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Abstract—Today we need high-speed Computers 

to meet our customer requirements like data 

warehousing, on-line transaction processing and 

decision support system solutions. Likewise, the 

world of science & engineering also rely on high 

performance computing to provide solutions and 

solve problems. Mainframes, supercomputers and 

fault-tolerant systems are high cost with limited 

speed.  Distributed systems consisting of 

independent computers that co-operate as a single 

system. Distributed computing is sharing of 

computer resources and services by direct 

exchange between systems. DCE provides a 

complete Distributed Computing Environment 

infrastructure. It provides security services to 

protect and control access to data, name services 

that make it easy to find distributed resources, and 

a highly scalable model for organizing widely 

scattered users, services, and data. DCE runs on all 

major computing platforms and is designed to 

support distributed applications in heterogeneous 

hardware and software environments. DCE is a 

key technology in three of today's most important 

areas of computing. The performance of the DCE 

is entirely depends on number of participants 

included in a particular process using 

multithreading, where number of participants 

increase, system failure rate is also increased to 

make the DCE reliable, fault detection, fault 

tolerance and failure recovery must be done. This 

Project work aims to design a reliable DCE with 

the help of Message-based middleware. 

 

Keywords—Distributed computing, Fault 

tolerance, Failure, Checkpoints 

 

I.  INTRODUCTION 

As the number of processors in modern high 

performance distributed computer systems 

continues to grow, the issue of fault tolerance is 

becoming more and more important. Even 

making generous assumptions on the reliability 

of a single processor or link, it is clear that as the 

processor count in high end clusters grows into 

the hundreds of thousands, the mean-time-to-

failure of these clusters will drop from a few 

years to a few days, or less. The current DOE 

ASCI computer (IBM Blue Gene L) is designed 

with 131,000 processors [1]. The mean-time-to-

failure of some nodes or links for this system is 

reported to be only six days on average [1]. In 

recent years, the trend of the high performance 

computing has been shifting from the expensive 

massively parallel computer systems to the 

clusters of commodity off-the-shelf systems [5]. 

While the commodity off-the-shelf cluster 

systems have excellent price performance  ratio, 

there is a growing concern with the fault 

tolerance issue in such system. The recently 

emerging computational grids [9] environments 

have further exacerbated the problem. However, 

many computational science programs are now 

designed to run for days or even months. 

Therefore the mean-time-between-failures 

(MTBF) of such kind of high performance 

computing systems are significantly shorter than 

the running time of many computational science 

programs. Modern computational science 

programs need to be able to tolerant the failures. 

Due to the large process state of such kind of 

applications, the relatively low I/O bandwidth 

between memory and the central network disk  

and the high enough frequency of failures, for 

these systems, the classical system-level fault 

tolerance approaches is often either impractical 
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(an application would spend most of its time 

taking checkpoints) or infeasible (there is no 

enough time for an application to save its core to 

disk before the next failure occurs). Therefore 

the cheaper application level fault tolerance 

schemes may be deployed as an alternative in 

such large computational science programs. 

However, most application level fault tolerance 

schemes proposed in literature are non-adaptive 

in the sense that the fault tolerance schemes 

incorporated in applications are either designed 

without incorporating system environments 

(such as the amount of available memory and the 

local and network I/O bandwidth, etc) or 

designed only for a specific system environment. 

In this paper, we propose a framework under 

which different fault tolerance schemes can be 

incorporated in applications using an adaptive 

method. In our framework, applications will be 

able to choose the best (minimizing the mean 

execution time of the application) available fault 

tolerance schemes at runtime (or dynamically) 

according to different (or dynamic) system 

environments[3]. Applications that call this kind 

of self-adaptive fault tolerant numerical libraries 

will be able to survive certain processor failures 

transparently with very low performance 

overhead. The rest of this paper is organized as 

follows. Section 2 reviews briefly the existing 

related literature in checkpointing and rollback 

recovery. Section 3 explains the motivations of 

this research. Section 4 presents a self adapting 

application, level fault tolerance scheme for high 

performance grid computing. In Section 5, some 

initial experimental results are presented. Section 

6 concludes the paper and discusses future work. 

 

II. FAULT TOLERANCE IN PARALLEL AND 

DISTRIBUTED SYSTEMS 

Fault tolerance techniques can be divided into 

two big branches and some hybrid techniques. 

