
1

An Adaptive Distributed Computing with

Fault Tolerance and Recovery

Mrs.K.Gayathri
#1

, Mr.B.Ganesh Prabu
*2

#
Lecturer, Department of Computer Science and Engineering,

PSNA College of Engineering and Technology, Dindigul,, Tamilnadu.

1
gayathri1773@gmail.com

*
Assistant Professor, Department of Electrical and Electronics Engineering,

University College of Engineering, Dindigul, Tamilnadu.

2
ganesh.eee.007@gmail.com

Abstract—Today we need high-speed Computers

to meet our customer requirements like data

warehousing, on-line transaction processing and

decision support system solutions. Likewise, the

world of science & engineering also rely on high

performance computing to provide solutions and

solve problems. Mainframes, supercomputers and

fault-tolerant systems are high cost with limited

speed. Distributed systems consisting of

independent computers that co-operate as a single

system. Distributed computing is sharing of

computer resources and services by direct

exchange between systems. DCE provides a

complete Distributed Computing Environment

infrastructure. It provides security services to

protect and control access to data, name services

that make it easy to find distributed resources, and

a highly scalable model for organizing widely

scattered users, services, and data. DCE runs on all

major computing platforms and is designed to

support distributed applications in heterogeneous

hardware and software environments. DCE is a

key technology in three of today's most important

areas of computing. The performance of the DCE

is entirely depends on number of participants

included in a particular process using

multithreading, where number of participants

increase, system failure rate is also increased to

make the DCE reliable, fault detection, fault

tolerance and failure recovery must be done. This

Project work aims to design a reliable DCE with

the help of Message-based middleware.

Keywords—Distributed computing, Fault

tolerance, Failure, Checkpoints

I. INTRODUCTION

As the number of processors in modern high

performance distributed computer systems

continues to grow, the issue of fault tolerance is

becoming more and more important. Even

making generous assumptions on the reliability

of a single processor or link, it is clear that as the

processor count in high end clusters grows into

the hundreds of thousands, the mean-time-to-

failure of these clusters will drop from a few

years to a few days, or less. The current DOE

ASCI computer (IBM Blue Gene L) is designed

with 131,000 processors [1]. The mean-time-to-

failure of some nodes or links for this system is

reported to be only six days on average [1]. In

recent years, the trend of the high performance

computing has been shifting from the expensive

massively parallel computer systems to the

clusters of commodity off-the-shelf systems [5].

While the commodity off-the-shelf cluster

systems have excellent price performance ratio,

there is a growing concern with the fault

tolerance issue in such system. The recently

emerging computational grids [9] environments

have further exacerbated the problem. However,

many computational science programs are now

designed to run for days or even months.

Therefore the mean-time-between-failures

(MTBF) of such kind of high performance

computing systems are significantly shorter than

the running time of many computational science

programs. Modern computational science

programs need to be able to tolerant the failures.

Due to the large process state of such kind of

applications, the relatively low I/O bandwidth

between memory and the central network disk

and the high enough frequency of failures, for

these systems, the classical system-level fault

tolerance approaches is often either impractical

International Journal of Advanced and Innovative Research (2278-7844) / # 353 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 353

mailto:gayathri1773@gmail.com
mailto:ganesh.eee.007@gmail.com

2

(an application would spend most of its time

taking checkpoints) or infeasible (there is no

enough time for an application to save its core to

disk before the next failure occurs). Therefore

the cheaper application level fault tolerance

schemes may be deployed as an alternative in

such large computational science programs.

However, most application level fault tolerance

schemes proposed in literature are non-adaptive

in the sense that the fault tolerance schemes

incorporated in applications are either designed

without incorporating system environments

(such as the amount of available memory and the

local and network I/O bandwidth, etc) or

designed only for a specific system environment.

In this paper, we propose a framework under

which different fault tolerance schemes can be

incorporated in applications using an adaptive

method. In our framework, applications will be

able to choose the best (minimizing the mean

execution time of the application) available fault

tolerance schemes at runtime (or dynamically)

according to different (or dynamic) system

environments[3]. Applications that call this kind

of self-adaptive fault tolerant numerical libraries

will be able to survive certain processor failures

transparently with very low performance

overhead. The rest of this paper is organized as

follows. Section 2 reviews briefly the existing

related literature in checkpointing and rollback

recovery. Section 3 explains the motivations of

this research. Section 4 presents a self adapting

application, level fault tolerance scheme for high

performance grid computing. In Section 5, some

initial experimental results are presented. Section

6 concludes the paper and discusses future work.

