
A Paper on COMPOSITE SERVICE SELECTION

J. Gowtham Kumar
 #1

, B. Sudheer Kumar
*2

, K.Narasimhulu
#3

1#
Student of MCA

,
RGM College,

Nandyala, Kurnool(Dt), Andhra Pradesh.

3*

Assistant Professor ,Dept of CSE

RGM College of Eng&Tech, Nandyal, Andhra Pradesh
1#

gowtham77599@gmail.com

3#
 narasimhulu.kolla@gmail.com

2**
Assistant Professor,

,
Dept of MBA

Vaagdevi Institute of Technology & Science, Proddatur, Andhra Pradesh
2
bskmba06@gmail.com

Abstract— Service composition is very important now

days because integrating all the related services and providing

good service it plays a role. Giving services is not important to

provide best match for the service is the important one and also

providing the functionalities like time, fee etc. We propose to

exploit the dominance relationship among service providers to

find a set of “best” possible composite services, referred to as a

composite service skyline. Here we proposed composite service

skyline to reduce the searching space instead of composing all

services for this we proposed efficient algorithms. We conduct a

comprehensive analytical and experimental study to evaluate the

effectiveness, efficiency, and scalability the composite skyline

computation approaches.

Keywords— Skyline Services, QoS Broker Architecture,

Algorithms for the Combinatorial Model, WS_ HEU

Algorithm.

I. INTRODUCTION

In composition of skyline important objective is to enable the

interoperability among different web applications and

software in different platforms. Daily number of services is

increase so finding the best one is very critical. These services

gives a challenge to the developers for service composition

means that selection of appropriate service that satisfies the

customer need as quality of web service.

 Now a day‘s business process out sourcing is

improved so they mainly focus on their core activities. In that

web users wants composition of services to achieve more

complex tasks which can‘t achieved by a single web service.

Here we use Service-oriented Architecture paradigm,

composite applications are specified as abstract processes

composed of a set of abstract services. Then at run time a best

service selected and used.

 Here we use a web application for finding the best

used car offers. The user enters the details of the car which

he/she want. Then the system returns the set of best offers

with credit and insurance offer for each car in the list. Here

the composed application works as a web service to the user.

Here the API programmatically integrated into their (user)

web applications using a Mash up tool.

Fig: 1 Service Composition

 Here some tasks like Used Cars and Credit Offers are

shown in Gray color and these services are outsourced and

integrated via web services. For these outsourced tasks,

multiple services may be available providing the required

functionality but with different QoS values. Users are

typically unaware of the involved services, and they specify

their QoS requirements in the SLA in terms of end-to-end

QoS constraints (e.g. average end-to-end response time,

minimum overall throughput, maximum total cost). The goal

of QoS-based service composition is to select one service or

service configuration for each outsourced task such that the

International Journal of Advanced and Innovative Research (2278-7844) / # 330 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 330

mailto:1#gowtham77599@gmail.com
mailto:2bskmba06@gmail.com

aggregated QoS values satisfy all the application level QoS

constraints.

II.SKYLINE SERVICES

 Here the goal is to select a set of services, one from

each service class, that maximize the overall utility, while

satisfying all the specified constraints. However, not all

services are potential candidates for the solution. The main

idea in our approach is to perform a skyline query on the

services in each class to distinguish between those services

that are potential candidates for the composition, and those

that cannot possibly be part of the final solution. The latter can

effectively be pruned to reduce the search space.

 Given a set of points in a d-dimensional space, a

skyline query selects those points that are not dominated by

any other point. A point Pi is said to dominate another point Pj,

if Pi is better than or equal to Pj in all dimensions and strictly

better in at least one dimension. Intuitively, a skyline query

selects the ―best‖ or most ―interesting‖ points with respect to

all dimensions. In this work, we define and exploit dominance

relationships between services based on their QoS attributes.

This is used to identify services in a service class that are

dominated by other services in the same class.

Fig 2: Example of skyline services

Figure 2 shows an example of skyline services of a

certain service class. Each service is described by two QoS

parameters, namely execution time and price. Hence, the

services are represented as points in the 2-dimensional space,

with the coordinates of each point corresponding to the values

of the service in these two parameters. We can observe that

the service a belongs to the skyline, because it is not

dominated by any other service, i.e. there is no other service

that offers both shorter execution time and lower price than a.

The same holds for the services b, c, d and e, which are also

on the skyline. On the other hand, service f is not contained in

the skyline, because it is dominated by the services b, c and d.

