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Abstract— Service composition is very important now 

days because integrating all the related services and providing 

good service it plays a role. Giving services is not important to 

provide best match for the service is the important one and also 

providing the functionalities like time, fee etc. We propose to 

exploit the dominance relationship among service providers to 

find a set of “best” possible composite services, referred to as a 

composite service skyline. Here we proposed composite service 

skyline to reduce the searching space instead of composing all 

services for this we proposed efficient algorithms. We conduct a 

comprehensive analytical and experimental study to evaluate the 

effectiveness, efficiency, and scalability the composite skyline 

computation approaches. 

Keywords— Skyline Services, QoS Broker Architecture, 

Algorithms for the Combinatorial Model, WS_ HEU 

Algorithm. 

 

I. INTRODUCTION 

In composition of skyline important objective is to enable the 

interoperability among different web applications and 

software in different platforms. Daily number of services is 

increase so finding the best one is very critical. These services 

gives a challenge to the developers for service composition 

means that selection of appropriate service that satisfies the 

customer need as quality of web service. 

 Now a day‘s business process out sourcing is 

improved so they mainly focus on their core activities. In that 

web users wants composition of services to achieve more 

complex tasks which can‘t achieved by a single web service. 

Here we use Service-oriented Architecture paradigm, 

composite applications are specified as abstract processes 

composed of a set of abstract services. Then at run time a best 

service selected and used. 

 Here we use a web application for finding the best 

used car offers. The user enters the details of the car which 

he/she want. Then the system returns the set of best offers 

with credit and insurance offer for each car in the list. Here 

the composed application works as a web service to the user. 

Here the API programmatically integrated into their (user) 

web applications using a Mash up tool. 

 

 

Fig: 1 Service Composition 

 Here some tasks like Used Cars and Credit Offers are 

shown in Gray color and these services are outsourced and 

integrated via web services. For these outsourced tasks, 

multiple services may be available providing the required 

functionality but with different QoS values. Users are 

typically unaware of the involved services, and they specify 

their QoS requirements in the SLA in terms of end-to-end 

QoS constraints (e.g. average end-to-end response time, 

minimum overall throughput, maximum total cost). The goal 

of QoS-based service composition is to select one service or 

service configuration for each outsourced task such that the 
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aggregated QoS values satisfy all the application level QoS 

constraints. 

 

II.SKYLINE SERVICES 

 Here the goal is to select a set of services, one from 

each service class, that maximize the overall utility, while 

satisfying all the specified constraints. However, not all 

services are potential candidates for the solution. The main 

idea in our approach is to perform a skyline query on the 

services in each class to distinguish between those services 

that are potential candidates for the composition, and those 

that cannot possibly be part of the final solution. The latter can 

effectively be pruned to reduce the search space. 

 Given a set of points in a d-dimensional space, a 

skyline query selects those points that are not dominated by 

any other point. A point Pi is said to dominate another point Pj, 

if Pi is better than or equal to Pj in all dimensions and strictly 

better in at least one dimension. Intuitively, a skyline query 

selects the ―best‖ or most ―interesting‖ points with respect to 

all dimensions. In this work, we define and exploit dominance 

relationships between services based on their QoS attributes. 

This is used to identify services in a service class that are 

dominated by other services in the same class. 

  

 

Fig 2: Example of skyline services 

 

Figure 2 shows an example of skyline services of a 

certain service class. Each service is described by two QoS 

parameters, namely execution time and price. Hence, the 

services are represented as points in the 2-dimensional space, 

with the coordinates of each point corresponding to the values 

of the service in these two parameters. We can observe that 

the service a belongs to the skyline, because it is not 

dominated by any other service, i.e. there is no other service 

that offers both shorter execution time and lower price than a. 

The same holds for the services b, c, d and e, which are also 

on the skyline. On the other hand, service f is not contained in 

the skyline, because it is dominated by the services b, c and d. 

Service-Oriented Architecture (SOA) provides a 

flexible framework for service composition. Using standard-

based protocols (such as SOAP and WSDL), composite 

services can be constructed by integrating atomic services 

developed independently. Algorithms are needed to select 

service components with various QoS levels according to 

some application-dependent performance requirements. We 

design a broker-based architecture to facilitate the selection of 

QoS-based services. The objective of service selection is to 

maximize an application-specific utility function under the 

end to- end QoS constraints. The problem is modeled in two 

ways: the combinatorial model and the graph model. The 

combinatorial model defines the problem as a 

multidimensional multi-choice 0-1 knapsack problem 

(MMKP). The graph model defines the problem as a multi-

constraint optimal path (MCOP) problem. 

