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Abstract-This paper states the analysis of security for 

Exclusive 128-bit Non-Linear Feedback Shift Register 

(NLFSR) based Stream Cipher. Stream Cipher is a 

common method to protect confidential information 

from an unauthorized intrusion. NLFSRs are a 

generalization of Linear Feedback Shift Register 

(LFSR) in which a current state is a non-linear 

function of the previous state. NLFSR provide better 

trade off between security and hardware capability. 

NLFSR output sequences are normally very hard to 

predict and existing attacks such as algebraic attacks 

are not applicable. NLFSR based Stream Ciphers are 

mostly employed in RFID and smartcard 

applications. In this paper, Exclusive 128-bit stream 

cipher NLFSR is implemented by two configurations: 

Fibonacci Configurations and Galois Configurations. 

The security analysis is done based on National 

Institute of Standards and Technology (NIST).  
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I. INTRODUCTION 

Cryptographic methods are applied in order to 

protect confidential information from an 

unauthorized or accidental disclosure. Today our 

society largely depends on security of electronic 

communications. Whether the communication path 

could be as short as a wire between two chips or as 

long as the World Wide Web, communications 

securities are important for integrity of our 

business.  

Stream cipher is one of a common method that 

is employed for protecting the secret or private 

information from an unauthorized intrusion. 

Security solutions in mobile communications 

generally rely on the use of stream ciphering 

techniques [1]. Stream ciphers are symmetric-key 

ciphers that generate pseudorandom bit sequences 

that are used to encrypt the message signals on bit-

by-bit basis. In a stream cipher, each plaintext digit 

is encrypted one at a time with the corresponding 

digit of the key stream, to create a digit of the 

ciphertext stream. The resulting encrypted 

information can be transformed back into its 

original form only by an authorized user possessing 

the cryptographic key [2]. The security of these 

ciphers depends upon the randomness of the bit 

sequences produced by them. The pseudo random 

keystream is typically generated serially from a key 

and an Initialization Vector (IV) or seed value 

using digital shift registers. The seed value serves 

as the cryptographic key for decrypting the 

ciphertext stream.  

A stream cipher generates successive elements 

of the keystream based on an internal state. This 

state is updated in essentially two ways: if the state 

changes independently of the plaintext or ciphertext 

messages, the cipher is classified as a synchronous 

stream cipher. By contrast, self-synchronizing 

stream ciphers update their state based on previous 

ciphertext digits. Some of the known stream 

Ciphers are E0 used in Bluetooth, A5/1 used in 

GSM communications, RC4 and Grain in RFID 

applications. A5/1 is a stream cipher used in GSM 

standard to encrypt the information over the air 

transmission[3][4]. Encryption in mobile 

communication is very crucial to protect 

information of the subscribers and avoid fraud. 

 

II. RELATED BACKGROUND 

 

A pseudo-random sequence can be generated 

using a Linear Feedback Shift Register (LFSR). 

LFSR is a shift register whose input bit is a linear 

function of its previous state. LFSRs are simple, 

fast, and easy to implement in both, software and 

hardware. They are capable of generating pseudo-

random sequences with the same uniform statistical 

distribution of 0’s and 1’s as in a truly random 

sequence[5]. However, they are not 

cryptographically secure because the structure of an 

n-bit LFSR can be easily deduced by observing    

consecutive bit of its sequence [6].  

One solution to this problem is to feed the 

outputs of several parallel LFSRs into a non-linear 

Boolean function to form a combination 

generator[7]. The combining function has to be 

carefully selected to ensure the security of the 

resulting scheme, for example, in order to prevent 

correlation attacks[8]. Other solutions are to 

combine several bits from the LFSR state using a 
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non-linear function, or to use the irregular clocking 

of the LFSR [9][10]. Examples of LFSR-based 

stream ciphers include A5/1 stream cipher that used 

to provide over-the-air communication privacy in 

the GSM cellular telephone standard, and E0 

stream cipher that is used in the Bluetooth protocol. 

As another alternative, a Non-Linear Feedback 

Shift Register (NLFSR) whose current state is a 

non-linear function of its previous state can be 

used. NLFSRs output sequences are normally very 

hard to predict and existing cryptanalytic methods, 

such as algebraic attacks are usually not applicable. 