II. FAULT TOLERANCE IN PARALLEL AND

DISTRIBUTED SYSTEMS

Fault tolerance techniques can be divided into

two big branches and some hybrid techniques.

The first branch is Messaging Logging. In this

branch, there are three subbranches: Pessimistic

Messaging Logging, Optimistic Messaging

Logging and Casual Messaging Logging. The

second branch is Checkpointing and Rollback

recovery. There are also three sub-branches in

this branch: Network disk based Checkpointing

and rollback recovery, Diskless Checkpointing,

and Local Disk based checkpointing. Our

research is mainly concentrated on incorporating

fault tolerant techniques into tightly coupled

large scale high performance computational

intensive applications. In the rest of this section,

we confine our literature review to checkpointing

and rollback recovery schemes instead of general

fault tolerance scheme[4]. Most traditional

distributed multiprocessor recovery schemes are

designed to tolerate arbitrary number of failures.

So they store their checkpoint data in a central

stable storage. The central stable storage usually

has its own fault tolerance techniques to prevent

it from failures. But the bandwidth between the

processors and the central stable storage is

usually very low. Several experimental studies

presented in [13] have shown that the main

performance overhead of checkpointing is the

time spent on writing the checkpoint data to the

central stable storage. In [11] and [13], Plank

proposed to use diskless checkpointing technique

as an approach to tolerant single failures with

low performance overhead when stable storage is

not available. Diskless checkpointing is a

technique where processor redundancy, memory

redundancy and failure coverage are traded off

so that a checkpointing system can operate in the

absence of stable storage. Experimental studies

presented in [13, 14] have shown that diskless

checkpointing have a much better performance

than traditional disk based checkpoint

techniques. There are also several papers which

compare the performance of different diskless

checkpointing schemes. In [4],Chiueh and Deng

compare the performance of different diskless

checkpointing schemes on a massively parallel

SIMD machine. The XOR operation was done

following an O(logN) binary tree fashion. The

results of their experiment show that the

Checkpoint Mirroring is an order of magnitude

faster than the Parity Checkpointing, however

introduced twice as much memory overhead as

Parity Checkpointing. In [14], Silva also did

some experimental studies about diskless

checkpointing .The experiments were done on an

Xplorer Parsytec machine with 8 transputers

(T805). Their experimental results show that

Checkpoint Mirroring has a much better

performance than the n+1 Parity schemes. The

drawback is that Checkpoint Mirroring always

presents more memory overhead than the n+1

Parity schemes. In [12], Plank also reported that

Checkpoint Mirroring has lower performance

overhead than Parity checkpointing if the

checkpoint data is stored in local disk instead of

the memory of the processor. Local disk can also

be used to store the checkpoint data. In his paper,

coordinated checkpoints are first taken to the

local disk of each processor and then Checkpoint

Mirroring, n+1 Parity, or Reed-Solomon Coding

are used to encode the local checkpoint data to

the local disk of other processors. To tolerate

arbitrary number of failures with low

International Journal of Advanced and Innovative Research (2278-7844) / # 354 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 354

3

performance overhead, Vaidya proposed a two-

level distributed recovery approach in [15].

Checkpoint can be done either at the system-

level or at the application level. In [14], Silva

compared the performance overhead of the

system-level checkpointing and the user defined

checkpointing. But the degree of the

performance improvement is also dependent on

specific applications. In summary, a review of

the existing fault tolerance research demonstrates

that

• To tolerate arbitrary number of failures with

low performance overhead, a two-level (or multi-

level) recovery scheme should be used.

• If enough memory is available, Checkpoint

Mirroring should be used rather than Parity

Based Checkpointing.

• If there is no enough memory but there is

enough local disk storage available, local disk

storage can be used to reduce the checkpoint

performance overhead.

• To achieve low performance overhead, user

defined checkpointing schemes should be used

instead of the system-level checkpointing

schemes.