The first branch is Messaging Logging. In this 

branch, there are three subbranches: Pessimistic 

Messaging Logging, Optimistic Messaging 

Logging and Casual Messaging Logging. The 

second branch is Checkpointing and Rollback 

recovery. There are also three sub-branches in 

this branch: Network disk based Checkpointing 

and rollback recovery, Diskless Checkpointing, 

and Local Disk based checkpointing. Our 

research is mainly concentrated on incorporating 

fault tolerant techniques into tightly coupled 

large scale high performance computational 

intensive applications.  In the rest of this section, 

we confine our literature review to checkpointing 

and rollback recovery schemes instead of general 

fault tolerance scheme[4]. Most traditional 

distributed multiprocessor recovery schemes are 

designed to tolerate arbitrary number of failures. 

So they store their checkpoint data in a central 

stable storage. The central stable storage usually 

has its own fault tolerance techniques to prevent 

it from failures. But the bandwidth between the 

processors and the central stable storage is 

usually very low. Several experimental studies 

presented in [13] have shown that the main 

performance overhead of checkpointing is the 

time spent on writing the checkpoint data to the 

central stable storage. In [11] and [13], Plank 

proposed to use diskless checkpointing technique 

as an approach to tolerant single failures with 

low performance overhead when stable storage is 

not available. Diskless checkpointing is a 

technique where processor redundancy, memory 

redundancy and failure coverage are traded off 

so that a checkpointing system can operate in the 

absence of stable storage. Experimental studies 

presented in [13, 14] have shown that diskless 

checkpointing have a much better performance 

than traditional disk based checkpoint 

techniques. There are also several papers which 

compare the performance of different diskless 

checkpointing schemes. In [4],Chiueh and Deng 

compare the performance of different diskless 

checkpointing schemes on a massively parallel 

SIMD machine. The XOR operation was done 

following an O(logN) binary tree fashion. The 

results of their experiment show that the 

Checkpoint Mirroring is an order of magnitude 

faster than the Parity Checkpointing, however 

introduced twice as much memory overhead as 

Parity Checkpointing. In [14], Silva also did 

some experimental studies about diskless 

checkpointing .The experiments were done on an 

Xplorer Parsytec machine with 8 transputers 

(T805). Their experimental results show that 

Checkpoint Mirroring has a much better 

performance than the n+1 Parity schemes. The 

drawback is that Checkpoint Mirroring always 

presents more memory overhead than the n+1 

Parity schemes. In [12], Plank also reported that 

Checkpoint Mirroring has lower performance 

overhead than Parity checkpointing if the 

checkpoint data is stored in local disk instead of 

the memory of the processor. Local disk can also 

be used to store the checkpoint data. In his paper, 

coordinated checkpoints are first taken to the 

local disk of each processor and then Checkpoint 

Mirroring, n+1 Parity, or Reed-Solomon Coding 

are used to encode the local checkpoint data to 

the local disk of other processors. To tolerate 

arbitrary number of failures with low 
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performance overhead, Vaidya proposed a two-

level distributed recovery approach in [15]. 

Checkpoint can be done either at the system-

level or at the application level. In [14], Silva 

compared the performance overhead of the 

system-level checkpointing and the user defined 

checkpointing. But the degree of the 

performance improvement is also dependent on 

specific applications. In summary, a review of 

the existing fault tolerance research demonstrates 

that 

• To tolerate arbitrary number of failures with 

low performance overhead, a two-level (or multi-

level) recovery scheme should be used. 

• If enough memory is available, Checkpoint 

Mirroring should be used rather than Parity 

Based Checkpointing. 

• If there is no enough memory but there is 

enough local disk storage available, local disk 

storage can be used to reduce the checkpoint 

performance overhead. 

• To achieve low performance overhead, user 

defined checkpointing schemes should be used 

instead of the system-level checkpointing 

schemes. 

 

III. MOTIVATIONS FOR SELF ADAPTING 

FAULT TOLERANCE 

From Section 2, we have seen that the previous 

fault tolerant research works have produced 

some very precious result. However, there 

appears to be a significant gap between the fault 

tolerant research results and their optimal 

deployment into applications. Each fault 

tolerance scheme has its own advantages and 

disadvantages. Different systems have different 

resource characteristics. What is the best way to 

incorporate different fault tolerance schemes into 

applications so that the reliability and 

survivability is as high as possible while the 

performance overhead is as low as possible? 