Service-Oriented Architecture (SOA) provides a

flexible framework for service composition. Using standard-

based protocols (such as SOAP and WSDL), composite

services can be constructed by integrating atomic services

developed independently. Algorithms are needed to select

service components with various QoS levels according to

some application-dependent performance requirements. We

design a broker-based architecture to facilitate the selection of

QoS-based services. The objective of service selection is to

maximize an application-specific utility function under the

end to- end QoS constraints. The problem is modeled in two

ways: the combinatorial model and the graph model. The

combinatorial model defines the problem as a

multidimensional multi-choice 0-1 knapsack problem

(MMKP). The graph model defines the problem as a multi-

constraint optimal path (MCOP) problem.

III. QoS BROKER ARCHITECTURE

 We have designed a QoS service broker called

QBroker, which acts as an external, independent broker entity

that can help users construct composite services. The goal of

Qbroker is to help users select the best services for their

composite service process before invocation. A detailed

presentation on the QBroker architecture can be found in

Figure 3.

 Process plan. An abstract process that defines a flow

of component functions and their relationships. A

process plan is designed to fulfill a user‘s request.

 Function graph. This is a functional graph which

includes all process plans that can fulfill a user‘s

International Journal of Advanced and Innovative Research (2278-7844) / # 331 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 331

request. Each node of the graph is a component

function. A start node and an end node are added to

the function graph.

 Service candidate graph. A service candidate graph is

built from a functional graph and it includes a path

for all combinations of function nodes that can be

used to fulfill the service request. The executable

composite service is created by services selection

based on a service candidate graph.

Fig 3: QoS Web service composition

IV.ALGORITHMS FOR THE COMBINATIONAL MODEL

 For a composite service that has N service classes

(S1, S2. . . SN) in a process flow plan and with m QoS

constraints, we map the service selection problem to a 0-1

multidimensional multichoice knapsack problem (MMKP).

MMKP is defined as follows. Suppose there are N object

groups, each has li (1 ≤ i ≤ N) objects. Each object has a profit

pij and requires resource rij = (r1
ij
. . . rmij). The amount of

resources available in the knapsack is R = (R1. . . Rm).

MMKP is to select exactly one object from each object group

to be placed in the knapsack so that the total profit is

maximized while the total resources used are less than the

resources available.

 The QoS service selection problem is to select one

service candidate from each service class to construct a

composite service that meets a user‘s QoS constraints and

maximizes the total utility. The QoS service selection problem

is mapped to MMKP as follows.

 Each service class is mapped to an object group in

MMKP.

 Each atomic service in a service class is mapped to

an object in a group in MMKP

 The QoS attributes of each candidate are mapped to

the resources required by the object in MMKP.

 The utility a candidate produces is mapped to the

profit of the object.

 A user‘s QoS constraints are considered as the

resources available in the knapsack.

V.WS_ HEU ALGORITHM

The computation time for BBLP grows exponentially

with the size of the problem. This may not be acceptable for

Qbrokers that need to make runtime decisions. Heuristic

algorithms may be useful to find feasible solutions in

polynomial time. We use a heuristic algorithm WS HEU to

find solutions for MMKP. Figure4 shows the flow of the WS_

HEU algorithm and the individual functions (F1 to F6) used in

Figure4. The algorithm has three main steps.

(1) Find an initial feasible solution. For each service class Si,

WS_ HEU selects a service ρi that has minj {maxα{ qα

ij/Qαc }} in the class. It then checks the feasibility of the

initial solution. If the solution is infeasible, the algorithm

iteratively improves the solution by replacing the service ρ
’
i

with the largest saving of aggregated QoS among all service

classes. The service replacement continues until a feasible

solution is found (or else the algorithm fails).

(2) Improve the solution by feasible upgrades. Among all

classes, WS _HEU finds service ρ‘i to replace ρ’i for Si to get

a higher utility without violating the constraint requirements.

The service replacement criterion is based on. If no such

International Journal of Advanced and Innovative Research (2278-7844) / # 332 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 332

service can be found, WS_HEU picks the one that maximizes

pij.

(3) Improve the solution by infeasible upgrades followed by

downgrades. Performing only feasible upgrades may reach a

local optimal in the search space. To achieve the global

optimal, WS_HEU further improves the solution by using F5

to select the service that maximizes p
‘
ij. This replacement

makes the solution infeasible.

Fig 4: Algorithm structure for WS_ HEU

VI.WEB INFORMATION SYSTEM ARCHITECTURE

AND RELATED WORK

 Modern Web information systems feature

architecture like the one roughly sketched in figure 1. Using a

(mobile) client device the user poses a query. Running on an

application/Web server this query may be enriched with

information about a user (e.g. taken from stored profiles) and

will be posed to a set of Internet sources. Depending on the

nature of the query different sources can be involved in

different parts of the query, e.g. individual sources for traffic

jams or weather information. Collecting the individual results

the combining engine runs an algorithm to compute the

overall best matching objects. These final results have then to

be aggregated according to each individual user‘s

specifications and preferences. After a transformation to the

appropriate client format (e.g. using XSLT with suitable

stylesheets) the best answers will be returned to the user.

