
AN EFFECTIVE TREEMATCH ALGORITHM

FOR XML TREE PATTERN MATCHING
Balamurugan.V

1
, Rajeswari.D

2

1
PG Scholar, Department of CSE, Angel College of Engineering and Technology, Affiliated to Anna University Chennai.

balamuruganvsrit@gmail.com
1

2
Assistant Professor, Department of CSE, Angel College of Engineering and Technology, Affiliated to Anna University,

Chennai

accessraji@gmail.com
2

Abstract— XML (Extensible Markup Language) has

become a popular standard for storing and sharing

data across various platforms. The emergence of

XML promised significant advances in B2B

(Business-to-Business) integration. Due to its

popularity there is an increasing demand for the

efficient query processing on XML File. For

performing query processing operations on XML file

an input XML Dataset is required. Such an XML files

are viewed as an XML Tree using XML DOM Parser.

The core operation of our project is to perform

Pattern Matching in XML Tree. The Existing XML

Tree Pattern Matching Techniques uses XQuery,

XPath and TwigStack Algorithm. But XQuery and

XPath are complicated to understand by non-

database users. In the proposed system Keyword

Search Technique and TreeMatch algorithm is used

to perform exact pattern matching for text, images

and audio files. An XML Search engine is created to

achieve this. The downloading time of images and

audio files are compared with the local search engine.

It is shown that XML Search engine takes less

downloading time.

Keywords— XML, TreeMatch, TwigStack, XQuery,

XPath

I. INTRODUCTION

Data mining is the process of analyzing data from

different perspectives and summarizing it into

useful information. In this project mining is applied

to gain knowledge for large amount of XML

Datasets. XML has become ubiquitous language

sharing, storing and exchanging information across

various platforms. XML documents can be

represented as a Tree structure using DOM Parser.

DOM Parser is mainly used to store, access or

manipulate the XML Tree. XQuery (XML Query

Language) and XPath (XML Path Language) are

traditional XML query languages to query the

XML Data. Our existing system provides answers

to the queries using these query languages. These

query languages requires some complex notations

to perform query processing. XQuery and XPath

are powerful but unfriendly to non-expert users.

Existing system uses TwigStack Algorithm to

perform query answering. But, TwigStack

algorithm provides answers to the queries

containing P-C (Parent-Child) and A-D (Ancestor-

Descendant) relationships. This becomes query

processing little bit complicated. In proposed

system we are using keyword query to perform

query answering. A XML Tree Pattern Matching

Algorithm called TreeMatch is used to overcome

the sub-optimality problem faced by the existing

system. This algorithm is based on the concept of

extended Dewey Labeling. According to the

Labeling Scheme the root node, children, grand

children are associated with the number or label.

For instance 0 is assigned to the root node. The

children of the root gets labeling such as 0.0, 0.1.

The grand children of the first parent node start

with 0.0.0 and continue like 0.0.1 etc.

II. RELATED WORK

J.T.Yao, M.Zhang [3] have proposed holistic

algorithms for XML Query Processing. The novel

holistic XML twig pattern matching method called

TwigStack which avoids storing intermediate

results unless they contribute final results. The

major advantage of this method is that it avoids

computation of large redundant intermediate

results. But main limitation of TwigStack is that it

may produce large set of “useless” intermediate

results when queries contain parent child

relationship. TwigStack has been proved optimal

only for queries with A-D edges and it still cannot

control the size of intermediate results for queries

with P-D edges. TwigStack operates in two steps:

1. A list of intermediate path solutions is

output as intermediate results

2. The intermediate path solutions in first

step are merge-joined to produce the final

solutions

International Journal of Advanced and Innovative Research (2278-7844) / # 416 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 416

Xiaoying Wu, Stefanos Souldatos [11] have

proposed MPMGJN (multi-predicate Merge-

Join) algorithm and typically this algorithm

consists of decomposition-matching and merging

process:

 Decompose the tree pattern into linear

patterns which might be binary (parent-

child or ancestor –descendant)

relationships between pairs of nodes or

root-to-leaf paths

 Find all matching’s of each linear pattern

 Merge-join them to produce results.

