 

 

178 

 

 

8.0 

 

 

3.1 

 

 

3.4 

 

 

11.7416 

 

 

11.0639 

 

 

2.5554 

 

 

207 

 

 

8.2 

 

 

2.2 

 

 

3.3 

 

 

9.8965 

 

 

11.9841 

 

 

2.3442 

 

 

222 

 

 

16.3 

 

 

4.2 

 

 

2.6 

 

 

7.6198 

 

 

13.3314 

 

 

2.5501 

 

 

191 

 

 

9.0 

 

 

2.5 

 

 

2.7 

 

 

9.3523 

 

 

12.7831 

 

 

B. Inductor Synthesis 

During the synthesis process, the objective of optimization is 

to find inductor structures for a target-inductance value within      

the desired accuracy level. Table VI shows the layout 

geometries of the inductors as synthesized by the proposed 

approach for a desired inductance value of 2.5 nH at 2-GHz 

operating frequency. It is seen that the PSO-search process 

generates multiple sets of layout parameters with different Q 

and SRF values. In this example, 4 sets of layout parameters 

are shown for a target inductance of 2.5 nH within±0.3 nH 

accuracy. This helps the designer to make a tradeoff between 

Q, area (outer diameter), and SRF. Similarly in Table VII, 

VIII, IX   synthesized layout geometries of spiral inductors for 

inductance 3-nH at 2.5 GHz,6-nH at 2.5GHz,5.5-nH at 1GHz 

are shown respectively. It should be noted that due to 

designing protocols of a particular process it may not be 

feasible to fabricate all the inductor geometries synthesized by 

this approach. In this case, the design values may be rounded 

off  to the nearest grid point when doing the layout. 

 

Table VII 

SYNTHESIS RESULTS FOR 3-nH SPIRAL INDUCTORS 

AT 2.5 GHz WITH DESIGN SPECIFICATIONS: SRF > 8 

GHz, d = 100−300 μm, W = 8−24 μm, N = 2.5−6.5, AND s = 

1−4 μm 

                            

 

 

L(nH) D(um) W(um) N S(um) Q SRF(GHz) 

   

3.2531 

 

182 

   

9.8 

  

3.6 

   

1.0 

 

7.0264 

 

11.1666 

   

3.1337 

   

222 

   

1.6 

  

4.7 

 

2.6 

 

7.15 

 

9.6262 

   

3.2445 

   

191 

   

9.0 

  

3.0 

 

2.7 

   

11.4182 

   

11.8033 
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Table VIII 

SYNTHESIS RESULTS FOR 6-nH SPIRAL INDUCTORS 

AT 2.5 GHz WITH DESIGN SPECIFICATIONS: SRF > 6 

GHz, d = 100−300 μm, W = 8−24 μm, N = 2.5−6.5, AND s = 

1−4 μ 

 
L(nH) D(um) W(um) N S(um) Q SRF(GHz) 

  

5.9881  

   

289 

  

9.9 

   

3.7 

   

3.8 

 

11.0937 

 

6.8041 

 

6.2301 

   

234 

  

 11 

   

5.3 

 

  2.5 

 

8.4181 

 

7.7816 

   

5.8134 

   

229 

   

10.5 

   

4.8 

   

3.5 

 

9.4672 

 

7.8349 

 

 

             

                                      Table IX 

SYNTHESIS RESULTS FOR 5.5-nH SPIRAL INDUCTORS 

AT 1 GHz WITH DESIGN SPECIFICATIONS: SRF >7 

GHz, d = 100−300 μm, W = 8−24 μm, N = 2.5−6.5, AND s = 

1−4 μ 

 
 

L(nH) 

  

D(um) 

 

W(um) 

 

N 

 

S(um) 

 

Q 

 

SRF(GHz) 

 

4.7638 

  

229 

 

10.6 

  

4.8 

  

3.5 

 

7.9145 

 

8.7636 

  

5.6276 

 

206 

  

9.8 

  

5.9 

  

2.4 

 

7.2818 

 

8.4506 

 

5.5626 

  

240 

 

10.1 

 

4.3 

  

1.6 

 

7.9797 

 

7.0746 

 

 

                                     V. CONCLUSION 

We have proposed fast and efficient layout synthesis system 

for RF on-chip spiral inductors. A four-layer MLP neural 

model has been developed. All the output parameters of the 

neural model show good matching when compared with the 

data generated by an EM simulator. The synthesis procedure 

is based on a PSO technique that evaluates the electrical 

parameters from the geometric parameters using the neural 

model.. No EM simulation is required during the synthesis 

procedure thus making the process efficient. The synthesis 

procedure provides multiple solutions for a given design 

specification that helps the designer in making a tradeoff 

between the competing objectives. Several design examples 

have been presented using the proposed approach. The 

synthesized inductors were re simulated using the Ansoft 

HFSS (v11.0) EM solver. The results obtained by our 

synthesis approach show good agreement with the EM 

simulation results.  
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