From the application point of view, it is desirable 

that fault tolerant high performance applications 

is able to achieve both high performance and 

high reliability (survivability) with low fault 

tolerance overhead no mater under which kind of 

system environments it is running. To achieve 

this goal, the best strategy would be to 

adaptively choose the fault tolerance schemes in 

applications based on different (or dynamic) 

system environments that the applications are 

running. The key idea of our recovery 

framework is the adaptivity of our checkpoint 

scheme to different system environments. Our 

adaptive scheme is similar to Vaidyas two-level 

recovery scheme in that both schemes take multi-

level checkpoint to tolerate arbitrary number of 

failures with low performance  overhead. 

However Vaidyas recovery technique is static. 

He consider the availability of the memory and 

the local disk storage at the software design time, 

but after the design is finished, the software will 

never need to check the information of the 

hardware architecture (such as number of 

available processors, amount of memory and 

local disk storage) again. Thus we classify his 

scheme as static scheme. However, in our 

scheme, the software will have to check the 

information of the hardware architecture (such as 

number of available processors, amount of 

memory and local disk storage) to decide the 

optimal checkpoint scheme. Thus, we regard our 

scheme as adaptive rather than static. The 

application of this framework to self-adaptive 

numerical software such as LFC will result in 

self-adaptive fault tolerant numerical libraries. 

Applications that use this kind of self-adaptive 

fault tolerant numerical libraries is able to 

survive certain processor failures transparently 

with very low performance overhead. 

 

IV. A SELF ADAPTING APPLICATION 

LEVEL FAULT TOLERANCE SCHEME 

In this section, we present a self adapting 

application level fault tolerance scheme for high 

performance grid computing. 

 

A. OVERVIEW 

Our goal is to establish a framework under which 

different fault tolerance schemes can be 

optimally incorporated in applications using an 

adaptive method. In our framework, applications 

will be able to adaptively choose the best 

(minimizing the mean execution time of the 

application) available fault tolerance schemes at 

runtime according to different system 

environments. Different fault tolerant schemes 

require different resources. When designing the 

fault tolerant application, the application 

developer may not have an  a priori knowledge 

of the system characteristics of the platform 

where the application will be running on. The 

system characteristics that is necessary in 

determining checkpoint schemes may include 

• The number of available processors 

• The amount of available memory on each 

processor 

• The amount of available local disk storage on 

each processor 

• Whether there is a central fail free stable 

storage available 

International Journal of Advanced and Innovative Research (2278-7844) / # 355 / Volume 3 Issue 4

     © 2014 IJAIR. ALL RIGHTS RESERVED                                                                                  355



4 

 

• The I/O bandwidth of the local disk storage and 

the central stable storage of each processor 

• The network bandwidth between processors 

• An estimate of the MTBF of the system 

environments 

Different fault tolerant schemes have different 

degree of reliability. To tolerate the failure of all 

processors, a central stable storage is usually 

necessary. If the main memory is not enough, 

consider using the local disk. In order to achieve 

low memory overhead, we also consider Kims 

checksum and reverse computation method [10]. 

In order to achieve transparency, consider and 

incorporate the fault tolerance in numerical 

libraries such as LFC[12]. Because we are using 

an application level 

approach, it is also possible to consider the 

characteristics of the application. 

 

B. A MULTI-LEVEL SELF ADAPTIVE 

RECOVERY SCHEME 

Assume a processor can access the following 

five types of storage in the computing system 

• local memory of the processor 

• local disk of the processor 

• neighbor processors’ memory 

• neighbor processors’ disk 

• central stable storage 

If one type of storage is not available in the 

system, then we assume there are zero bytes of 

that type of storage in the  system. Assume a 

node failure also means that both its memory and 

its local disk becomes unavailable. Which kind 

of checkpoint schemes (or combination, or 

modification of schemes) is best for a specific 

system is affected by many factors. At the 

present time, we only consider the following 

factors: 

• The amount of available storage of each kind 

• The overhead of each checkpoint scheme 

(which is mainly dependent on the bandwidth of 

each storage and the characteristics of that 

checkpoint schemes) 

• The failure distribution of the system. 

• The characteristics of the application 

• The number of available processors for this 

application. 