 MPMGJN varies from TwigStack merge

join algorithm is that it requires multiple

scans of input list

Li et al. and Chien et al.[15] have proposed Stack-

Tree Algorithm which mainly used to overcome

the drawbacks of MPMGJN algorithm. The major

drawback of MPMGJN algorithm is that is requires

multiple scan of input list whereas Stack-Tree

algorithm needs only one scan of the input lists.

Stack Tree algorithm uses stacks to maintain the

ancestor or parent nodes. Stack Tree Algorithm

works for both P-D and A-D edges.

Jaihaeng Lu [10] have proposed OrderedTJ

Algorithm which is mainly used to overcome the

drawbacks of decomposition-matching-merging

algorithms. In OrderedTJ algorithm an element

contributes to final results only if the order of its

children accords with the order of corresponding

query nodes. If we call edges between branching

nodes and their children as branching edges then

denote the branching edge connecting to the nth

child as the nth branching edge. OrderedTJ is I/O

optimal among all sequential algorithms that read

entire input. In other words, the optimality of

OrderedTJ allows the existence of parent-child

edges in non-branching edges and the first

branching edge. OrderedTJ algorithm output much

less intermediate results, OrderedTJ increases

linearly with the size of the database; OrderedTJ is

not optimal and outputting less intermediate results.

Al-Khalifa et al. [19] have proposed TJFast

algorithm to overcome the drawbacks of

containment labeling scheme. While containment

labeling scheme preserves the positional

information within the hierarchy of an XML

Document but some limitations of containment

labeling scheme are

 The information contained by a single

containment label is very limited. For

example, we cannot get path information

from any single containment label.

 Wildcard are widely used in XPath and it

cannot be supported by the containment

label scheme

The containment label scheme is difficult to answer

queries with wildcards in branching nodes. TJFast

does not produce the individual solution for each

node when there are multiple return nodes for the

query. TJFast cannot work with ordered restriction

and negation function.

Wen-Chiao Hsu [1] have proposed CSI-X

technique to speed up the query evaluation in

XML documents. CIS-X mainly used to overcome

the drawbacks of decomposition-matching-merging

algorithms to process XML Path expressions.

According to decomposition-matching-merging

algorithms a query is decomposed into several sub-

queries, each of which is separately executed and

its intermediate results stored for further

processing. However these methods still have

drawbacks of producing large intermediate results

and time-consuming merging processing. So in this

paper CIS-X technique has been proposed which

support for complex XQueries. But the drawback

with the CIS-X Technique is that it takes more time

for index construction.

Y. Chen and D. Che [14] have proposed a new

algorithm called Twig Square Stack which mainly

used to eliminate the merging costs in second

phase. Twig Square Stack is a one phase algorithm

which can process path matching efficiently and

avoids the high cost of merging phase. The overall

solutions are stored in hierarchical stacks and the

final solutions can be output by applying a simple

enumeration function. However the data structures

are too complex and expensive to maintain.

L.V.S. Lakshmanan[4] have proposed an algorithm

TwigList which is a refined version of Twig

Square Stack, utilizing a much simpler data

structure, a set of lists to store solutions. TwigList

has advantages over Twig Square Stack but has

same shortcomings. One drawback is that all the

potential nodes related to QP (Query Processing)

will be pushed into and popped from the temporary

stack, even though some of them are not part of the

solution. Another drawback is they have less ability

to efficiently discard useless nodes.

S. Al-Khalifa, H.V. Jagadish [19] have proposed

Structural Join methods to process twig pattern

matching. In the first phase, a twig query is

decomposed into several binary P–C or A–D

relationships. Each binary sub-query is separately

evaluated and its intermediate result is produced.

The final result is formed by merging these

intermediate results in the second phase. This

method generates a huge number of intermediate

results that may not be part of the final results. In

addition, the phase of merging is expensive.