 

III. QoS BROKER ARCHITECTURE 

 We have designed a QoS service broker called 

QBroker, which acts as an external, independent broker entity 

that can help users construct composite services. The goal of 

Qbroker is to help users select the best services for their 

composite service process before invocation. A detailed 

presentation on the QBroker architecture can be found in 

Figure 3. 

 Process plan. An abstract process that defines a flow 

of component functions and their relationships. A 

process plan is designed to fulfill a user‘s request. 

 Function graph. This is a functional graph which 

includes all process plans that can fulfill a user‘s 
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request. Each node of the graph is a component 

function. A start node and an end node are added to 

the function graph. 

 Service candidate graph. A service candidate graph is 

built from a functional graph and it includes a path 

for all combinations of function nodes that can be 

used to fulfill the service request. The executable 

composite service is created by services selection 

based on a service candidate graph. 

 

 

Fig 3: QoS Web service composition 

 

IV.ALGORITHMS FOR THE COMBINATIONAL MODEL 

 For a composite service that has N service classes 

(S1, S2. . . SN) in a process flow plan and with m QoS 

constraints, we map the service selection problem to a 0-1 

multidimensional multichoice knapsack problem (MMKP). 

MMKP is defined as follows. Suppose there are N object 

groups, each has li (1 ≤ i ≤ N) objects. Each object has a profit 

pij and requires resource rij = (r1
ij
. . . rmij ). The amount of 

resources available in the knapsack is R = (R1. . . Rm). 

MMKP is to select exactly one object from each object group 

to be placed in the knapsack so that the total profit is 

maximized while the total resources used are less than the 

resources available. 

 The QoS service selection problem is to select one 

service candidate from each service class to construct a 

composite service that meets a user‘s QoS constraints and 

maximizes the total utility. The QoS service selection problem 

is mapped to MMKP as follows.  

 Each service class is mapped to an object group in 

MMKP. 

 Each atomic service in a service class is mapped to 

an object in a group in MMKP 

 The QoS attributes of each candidate are mapped to 

the resources required by the object in MMKP. 

 The utility a candidate produces is mapped to the 

profit of the object. 

 A user‘s QoS constraints are considered as the 

resources available in the knapsack.  

V.WS_ HEU ALGORITHM 

The computation time for BBLP grows exponentially 

with the size of the problem. This may not be acceptable for 

Qbrokers that need to make runtime decisions. Heuristic 

algorithms may be useful to find feasible solutions in 

polynomial time. We use a heuristic algorithm WS HEU to 

find solutions for MMKP. Figure4 shows the flow of the WS_ 

HEU algorithm and the individual functions (F1 to F6) used in 

Figure4. The algorithm has three main steps. 

(1) Find an initial feasible solution. For each service class Si, 

WS_ HEU selects a service ρi that has minj {maxα{ qα 

ij/Qαc }} in the class. It then checks the feasibility of the 

initial solution. If the solution is infeasible, the algorithm 

iteratively improves the solution by replacing the service ρ
’
i
 

with the largest saving of aggregated QoS among all service 

classes. The service replacement continues until a feasible 

solution is found (or else the algorithm fails). 

(2) Improve the solution by feasible upgrades. Among all 

classes, WS _HEU finds service ρ‘i to replace ρ’i for Si to get 

a higher utility without violating the constraint requirements. 

The service replacement criterion is based on. If no such  
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service can be found, WS_HEU picks the one that maximizes 

pij. 

(3) Improve the solution by infeasible upgrades followed by 

downgrades. Performing only feasible upgrades may reach a 

local optimal in the search space. To achieve the global 

optimal, WS_HEU further improves the solution by using F5 

to select the service that maximizes p
‘
ij. This replacement 

makes the solution infeasible.  

 

Fig 4: Algorithm structure for WS_ HEU 

 

VI.WEB INFORMATION SYSTEM ARCHITECTURE 

AND RELATED WORK 

 Modern Web information systems feature 

architecture like the one roughly sketched in figure 1. Using a 

(mobile) client device the user poses a query. Running on an 

application/Web server this query may be enriched with 

information about a user (e.g. taken from stored profiles) and 

will be posed to a set of Internet sources. Depending on the 

nature of the query different sources can be involved in 

different parts of the query, e.g. individual sources for traffic 

jams or weather information. Collecting the individual results 

the combining engine runs an algorithm to compute the 

overall best matching objects. These final results have then to 

be aggregated according to each individual user‘s 

specifications and preferences. After a transformation to the 

appropriate client format (e.g. using XSLT with suitable 

stylesheets) the best answers will be returned to the user. 