Just as shown in existing research works, on 

most systems, the performance of these five 

basic recovery schemes is increasing (but it is 

also possible in the future to perform 

experiments to decide the performance of 

different schemes at run time). Since we also 

know the degree of fault tolerance of each basic 

scheme, which combination to be chose is 

mainly dependent on the availability and the 

amount of each storage. We use this information 

to choose the combination of the basic recovery 

scheme. If we can somehow check the MTBF (or 

the failure rate) of the system in the future, we 

can  use it to decide the checkpoint 

frequency[10]. Otherwise we decide the 

checkpoint frequency based on the assumption 

that the total performance overhead of the fault 

application does not exceed certain percentage ( 

say 5% ). By making decisions at run time, we 

get the opportunity to know more information 

about the platform. The application will execute 

rather than making decisions at the application 

design time[14]. 

 
Fig. 1 Automatic Failure Handling 

 

Therefore, we get the opportunity to make better 

decisions. This is why we can get better 

performance in a self adapting fault tolerance 

scheme. 

. 

V.  SNAPSHOT ALGORITHM 

Snapshot algorithm whose task is to analyze 

properties of computations, usually arising from 

other algorithms.  It is, however, surprisingly 

hard to observe the computations of a distributed 

system from within the same system.  An 

important building block in the design of 

algorithms operating on system computations is 

a procedure for computing and storing a single 

configuration of this computation called  

snapshot. 

              The construction of snapshots is 

motivated by several applications, of which we 

list three here. First, properties of the 

computation, as far as they are reflected within a 

single configuration, can be analyzed off-line, 

i.e., by an algorithm that inspects the (fixed) 

snapshot rather than the (varying) actual process 

states. These properties include stable properties; 

a property P of configurations is stable if  P(r) r-

> =>P (d). If a computation ever reaches a 
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configuration r for which P holds, P remains true 

in every configuration d from then on.  

Consequently, if P is found to be true for a 

snapshot of the configuration, the truth of P can 

be concluded for all configurations from then on.  

Examples of stable properties include 

termination, deadlock, loss of tokens, and non-

reach ability of objects in dynamic memory 

structure.  

     Second, a snapshot can be used instead of the 

initial configuration if the computation must be 

restarted due to a process failure. To this end, the 

local state Cp for process P, captured in the 

snapshot, is restored in that process, after which 

the operation of the algorithm is continued. 

       Third, snapshots are a useful tool in 

debugging distributed programs. An off-line 

analysis of a configuration taken from an 

erroneous execution may reveal why a program 

does not act as expected. 

The snapshot algorithm works like this: 

1. The observer process (the process 

taking a snapshot): 

a. Saves its own local state 

b. Sends a snapshot request 

message bearing a snapshot 

token to all other processes 

2. A process receiving the snapshot 

token for the first time on any message: 

a. Sends the observer process its 

own saved state 

b. Attaches the snapshot token to 

all subsequent messages (to 

help propagate the snapshot 

token) 

3. Should a process that has already 

received the snapshot token receive a 

message that does not bear the snapshot 

token, this process will forward that 

message to the observer process. This 

message was obviously sent before the 

snapshot ―cut off‖ (as it does not bear a 

snapshot token and thus must have 

come from before the snapshot token 

was sent out) and needs to be included 

in the snapshot. 

 

Fig. 2 Snapshot Algorithm Process 

From this, the observer builds up a complete 

snapshot: a saved state for each process and all 

messages ―in the ether‖ are saved. 

 

VI. REASONS FOR USING FAULT-

TOLERANT ALORITHMS 

       Increasing the number of components in a 

distributed system means increasing the 

probability that some of these components will 

be subject to failure during the execution of a 

distributed algorithm. Computers in a network 

may fail, processes in a System can be 

erroneously killed by switching off a 

workstation, or a machine may produce an 

incorrect result due to, memory malfunctioning.  

Modern computers are becoming more and more 

in any individual computer.  Nonetheless, the 

chance of a failure occurring at some place in a 

distributed system may grow arbitrarily large 

when the algorithm each time a failure occurs, 

algorithms should be designed so as to deal 

properly with such failures. 

        Vulnerability to failures is also a concern in 

sequential computations, in safety-critical 

application, or if a computation runs for a long 

time and produces a non-verifiable result.  