H.V. Jagadish et al. [19] have proposed a

containment labeling scheme to process twig

queries. Containment labeling scheme for twig

International Journal of Advanced and Innovative Research (2278-7844) / # 417 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 417

Pattern processing decomposes a twig pattern into

set of binary relationships which can be either P-C

or A-D. Each binary relationship is processed using

structural join techniques and the final match

results are obtained by merging individual binary

join results together. The main problem with the

above solution is that it may generate large and

possibly unnecessary intermediate results because

the join results of individual binary relationships

may not appear in the final results.

III. EXISTING SYSTEM

Existing System uses TwigStack algorithm for

performing pattern matching in an XML File.

TwigStack Algorithm supports XQuery and XPath

only. TwigStack Algorithm provides answers to

queries containing P-C and A-D relationships. P-C

edges are denoted by (/) and A-D edges are denoted

by (//). The TwigStack Algorithm is a

decomposition-matching and merging algorithm.

According to this algorithm a query is decomposed

into several sub-queries. Each sub-query is

executed separately and intermediate results are

stored for further processing. The final result is

obtained by merging these intermediate results.

TwigStack Algorithm provides useless

intermediate results for queries containing P-C

relationships and it controls the size of intermediate

result for queries containing A-D relationship. The

TwigStack algorithm is described by the following:

// Phase 1

1: while notEnd (q)

2: qact = getNext (q)

3: if (isNotRoot (qact)) then

4: cleanStack (parent (qact), nextL (qact))

5: end if

6: if (isRoot (qact) or isNotEmpty (Sparent (qact)))

then

7: cleanStack (qact, next (qact))

8: moveStreamToStack (Tqact, Sqact, pointertotop

(Sparent (qact)))

9: if (is Leaf (qact)) then

10: showSolutionsWithBlocking (Sqact, 1)

11: pop (Sqact)

12: end if

13: else

14: advance (Tqact)

15: end if

16: end while

// Phase 2

17: mergeAllPathSolutions ()

Algorithm TwigStack operates in two phases. In

the first phase (lines 1-16), some (but not all)

solutions to individual query root-to-leaf paths are

computed. In the second phase (line 17), these

solutions are merge-joined to compute the answers

to the query twig pattern. The major drawbacks of

an existing system are described below:

 XQuery and XPath is complicated to

understand by non-database users

 XQuery and XPath are not user friendly to

non-expert users

 Query Answering becomes little bit

complicated using XQuery and XPath

 TwigStack Algorithm fails to control the

size of useless intermediate results

IV. PROPOSED SYSTEM

In proposed system keyword and TreeMatch

algorithm is used for performing exact pattern

matching. Our input XML File is represented as a

Tree using DOM Parser. An XML Search engine

is created which gets the input query and performs

pattern matching using an effective XML Tree

Pattern Matching algorithm TreeMatch. TreeMatch

algorithm is based on Extended Dewey Labeling

concept. The input query matches with the

Extended Dewey label and completes query

processing. In proposed system we are performing

pattern matching for text, images, audio and video

files and the downloading time of audio and video

files are computed. The downloading time of audio

and video files are compared with local search

engine. It is shown that XML search engine takes

less downloading time. The concept of the

TreeMatch Algorithm is given as follows:

1: locateMatchLabel (Q);

2: while(endroot)) do

3: fact= getNext(topBranching Node);

4: if (fact is a return node)

5: addToOutputList (NAB(fact ,cur(Tfact));

6: advance (Tfact); //read the next element in Tfact

7: updateSet (fact); //update set-encoding

8: locateMatchLabel (Q); //locate next element

with matching path

9: emptyAllSets (root);

International Journal of Advanced and Innovative Research (2278-7844) / # 418 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 418

Line 1 locates the first element whose paths match

individual root-leaf path pattern. In each iteration, a

leaf node fact is selected by getNext function (line

3). The purpose of line 4, 5 is to insert the potential

matching elements to outputlist. Line 6 advances

the list Tfact and line 7 updates the set encoding.