 

 

Fig 5: Web information architecture  

 

The first area to address such a distributed retrieval 

problem was the area of ‗top k retrieval‘ over middleware 

environments; especially for content based retrieval of 

multimedia data these techniques have proven to be 

particularly helpful. Basically all algorithms distinguish 

between different query parts (sub queries) evaluating 

different characteristics, which often have to be retrieved from 

various subsystems or web sources. Each subsystem assesses 

a numerical score value (usually normalized to [0, 1]) to each 

object in the collection. The middleware algorithms use two 

basic kinds of accesses that can be posed: there is the iteration 

over the best results from one source (or with respect to a 

single aspect of the query) called a ‗sorted access‘ and there is 

the so-called ‗random access‘ that retrieves the score value 

with respect to one source or aspect for a certain given object. 
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 The physical implementation of these accesses 

always strongly depends on the application area and will 

usually differ from system to system. The gain of speeding up 

a single access (e.g. using a suitable index) will of course 

complement the total runtime improvement by reducing the 

overall number of accesses. Therefore minimizing the number 

of necessary object accesses and thus also the overall query 

runtimes is tantamount to build practical systems (with real-

time constraints). However, all these top k retrieval systems 

relied on a single combining function (often called ‗utility 

function‘) that is used to compensate scores between different 

parts of the query. Being worse in one aspect can be 

compensated by the object doing better in another part. 

However, the semantic meaning of these (user provided) 

combining functions is unclear and users often have to guess 

the ‗right‘ weightings for their query. The area of operations 

research and research in the field of human preferences has 

already since long criticized this lack in expressiveness. 

 A more expressive model of non-discriminating 

combination has been introduced into the database community. 

The ‗skyline‘ or ‗Pareto set‘ is a set of no dominated answers 

in the result for a query under the notion of Pareto optimality. 

The typical notion of Pareto optimality is that without 

knowing the actual database content, there can also be no 

precise a-prior knowledge about the most sensible 

optimization in each individual case (and thus something that 

would allow a user to choose weightings for a compensation 

function). The Pareto set or skyline hence contains all best 

matching object for all possible strictly monotonic 

optimization functions. An example for skyline objects with 

respect to two query parts and their scorings S1 and S2 is 

shown in figure 2. Each database object is seen as a point in 

multidimensional space characterized by its score values. For 

instance objects ox = (0.9, 0.5) and oy = (0.4, 0.9) both 

dominate all objects within a rectangular area (shaded). But ox 

and oy are not comparable, since ox dominates oy in S1 and 

oy dominates ox in S2. Thus both are part of the skyline. 

VII.CONCLUSION 

 Here we tell about the best and efficient service 

composition and some algorithms and methods to achieve this 

composition. In near feature it is help full to develop more and 

more composition of services.  

 

References 

 W.-T. Balke, U. Guntzer, and J.X. Zheng, ―Efficient 

Distributed Skylining for Web Information Systems,‖ 

Proc. Int‘l Conf. Extend- ing Database Technology 

(EDBT), 2004. 

 T. Yu, Y. Zhang, and K.-J. Lin, ―Efficient 

Algorithms for Web Services Selection with End-to-

End Qos Constraints,‖ ACM Trans. Web, vol. 1, no. 

1, article 6, 2007. 

 M. Alrifai, D. Skoutas, and T. Risse, ―Selecting 

Skyline Services for Qos-Based Web Service 

Composition,‖ Proc. 19th Int‘l Conf. World Wide 

Web (WWW)), 2010. 

 D. Papadias, Y. Tao, G. Fu, and B. Seeger. 

Progressive skyline computation in database systems. 

ACM Trans. on Database Systems, 30(1):41–82, 

2005.  

  R. Parra-Hernandez and N. J. Dimopoulos. A new 

heuristic for solving the multi choice 

multidimensional knapsack problem. IEEE Trans. on 

Systems, Man, and Cybernetics, Part A, 35(5):708–

717, 2005 

 KHAN, S. 1998. Quality adaptation in a multisession 

multimedia system: Model, algorithms and 

architecture. Ph.D. dissertation, Department of ECE, 

University of Victoria. 

 KHAN,S.,LI,K.F.,MANNING,E.G.,AND 

AKBAR,M. 2002. Solving the knapsack problem for 

adaptive multimedia systems. Studia Informatica 

Universalis 2, 1, 157 

 

International Journal of Advanced and Innovative Research (2278-7844) / # 334 / Volume 3 Issue 4

     © 2014 IJAIR. ALL RIGHTS RESERVED                                                                                  334