Internal checks protect against errors of some 

types but of course no protection can be achieved 

against the complete loss of the program or 

erroneous changes in its code.  Therefore the 

possibilities of fault-tolerant computing by 

sequential algorithms and uni-processor 

computing systems are limited. In stabilizing 

algorithms correct processes can be affected by 

failures, but the algorithm is guaranteed to 

recover from any arbitrary configuration when 

the processes resume correct behavior. 
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VII. FAILURE  MODELS 

         To determine how the correctly operating 

processes can protect themselves against failed 

processes, assumptions must be made about how 

a process might fail. In the following chapters it 

is always assumed that only processes can fail; 

channels are reliable.  Thus, if a correct process 

sends a message to another correct process, 

receipt of the message within finite time is 

guaranteed.(A failing channel can be modeled by 

a failure in one of the incident processes, for 

example ,  an omission failure.) As an additional 

assumption, we always assume that each process 

can send to each other process. 

 

Fig. 3 Failure Models 

The  fault models are: 

1)Initially dead processes:  A process is called 

initially dead if it does not execute a single step 

of its local algorithm. 

2)Crash model:  A process is said to crash if it 

executes its local algorithm correctly up to some 

moment, and does not execute any step 

thereafter. 

3)Byzantine behavior: A process is said to be 

Byzantine if it executes arbitrary steps that are 

not in accordance with its local algorithm.  N 

particular, a Byzantine process may send 

messages with an arbitrary content. 

 

VIII. FAILURE DETECTION 

          The impossibility of solving consensus in 

asynchronous systems has led to weaker problem 

formulations and stronger models.Failure 

detectors are new widely recognized as an 

alternative way to strengthen the computation 

model. Studying synchronous models is 

practically motivated because most distributed 

programming environments do provide clocks 

and timers in some way.  With failure detectors, 

the situation is similar; quite often the run-time 

support system will return error messages upon 

an attempt to communicate with a crashed 

process.  However, these error messages are not 

always absolutely reliable.  It is therefore useful 

to study how reliable they must be to allow a 

solution for the consensus problem. 

 

          
 

Fig. 4 Failure Detection 

 

  

IX. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of 

the proposed self adapting fault tolerance scheme 

experimentally. 

The application we used to perform experiment 

is the PCG code describled in [2]. The number of 

simultaneous processor failures we want to 

survive is one. The total number of processors 

we used in PCG is sixteen. The programming 

environment we used is FT-MPI [6, 7, 8]. All 

experiments were performed on a cluster of 32 

Pentium IV Xeon 2.4 GHz dual-processor nodes. 

Each node of the cluster has 2 GB of memory 

and runs the Linux operating system. The nodes 

are connected with a Gigabit Ethernet. The timer 

we used in all measurements is MPI Wtime. 

Table 1 reports the time for performing one 

checkpoint for both the SSAC and the 

NMPCschemes. By changing the 

input problem size in PCG, we varied the 

amount of data that need to be checkpointed 

from 100 MBytes to 1,000 MBytes. The results 

in Table 1 indicate that the SSAC scheme 

performs better than the NMPC scheme when 

the size of checkpoint is less than 500 MBytes. 

However, when the size of checkpoint is larger 

than 500 MBytes, the SSAC scheme performs 

approximately the same as the NMPC scheme. 

Therefore, the use the Neighbor Memorybased 

Checkpoint Mirroring scheme (which has lower 

performance overhead but high memory 

overhead than NMPC) is recommended.  

 
X. CONCLUSION AND FUTUREWORK 

Mainframes and Parallel computers are highly 

reliable and cost number crunches. The recent 

decade of client server technology evolution 

indicates cost as a prime factor. There by , 

identifying distributed object based solutions and 
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linux clusters.With full advantage of economy 

distributed object based solution still stays as a 

bumbling amateur. As the first pedestal, we had 

designed a Reliable Distributed Computing 

Environment in windows platform. The project 

was listed with a cry problem of Encryption. It 

was successful and has paved hope towards a lot 

of future scope. 

                 Current implementation of the 

distributed computing environment is designed 

using Message based Middleware this can be 

enhanced with Naming Service. Current 

implementation of the distributed computing 

environment is designed to run in Microsoft 

Network under windows-NT architecture 

(IntraNet), this can be extended to Internet with 

the help of WEB SERVERS. Intelligence can be 

added to enhance the job distribution. 
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