Line 8 locates the next matching element to the

individual path. Finally, when all data have been

processed, we need to empty all sets in Procedure

EmptyAllSets (Line 9) to guarantee the

completeness of output solutions.

The proposed system does not require complex

query languages like XPath and XQuery.

TreeMatch Algorithm matches with the extended

Dewey Label for given query and then completes

the query processing. Processing time of the

TreeMatch Algorithm is less when compared to the

decomposition-matching and merging algorithms.

TreeMatch algorithm does not produce useless

intermediate results. The major advantage of

introducing the TreeMatch Algorithm is to solve

sub-optimality problem and to reduce the

answering time of the queries.

The Proposed system is implemented by using the

following modules:

Admin:

1. Insertion and deletion of data

2. Creation of an XML File

User:

1. Viewing XML Tree

2. XML Tree Pattern Matching

3. Comparison Module

In Admin module we are creating an XML File.

After the successful creation if an XML File user

can login with their own id and password. Users

can view the XML Tree from the selected XML

File. Then it is easy for the user to perform pattern

matching for text, images, and audio files. Finally

downloading time of audio and image files are

compared with local search engine and it is proved

that XML Search engine takes less time

V. EXPERIMENTS AND RESULTS

We have implemented all tested algorithms in

J.D.K 1.6 using the file system as a simple storage.

We conducted all the experiments on a computer

with Intel Pentium IV 1.7GHz CPU and 2G of

RAM. The concept of TwigStack algorithm has

been tested using a Tool called XPath Builder. The

Tree Match algorithm has been implemented using

Java Programming language. The front end is java

and Back end is MySQL database.

All the proposed modules have been implemented

and the analysis of our project is shown in the bar

chart given below. In the Bar graph X-Axis is

Query and Y-axis is time in milliseconds.

Fig 1 The downloading time of an audio file in

XML Search engine is compared with Local Search

engine

 Fig 2 The downloading time of an image file in

XML Search engine is compared with Local Search

engine

International Journal of Advanced and Innovative Research (2278-7844) / # 419 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 419

References

1. Wen-Chiao, Hsuand I. H. Kasimoglu, “A

Compacted Indexing Scheme for efficient

query evaluation of XML Documents ”

Elsevier Journal., vol. 241, no. 4, pp. 195-

211, Mar. 2013.

2. J. Hidders, “Satisfiability of XPath

Expressions ” Proc. Ninth Int’l Workshop

Database Programming Languages (DBPL

’03), pp. 21-36, Oct.2004

3. J. Yao and M. Zhang, “A Fast Tree

Pattern Matching Algorithm for XML

Query” Proc. IEEE/WIC/ACM Int’l Conf.

Web Intelligence (WI ’04), pp. 235-

241, Jan. 2004.

4. L.V.S. Lakshmanan, “XML Tree Pattern,

XML Twig Query” Encyclopedia of

Database Systems, pp. 3637-3640,

Springer, 2009.

5. Mirjana Mazuran, Elisa Quintarelli, and

Letizia Tanca, “Data Mining for XML

Query Answering Support” IEEE

Transactions on Knowledge and Data

Engineering, pp.1393-1407,2012.

6. D. Beech, A. Malhotra, and M. Rys, “A

Formal Data Model and Algebra for

XML” technical report, W3C XML Query

Working Group Note, 1999.

7. L.V.S. Lakshmanan, G. Ramesh, H.

Wang, and Z.J. Zhao, “On Testing

Satisfiability of Tree Pattern Queries”

Proc. 30th Int’l Conf. Very Large Data

Bases (VLDB ’04), pp. 120-131, 2004.

8. L. Quin, “Extensible Markup Language

(XML)” World Wide Web Consortium

(W3C), http://www.w3.org/XML/, 2006.

9. W. Wang, H. Wang, H. Lu, H. Jiang, X.

Lin, and J. Li, “Efficient processing of

XML path queries using the disk-based

F&B index” in VLDB, pages 145–156,

2005.