An adversary might need O(  ) bits of the 

sequence to determine the structure of an n-bit 

NLFSR. A number of different implementations of 

NLFSR-based stream ciphers for RFID and 

smartcards applications have been proposed. 

Some of the common applications of LFSR 

include Counters, Built In Self Test (BIST) and 

Encryption. Few techniques to improve the linear 

complexity of LFSRs include (a) Non Linear 

Combining Functions: This technique employs the 

idea of feeding the outputs of all the LFSRs into a 

Non Linear Boolean Function to create a 

Combinational Generator. (b) Clock Controlled 

Generators: This is another method in which the 

LFSRs are clocked irregularly, controlled by the 

output of the second LFSR. Some of the generators 

include Stop and Go Generator, Alternating Step 

Generator, Shrinking Generator. The Stop and Go 

generator consist of two LFSRs, and if the output 

of one of the LFSRs is ‘1’ the other LFSR is 

clocked otherwise it repeats the last output. The 

Alternating Step Generator uses three LFSRs 

namely LFSR 0, LFSR1, LFSR2. Here, if the 

output of the third LFSR is‘0’, then LFSR 0 is 

clocked and if the output of the LFSR2 is 1 then the 

LFSR1 is clocked. There are some disadvantages 

like Fast Correlation Attack and Generalized 

Inversion Attack. Examples of LFSR based stream 

ciphers include A5/1 and E0 Stream Ciphers. A5/1 

[11] stream Cipher uses three LFSRs that are of 

different bit length and employing a different 

feedback functions [12][13]. 

Generally, NLFSR can be interested by two 

ways: in the Fibonacci configuration, or in the 

Galois configuration. The Fibonacci configuration, 

shown in Figure 1, is conceptually more simple. 

The Fibonacci type of NLFSRs consists of a 

number of bits numbered from left to right as 

n−1,n−2, . . . ,0 with feedback from each bit to the 

n−1th bit. At each clocking instance, the value of 

the bit I is moved to the bit i−1. The value of the 

bit 0 becomes the output of the register. The new 

value of the bit n−1 is computed as some function 

of the previous values of other bits.  

         
Fig. 1 Fibonacci Configurations 

 

In the Galois type of NLFSR, shown in 

Figure 2, each bit i is updated according to its own 

feedback function [14]. Thus, in contrast to the 

Fibonacci NLFSRs in which feedback is applied to 

the n−1th bit only, in the Galois NLFSRs feedback 

can be applied to every bit. Since the depth of the 

circuits implementing feedback functions of 

individual bits is usually smaller than the depth of 

the circuits implementing the feedback function of 

the Fibonacci NLFSR, the propagation time can 

potentially be reduced. This makes Galois NLFSRs 

particularly attractive for stream cipher applications 

in which high keystream generation speed is 

important.  

 

 
Fig. 2 Galois Configurations 

 

However, Galois NLFSRs also have several 

drawbacks: 

1) The period of the output sequence of a Galois 

NLFSR is not necessarily equal to the length of the 

longest cyclic sequence of its consecutive states 

[15]. 

2) An n-bit Galois NLFSR with the period      

does not necessarily satisfy the 1st and the 

    randomness postulates 

of Golomb. An n-bit Fibonacci NLFSR with the 

period      always satisfies both postulates. 

These drawbacks do not create any problems in the 

linear case because, for LFSRs, there exist a 

mapping between the Fibonacci and the Galois 

configurations. A Galois LFSR generating the same 

output sequence as a given Fibonacci LFSR (and 

therefore possessing none of the above mentioned 

drawbacks) can be obtained by reversing the order 

of the feedback taps and adjusting the initial state. 

In the non-linear case, however, no mapping 

between the Fibonacci and the Galois 

configurations has been known until now. The 

problem of finding such a mapping is addressed in 

this paper. We demonstrate that, for each Fibonacci 

NLFSR, there exist a class of equivalent Galois 

NLFSRs, which produce the same output sequence, 

and show how to transform a given Fibonacci 

NLFSR into an equivalent Galois NLFSR. This is 
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carried out in the following three steps. First, we 

investigate under which conditions a non-linear 

recurrence of order n describing the output 

sequences of an n-bit Galois NLFSR exists. We 

introduce a structure called feedback graph, which 

reflects the relation between variables of feedback 

functions. We show that a recurrence of order n 

exists if the feedback graph can be reduced to a 

single vertex. Second, we examine what kind of 

feedback functions has feedback graphs which are 

reducible to a single vertex. We derive a sufficient 

condition characterizing these feedback functions. 