Fig 5: Web information architecture

The first area to address such a distributed retrieval

problem was the area of ‗top k retrieval‘ over middleware

environments; especially for content based retrieval of

multimedia data these techniques have proven to be

particularly helpful. Basically all algorithms distinguish

between different query parts (sub queries) evaluating

different characteristics, which often have to be retrieved from

various subsystems or web sources. Each subsystem assesses

a numerical score value (usually normalized to [0, 1]) to each

object in the collection. The middleware algorithms use two

basic kinds of accesses that can be posed: there is the iteration

over the best results from one source (or with respect to a

single aspect of the query) called a ‗sorted access‘ and there is

the so-called ‗random access‘ that retrieves the score value

with respect to one source or aspect for a certain given object.

International Journal of Advanced and Innovative Research (2278-7844) / # 333 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 333

 The physical implementation of these accesses

always strongly depends on the application area and will

usually differ from system to system. The gain of speeding up

a single access (e.g. using a suitable index) will of course

complement the total runtime improvement by reducing the

overall number of accesses. Therefore minimizing the number

of necessary object accesses and thus also the overall query

runtimes is tantamount to build practical systems (with real-

time constraints). However, all these top k retrieval systems

relied on a single combining function (often called ‗utility

function‘) that is used to compensate scores between different

parts of the query. Being worse in one aspect can be

compensated by the object doing better in another part.

However, the semantic meaning of these (user provided)

combining functions is unclear and users often have to guess

the ‗right‘ weightings for their query. The area of operations

research and research in the field of human preferences has

already since long criticized this lack in expressiveness.

 A more expressive model of non-discriminating

combination has been introduced into the database community.

The ‗skyline‘ or ‗Pareto set‘ is a set of no dominated answers

in the result for a query under the notion of Pareto optimality.

The typical notion of Pareto optimality is that without

knowing the actual database content, there can also be no

precise a-prior knowledge about the most sensible

optimization in each individual case (and thus something that

would allow a user to choose weightings for a compensation

function). The Pareto set or skyline hence contains all best

matching object for all possible strictly monotonic

optimization functions. An example for skyline objects with

respect to two query parts and their scorings S1 and S2 is

shown in figure 2. Each database object is seen as a point in

multidimensional space characterized by its score values. For

instance objects ox = (0.9, 0.5) and oy = (0.4, 0.9) both

dominate all objects within a rectangular area (shaded). But ox

and oy are not comparable, since ox dominates oy in S1 and

oy dominates ox in S2. Thus both are part of the skyline.

VII.CONCLUSION

 Here we tell about the best and efficient service

composition and some algorithms and methods to achieve this

composition. In near feature it is help full to develop more and

more composition of services.

References

 W.-T. Balke, U. Guntzer, and J.X. Zheng, ―Efficient

Distributed Skylining for Web Information Systems,‖

Proc. Int‘l Conf. Extend- ing Database Technology

(EDBT), 2004.

 T. Yu, Y. Zhang, and K.-J. Lin, ―Efficient

Algorithms for Web Services Selection with End-to-

End Qos Constraints,‖ ACM Trans. Web, vol. 1, no.

1, article 6, 2007.

 M. Alrifai, D. Skoutas, and T. Risse, ―Selecting

Skyline Services for Qos-Based Web Service

Composition,‖ Proc. 19th Int‘l Conf. World Wide

Web (WWW)), 2010.

 D. Papadias, Y. Tao, G. Fu, and B. Seeger.

Progressive skyline computation in database systems.

ACM Trans. on Database Systems, 30(1):41–82,

2005.

 R. Parra-Hernandez and N. J. Dimopoulos. A new

heuristic for solving the multi choice

multidimensional knapsack problem. IEEE Trans. on

Systems, Man, and Cybernetics, Part A, 35(5):708–

717, 2005

 KHAN, S. 1998. Quality adaptation in a multisession

multimedia system: Model, algorithms and

architecture. Ph.D. dissertation, Department of ECE,

University of Victoria.

 KHAN,S.,LI,K.F.,MANNING,E.G.,AND

AKBAR,M. 2002. Solving the knapsack problem for

adaptive multimedia systems. Studia Informatica

Universalis 2, 1, 157

International Journal of Advanced and Innovative Research (2278-7844) / # 334 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 334