III. MOTIVATIONS FOR SELF ADAPTING

FAULT TOLERANCE

From Section 2, we have seen that the previous

fault tolerant research works have produced

some very precious result. However, there

appears to be a significant gap between the fault

tolerant research results and their optimal

deployment into applications. Each fault

tolerance scheme has its own advantages and

disadvantages. Different systems have different

resource characteristics. What is the best way to

incorporate different fault tolerance schemes into

applications so that the reliability and

survivability is as high as possible while the

performance overhead is as low as possible?

From the application point of view, it is desirable

that fault tolerant high performance applications

is able to achieve both high performance and

high reliability (survivability) with low fault

tolerance overhead no mater under which kind of

system environments it is running. To achieve

this goal, the best strategy would be to

adaptively choose the fault tolerance schemes in

applications based on different (or dynamic)

system environments that the applications are

running. The key idea of our recovery

framework is the adaptivity of our checkpoint

scheme to different system environments. Our

adaptive scheme is similar to Vaidyas two-level

recovery scheme in that both schemes take multi-

level checkpoint to tolerate arbitrary number of

failures with low performance overhead.

However Vaidyas recovery technique is static.

He consider the availability of the memory and

the local disk storage at the software design time,

but after the design is finished, the software will

never need to check the information of the

hardware architecture (such as number of

available processors, amount of memory and

local disk storage) again. Thus we classify his

scheme as static scheme. However, in our

scheme, the software will have to check the

information of the hardware architecture (such as

number of available processors, amount of

memory and local disk storage) to decide the

optimal checkpoint scheme. Thus, we regard our

scheme as adaptive rather than static. The

application of this framework to self-adaptive

numerical software such as LFC will result in

self-adaptive fault tolerant numerical libraries.

Applications that use this kind of self-adaptive

fault tolerant numerical libraries is able to

survive certain processor failures transparently

with very low performance overhead.

IV. A SELF ADAPTING APPLICATION

LEVEL FAULT TOLERANCE SCHEME

In this section, we present a self adapting

application level fault tolerance scheme for high

performance grid computing.

A. OVERVIEW

Our goal is to establish a framework under which

different fault tolerance schemes can be

optimally incorporated in applications using an

adaptive method. In our framework, applications

will be able to adaptively choose the best

(minimizing the mean execution time of the

application) available fault tolerance schemes at

runtime according to different system

environments. Different fault tolerant schemes

require different resources. When designing the

fault tolerant application, the application

developer may not have an a priori knowledge

of the system characteristics of the platform

where the application will be running on. The

system characteristics that is necessary in

determining checkpoint schemes may include

• The number of available processors

• The amount of available memory on each

processor

• The amount of available local disk storage on

each processor

• Whether there is a central fail free stable

storage available

International Journal of Advanced and Innovative Research (2278-7844) / # 355 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 355

4

• The I/O bandwidth of the local disk storage and

the central stable storage of each processor

• The network bandwidth between processors

• An estimate of the MTBF of the system

environments

Different fault tolerant schemes have different

degree of reliability. To tolerate the failure of all

processors, a central stable storage is usually

necessary. If the main memory is not enough,

consider using the local disk. In order to achieve

low memory overhead, we also consider Kims

checksum and reverse computation method [10].

In order to achieve transparency, consider and

incorporate the fault tolerance in numerical

libraries such as LFC[12]. Because we are using

an application level

approach, it is also possible to consider the

characteristics of the application.

B. A MULTI-LEVEL SELF ADAPTIVE

RECOVERY SCHEME

Assume a processor can access the following

five types of storage in the computing system

• local memory of the processor

• local disk of the processor

• neighbor processors’ memory

• neighbor processors’ disk

• central stable storage

If one type of storage is not available in the

system, then we assume there are zero bytes of

that type of storage in the system. Assume a

node failure also means that both its memory and

its local disk becomes unavailable. Which kind

of checkpoint schemes (or combination, or

modification of schemes) is best for a specific

system is affected by many factors. At the

present time, we only consider the following

factors:

• The amount of available storage of each kind

• The overhead of each checkpoint scheme

(which is mainly dependent on the bandwidth of

each storage and the characteristics of that

checkpoint schemes)

• The failure distribution of the system.

• The characteristics of the application

• The number of available processors for this

application.