We call NLFSRs satisfying this condition uniform. 

Finally, the proof of equivalence of two uniform 

NLFSRs is done by showing that two systems of 

non-linear equations describing the sequences of 

NLFSR’s states can be reduced to the same non-

linear recurrence. 

 

III. ARCHITECTURE OF STREAM 

CIPHER 

 

The proposed Exclusive-128 NLFSR 

(Nonlinear Feedback Shift Register) stream cipher 

is a 128 bit that generates a 128 bit keystream. The 

cipher is implemented in such a way that each 

configuration is sandwiched between the other two 

configurations. The idea of implementing this new 

stream cipher is adopted from the A5/1 and 

modified A5/1 stream ciphers. This generated 

keystream when XORed with the plaintext 

produces the ciphertext. The 128-bit keystream is 

produced using six non-linear feedback shift 

registers, each used in either the Fibonacci or the 

Galois configuration [16]. The variant size of each 

configuration is 32 bit Fibonacci, 31 bit Galois, 25 

bit Fibonacci, 32 bit Galois, 4 bit Fibonacci and 4 

bit Galois NLFSRs [17]. The architecture of the 

proposed stream cipher is shown in fig.3

 
Fig. 3 Architecture if Exclusive 126-bit NLFSR 

 

In this cipher, each configuration of NLFSR is 

arranged alternately, and their outputs are XORed 

with the seed value that is the complement of the 

initial key. This approach enabled us to encrypt and 

decrypt when both the key and plaintext vectors are 

simply 0. 

 

IV. RANDOMNESS OF TEST RESULTS 

 

The architecture of Exclusive 128 bit NLFSR based 

stream cipher contains 6 configurations (each one 

is either Fibonacci or Galois configuration). Each 

configuration has a function and this functions are 

tested  by NIST Test Suite such as  Frequency 

Monobit, Frequency within a Block and Run Test 

in order to test the randomness.  Each test suite 

consists of an algorithm to check the randomness. 

The objective of this algorithm is to compute P-

value. each P-value is the probability that a perfect 

random number generator would have produced a 

sequence less random than the sequence that was 

tested, given the kind of non-randomness assessed 

by the test. If a P-value for a test is determined to 

be greater than 0.01, then the sequence appears to 

have perfect randomness.  

 

TABLE I  

FREQUENCY MONOBIT TEST 

RESULTS 

 

Table 1 shows that 32 bit Galois is very 

highly random compared to the remaining 

configurations. The randomness of each function is 

tested by Frequency Monobit algorithm.   

Configurations Functions Frequen

cy 

Monobit  

32bit 

Fibonacci 

 

  

0.7237  

25 bit Galois 
 

0.4795  

4bit Fibonnaci 
 

0.3173  

4 bit Galois 
 

0.5584  

31 bit Galois 
 

 

0.5373  

32 bit Galois  

 

1.1427  

16541512933027

201712762031

xxxxxxxxx

xxxxxxxf





10852

151141141151512168134

61221817151412

976531024

xxxx

xxxxxxxxxxxxx

xxxxxxxx

xxxxxxxf









3103 xxxf 

2032 xxxf 

20135217

141211921211722

161811553024

212019181716

10753030

xxxxx

xxxxxxxxx

xxxxxxx

xxxxxx

xxxxxf











12102827 xxxxf 
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Table 2 shows that 32 bit Galois is 

enormously random compared to the 

remaining configurations whereas Table 3 

shows 4 bit Fibonacci function is highly 

random. 

 

V. CONCLUSIONS 

In this paper, we analyzed 

security for Exclusive 128-bit Non-Linear 

Feedback Shift Register (NLFSR) based 

Stream Cipher. The security analysis is 

done based on NIST standard Test Suite. 

This test suite tests randomness of 

Fibonacci and Galois functions from the 

architecture of Exclusive 128-bit NLFSR 

out. Prior to testing the randomness of 

each function, an algorithm is used to 

compute the P-value. That means the 

randomness depends on the P-value, i.e., if 

P-value > 0.01 then the function is 

random. In this paper it is clear that 

functions are certainly random.  
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