10. Jaihaeng Lu, “XML Tree Pattern

Matching: Theories and Algorithms”

IEEE Transactions on Knowledge and

Data Engineering, pp.1393-1407, June,

2012.

11. Xiaoying Wu, Stefanos Souldatos,

“Extended XML Tree Pattern Matching”

Data and Knowledge Eng., vol. 64, no. 3,

pp. 580-599, 2011.

12. R. Goldman and J. Widom, “Data Guides:

Enabling Query Formulation and

Optimization in Semi structured

Databases” Proc. 23rd Int’l Conf. Very

Large Data Bases, pp. 436-445, 1997.

13. R. Baca, M. Kra´tk1y, and V. Sna´sel,

“On the Efficient Search of an XML Twig

Query in Large Data Guide Trees” Proc.

12th Int’l Database Eng. and Applications

Symposium (IDEAS ’08), pp. 149-158,

2008.

14. Y. Chen and D. Che, “Efficient Processing

of XML Tree Pattern Queries” Journal of

Advanced Computational Intelligence and

Intelligent Informatics, vol. 10, no. 5, pp.

738-743, 2006.

15. Li et al. “Queries and Computation on the

Web” Theoretical Computer Science, vol.

239, no. 2, pp. 231-255, 2000

16. C.Y. Chan, W. Fan, P. Felber, M.N.

Garofalakis, and R. Rastogi, “Tree Pattern

Aggregation for Scalable XML Data

Dissemination” Proc. 28th Int’l Conf.

Very Large Data Bases (VLDB ’02), pp.

826-837,2002.

17. J.D. Ullman, Principles of Database and

Knowledge-Base Systems, vol. 1.

Computer Science Press, 1988.

18. Y. Chen and D. Che, “Minimization of

XML Tree Pattern Queries in the Presence

of Integrity Constraints” Journal of

Advanced Computational Intelligence and

Intelligent Informatics, vol. 10, no. 5, pp.

744-751, 2006.

19. S. Al-Khalifa, H.V. Jagadish, J.M. Patel,

Y. Wu, N. Koudas, and D. Srivastava

“Structural Joins: A Primitive for Efficient

XML Query Pattern Matching,” Proc.

18th Int’l Conf. Data Eng. (ICDE ’02), pp.

141- 149, 2002.

20. Giorgio Busatto, “Efficient Memory

Representation of XML Documents” Proc.

15th Int’l Conf. Database Systems for

Advanced Applications (DASFAA’10),

pp. 170-178, 2010.

21. Sravan Kumar , Madhu “Efficient

Handling of XML Tree Pattern Matching

Queries – A Holistic Approach”

International Journal of Advanced

Research in Computer and

Communication Volume 1 Issue 8, Oct

2012

International Journal of Advanced and Innovative Research (2278-7844) / # 420 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 420

22. Xiaoying Wu, Stefanos Souldatos, “XML

Tree Pattern Processing Algorithms” Data

and Knowledge Eng., vol. 64, no. 3, pp.

580-599, 2011.

Authors Profile

The author Mr.V.Balamurugan
1

is doing his M.E CSE in Anna

University, Chennai. He has

completed his B.Tech.

Information Technology in Sri

Ramakrishna Institute of

Technology, Coimabtore. He

has published 6 papers in

International Journals, 1 paper

in International Conference and

4 papers in National

Conference. He is life time

member of IAENG, UACEE and SAI. His area of

intrest is Web Technology, Data Stucrures ,Data

Mining.

The author Mrs.D.Rajeswari
2
 is

currently working as an

Assistant Professor in the

Department of CSE of Angel

College of Engineering and

Technology. She has completed

his M.E in Avinashilingam

University, Coimbatore. She

has 4 years of Teaching

Experience. Her are of interest

is Complier Design and Data

Mining.

International Journal of Advanced and Innovative Research (2278-7844) / # 421 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 421