Just as shown in existing research works, on

most systems, the performance of these five

basic recovery schemes is increasing (but it is

also possible in the future to perform

experiments to decide the performance of

different schemes at run time). Since we also

know the degree of fault tolerance of each basic

scheme, which combination to be chose is

mainly dependent on the availability and the

amount of each storage. We use this information

to choose the combination of the basic recovery

scheme. If we can somehow check the MTBF (or

the failure rate) of the system in the future, we

can use it to decide the checkpoint

frequency[10]. Otherwise we decide the

checkpoint frequency based on the assumption

that the total performance overhead of the fault

application does not exceed certain percentage (

say 5%). By making decisions at run time, we

get the opportunity to know more information

about the platform. The application will execute

rather than making decisions at the application

design time[14].

Fig. 1 Automatic Failure Handling

Therefore, we get the opportunity to make better

decisions. This is why we can get better

performance in a self adapting fault tolerance

scheme.

.

V. SNAPSHOT ALGORITHM

Snapshot algorithm whose task is to analyze

properties of computations, usually arising from

other algorithms. It is, however, surprisingly

hard to observe the computations of a distributed

system from within the same system. An

important building block in the design of

algorithms operating on system computations is

a procedure for computing and storing a single

configuration of this computation called

snapshot.

 The construction of snapshots is

motivated by several applications, of which we

list three here. First, properties of the

computation, as far as they are reflected within a

single configuration, can be analyzed off-line,

i.e., by an algorithm that inspects the (fixed)

snapshot rather than the (varying) actual process

states. These properties include stable properties;

a property P of configurations is stable if P(r) r-

> =>P (d). If a computation ever reaches a

International Journal of Advanced and Innovative Research (2278-7844) / # 356 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 356

5

configuration r for which P holds, P remains true

in every configuration d from then on.

Consequently, if P is found to be true for a

snapshot of the configuration, the truth of P can

be concluded for all configurations from then on.

Examples of stable properties include

termination, deadlock, loss of tokens, and non-

reach ability of objects in dynamic memory

structure.

 Second, a snapshot can be used instead of the

initial configuration if the computation must be

restarted due to a process failure. To this end, the

local state Cp for process P, captured in the

snapshot, is restored in that process, after which

the operation of the algorithm is continued.

 Third, snapshots are a useful tool in

debugging distributed programs. An off-line

analysis of a configuration taken from an

erroneous execution may reveal why a program

does not act as expected.

The snapshot algorithm works like this:

1. The observer process (the process

taking a snapshot):

a. Saves its own local state

b. Sends a snapshot request

message bearing a snapshot

token to all other processes

2. A process receiving the snapshot

token for the first time on any message:

a. Sends the observer process its

own saved state

b. Attaches the snapshot token to

all subsequent messages (to

help propagate the snapshot

token)

3. Should a process that has already

received the snapshot token receive a

message that does not bear the snapshot

token, this process will forward that

message to the observer process. This

message was obviously sent before the

snapshot ―cut off‖ (as it does not bear a

snapshot token and thus must have

come from before the snapshot token

was sent out) and needs to be included

in the snapshot.

Fig. 2 Snapshot Algorithm Process

From this, the observer builds up a complete

snapshot: a saved state for each process and all

messages ―in the ether‖ are saved.

VI. REASONS FOR USING FAULT-

TOLERANT ALORITHMS

 Increasing the number of components in a

distributed system means increasing the

probability that some of these components will

be subject to failure during the execution of a

distributed algorithm. Computers in a network

may fail, processes in a System can be

erroneously killed by switching off a

workstation, or a machine may produce an

incorrect result due to, memory malfunctioning.

Modern computers are becoming more and more

in any individual computer. Nonetheless, the

chance of a failure occurring at some place in a

distributed system may grow arbitrarily large

when the algorithm each time a failure occurs,

algorithms should be designed so as to deal

properly with such failures.

 Vulnerability to failures is also a concern in

sequential computations, in safety-critical

application, or if a computation runs for a long

time and produces a non-verifiable result.

Internal checks protect against errors of some

types but of course no protection can be achieved

against the complete loss of the program or

erroneous changes in its code. Therefore the

possibilities of fault-tolerant computing by

sequential algorithms and uni-processor

computing systems are limited. In stabilizing

algorithms correct processes can be affected by

failures, but the algorithm is guaranteed to

recover from any arbitrary configuration when

the processes resume correct behavior.

International Journal of Advanced and Innovative Research (2278-7844) / # 357 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 357

6

VII. FAILURE MODELS

 To determine how the correctly operating

processes can protect themselves against failed

processes, assumptions must be made about how

a process might fail. In the following chapters it

is always assumed that only processes can fail;

channels are reliable. Thus, if a correct process

sends a message to another correct process,

receipt of the message within finite time is

guaranteed.(A failing channel can be modeled by

a failure in one of the incident processes, for

example , an omission failure.) As an additional

assumption, we always assume that each process

can send to each other process.

Fig. 3 Failure Models

The fault models are:

1)Initially dead processes: A process is called

initially dead if it does not execute a single step

of its local algorithm.

2)Crash model: A process is said to crash if it

executes its local algorithm correctly up to some

moment, and does not execute any step

thereafter.

3)Byzantine behavior: A process is said to be

Byzantine if it executes arbitrary steps that are

not in accordance with its local algorithm. N

particular, a Byzantine process may send

messages with an arbitrary content.

VIII. FAILURE DETECTION

 The impossibility of solving consensus in

asynchronous systems has led to weaker problem

formulations and stronger models.Failure

detectors are new widely recognized as an

alternative way to strengthen the computation

model. Studying synchronous models is

practically motivated because most distributed

programming environments do provide clocks

and timers in some way. With failure detectors,

the situation is similar; quite often the run-time

support system will return error messages upon

an attempt to communicate with a crashed

process. However, these error messages are not

always absolutely reliable. It is therefore useful

to study how reliable they must be to allow a

solution for the consensus problem.

Fig. 4 Failure Detection

IX. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of

the proposed self adapting fault tolerance scheme

experimentally.

The application we used to perform experiment

is the PCG code describled in [2]. The number of

simultaneous processor failures we want to

survive is one. The total number of processors

we used in PCG is sixteen. The programming

environment we used is FT-MPI [6, 7, 8]. All

experiments were performed on a cluster of 32

Pentium IV Xeon 2.4 GHz dual-processor nodes.

Each node of the cluster has 2 GB of memory

and runs the Linux operating system. The nodes

are connected with a Gigabit Ethernet. The timer

we used in all measurements is MPI Wtime.

Table 1 reports the time for performing one

checkpoint for both the SSAC and the

NMPCschemes. By changing the

input problem size in PCG, we varied the

amount of data that need to be checkpointed

from 100 MBytes to 1,000 MBytes. The results

in Table 1 indicate that the SSAC scheme

performs better than the NMPC scheme when

the size of checkpoint is less than 500 MBytes.

However, when the size of checkpoint is larger

than 500 MBytes, the SSAC scheme performs

approximately the same as the NMPC scheme.

Therefore, the use the Neighbor Memorybased

Checkpoint Mirroring scheme (which has lower

performance overhead but high memory

overhead than NMPC) is recommended.

X. CONCLUSION AND FUTUREWORK

Mainframes and Parallel computers are highly

reliable and cost number crunches. The recent

decade of client server technology evolution

indicates cost as a prime factor. There by ,

identifying distributed object based solutions and

International Journal of Advanced and Innovative Research (2278-7844) / # 358 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 358

7

linux clusters.With full advantage of economy

distributed object based solution still stays as a

bumbling amateur. As the first pedestal, we had

designed a Reliable Distributed Computing

Environment in windows platform. The project

was listed with a cry problem of Encryption. It

was successful and has paved hope towards a lot

of future scope.

 Current implementation of the

distributed computing environment is designed

using Message based Middleware this can be

enhanced with Naming Service. Current

implementation of the distributed computing

environment is designed to run in Microsoft

Network under windows-NT architecture

(IntraNet), this can be extended to Internet with

the help of WEB SERVERS. Intelligence can be

added to enhance the job distribution.

REFERENCES

[1] N. R. Adiga and et al. An overview of the

BlueGene/L supercomputer. In Proceedings of

the Supercomputing Conference (SC’2002),

Baltimore MD, USA, pages 1– 22, 2002.

[2] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou,

T. Angskun, G. Bosilca, and J. Dongarra. Fault

tolerant high performance computing by a

coding approach. In Proceedings of the ACM

SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPOPP 2005,

June 14-17, 2005, Chicago, IL, USA. ACM,

2005.

[3] Z. Chen, J. Dongarra, P. Luszczek, and K.

Roche. Self-adapting software for numerical

linear algebra and LAPACK for clusters. Parallel

Computing, 29(11- 12):1723–1743, November-

December 2003.

[4] T. Chiueh and P. Deng. Evaluation of

checkpoint mechanisms for massively parallel

machines. In FTCS, pages 370–379, 1996.

[5] J. Dongarra, H. Meuer, and E. Strohmaier.

TOP500 Supercomputer Sites, 28th edition. In

Proceedings of the Supercomputing Conference

(SC’2006), Pittsburgh PA, USA. ACM, 2006.

[6] G. E. Fagg and J. Dongarra. FT-MPI: Fault

tolerant MPI, supporting dynamic applications in

a dynamic world. In PVM/MPI 2000, pages

346–353, 2000.

[7] G. E. Fagg, E. Gabriel, G. Bosilca, T.

Angskun, Z. Chen, J. Pjesivac-Grbovic, K.

London, and J. J. Dongarra. Extending the MPI

specification for process fault tolerance on high

performance computing systems. In Proceedings

of the International Supercomputer Conference,

Heidelberg, Germany, 2004.

[8] G. E. Fagg, E. Gabriel, Z. Chen, , T.

Angskun, G. Bosilca, J. Pjesivac-Grbovic, and J.

J. Dongarra. Process fault-tolerance: Semantics,

design and applications for high performance

computing. Submitted to International Journal of

High Performance Computing Applications,

2004.

[9] I. Foster and C. Kesselman. The Grid:

Blueprint for a New Computing Infrastructure.

Morgan Kauffman, San Francisco, 1999.

[10] Y. Kim. Fault Tolerant Matrix Operations

for Parallel and Distributed Systems. Ph.D.

dissertation, University of Tennessee, Knoxville,

June 1996.

[11] J. S. Plank and K. Li. Faster checkpointing

with n+1 parity. In FTCS, pages 288–297, 1994.

[12] J. S. Plank. Improving the Performance of

Coordinated Checkpointers on Networks of

Workstations using RAID Techniques. In 15th

Symposium on Reliable Distributed Systems,

pages 76–85, 1996.

[13] J. S. Plank, K. Li, and M. A. Puening.

Diskless checkpointing. IEEE Trans. Parallel

Distrib. Syst., 9(10):972–986, 1998.

[14] L. M. Silva and J. G. Silva. An experimental

study about diskless checkpointing. In

EUROMICRO’98, pages 395–402, 1998. [15] N.

H. Vaidya. A case for two-level recovery

schemes. IEEE Trans. Computers, 47(6):656–

666, 1998.

[15]. Qiming Chen ; Meichun Hsu ;

Castellanos, M. Software Engineering, Artificial

Intelligence,Networking andParallel/Distributed

Computing (SNPD), 2013 14
th
 ACIS

International Conference on Digital Object

Identifier: 10.1109/SNPD.2013.36 Publication

Year: 2013 , Page(s): 261 – 266, IEEE
conference publications.
[16]. Han, Y.S. ; Hung-Ta Pai ; Rong

Zheng ; Wai Ho Mow Communications, IEEE

Transactions on Volume: 62 , Issue: 2 Digital

Object Identifier: 10.1109/

TCOMM.2013.122313.130492 Publication

Year: 2014 , Page(s): 385 – 397. IEEE journals

& magazines.

[17]. Pezoa, J.E. ; Hayat, M.M.

Parallel and Distributed Systems, IEEE

Transactions on Volume: 25 , Issue: 4

Digital Object Identifier: 10.1109/

TPDS.2013.78 Publication Year: 2014 , Page(s):

1034 – 1043 IEEE journals & magazines.

International Journal of Advanced and Innovative Research (2278-7844) / # 359 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 359

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Qiming%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Meichun%20Hsu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Castellanos,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6598367
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6598367
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6598367
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6598367
http://dx.doi.org/10.1109/SNPD.2013.36
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Han,%20Y.S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hung-Ta%20Pai.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rong%20Zheng.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rong%20Zheng.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wai%20Ho%20Mow.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=26
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=26
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6748342
http://dx.doi.org/10.1109/TCOMM.2013.122313.130492
http://dx.doi.org/10.1109/TCOMM.2013.122313.130492
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pezoa,%20J.E..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hayat,%20M.M..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6750096
http://dx.doi.org/10.1109/TPDS.2013.78
http://dx.doi.org/10.1109/TPDS.2013.78

