
A Systematic Study of Test Case Design in Software

Testing
A.Nirmal Kumar

#1
, Dr.B.G.Geetha

*2

#
 Assistant Professor, Department of Computer Science and Engineering, Christian College of Engineering and Technology,

Dindigul, Tamilnadu - 624619, India.
1
sa.nirmalkumar@gmail.com

* Professor & Head, Department of Computer Science and Engineering , K S Rangasamy College of Technology,

Thiruchengode, Tamilnadu - 637215, India.

Abstract— In this information era, the softwares are very

important in our daily life. This paper presents about how the

softwares were made with high quality. The software

development life cycle includes various phases, but in which only

the software testing can ensure the software quality. So the

importance should be given to the designing of test cases which is

one of the most important steps in Test Life Cycle. In this

research, how the test life cycle should be included with Software

Development Life Cycle. The various designing techniques of test

cases in software testing are also explained.

Keywords— Software Testing, Test Case, Unit Testing.

I. INTRODUCTION

The software engineering consists of various phases like

requirement analysis, designing the low level and high level

documents, programming, testing, implementation and

maintenance. The requirements of the project will be collected

from the client. From these requirements, the low level design

and high level design documents are prepared. The developers

will program for that particular software project. Then the

testers will check the quality of the software and ensures that

the developed software will meet the client or users

requirements. This paper explains about the detailed and

systematic study of the test case design in software testing.

II. SOFTWARE TESTING

Due to the demand of high quality software, software

developers and testers should be well – educated and trained.

Software Testing is the process used for revealing the defects

in software. Testing is the group of procedures carried out to

evaluate some aspect of a piece of software. The participants

in the testing are software customer, software user, software

developer, software tester, etc.

A. Software Testing principles

Software testing principles are guiding the testers, how to

test the software system and provide rules of conduct[1].

Testing is the process of exercising a software component

using a selected set of test cases, with the intent of revealing

defects and evaluating quality. The test results should be

inspected carefully. Test case must contain the expected

output and result. The test cases should be developed for both

valid and invalid input conditions. Test must be repeatable and

reusable. Testing should be planned. The testing activities

should be integrated with software life cycle.

B. Levels of Testing

In unit testing, the single component is tested. the main

goal is to detect the functional and structural defects in the

software unit. In integration testing, several components are

tested as a group and it is performed to test the component

interaction. In system testing, the system as a whole is tested

to evaluate the attributes such as usability, reliability and

performance and also to check the specifications or

requirements. In user acceptance testing, the software

organization must show that the software meets all the users

requirements.

III. TEST LIFE CYCLE

The test life cycle includes various phases. A tester requires

extensive programming experience.

A. Test planning

The document that defines the overall testing approach is

called Test Plan. It contains test objective, test strategy, test

risk analysis, test schedule and resources, roles and

responsibilities, communication approaches, test environment

automated test tools.

B. Test case design

Test case design is the process of selecting the set of input

data and then executes the software with the input data under

a particular set of conditions [2]. Test case designing contains

the various steps like test case id, test case description, test

case procedure, test inputs or test data and expected results[5].

C. Test execution

In test execution, the actual result is compared with the

expected result. The process of executing the test cases is

called test execution [4].

International Journal of Advanced and Innovative Research (2278-7844) / # 24 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 24

D. Test log preparation

After the test execution, the pass or fail information of test

cases will be kept in Test Log.

E. Defect tracking

All the failed defect executions or results will come under

the defect tracking. It contains defect id, test case id, defect

description, defect recovery procedure, defect status, defect

severity, defect priority, defect identified by, etc.

F. Test report generation

Finally the test summary report will be prepared and

recorded the entire testing activities.

Fig 1: TLC with SDLC

IV. RELATED WORKS

The software testing can be classified into two types

namely manual testing and automated testing [3].

Roberto et al. in the year 2010 discovered an architecture

based approach for software reliability and testing time

allocation [6].

Ammar Masood et al.during the year 2009 proposed their

framework for scalable and effective test generation for role-

based access control systems [7].

Sebastian et al. in 2009 developed an approach that is used

for replaying the differential unit test cases [8].

Myra et al. in 2008 constructed an interaction test suites for

highly configurable system by greedy approach [9].

Matthew et al. in 2008 evaluated the test suites and

adequacy criteria for distributed systems [10].

Ingo et al. in 2007 describes a general and tool independent

architecture for code generators [11].

Wes Masri et al. in 2007 reported the results of an

empirical study of several test case filtering techniques [12].

Zheng et al. in 2007 proposed several search algorithms for

regression test case prioritization [13].

V. AUTOMATION FRAMEWORK

Test automation framework is designed in such a way that

all the basic screens are automated completely. The data to be

fed in, for the scripts, is externalized in a spread sheet. The

applications under test are completely analysed to create this

framework. The application is defined with the static and

dynamic screens based on the business requirements.

Fig 2: Automation Framework

 Static screens are the pop ups, pre defined

error/warning messages etc., that does not

change during run time.

 Dynamic screens change during run time

depending on user inputs or application process.

The automation framework fundamentally follows the

hybrid approach, which offers flexibility to the framework .

Exact Requirements

Tester

Low Level

Design

High Level

Design

Software Requirement

Specification

Developer

Test Plan Management

Plan

Test

Case
Coding

Test

Execution

Test Log

Preparation

Product Defect

Track

Application under Test

Software Automation Tool

Script

Function Library,

Reusable Actions

Test Results

External Test Results, Log

International Journal of Advanced and Innovative Research (2278-7844) / # 25 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 25

VI.RESULTS

The following results shows that the generation of test cases in Test Case generator

Fig 3: Test Case Generation

CONCLUSION

The criteria for test completion are that all the planned

test that were developed have been executed and passed.

Also check that all specified coverage goals have been met.

Then the detection of a specific number of defects has been

accomplished. Thus the testing activity should be

integrated with software development life cycle.

ACKNOWLEDGMENT

Authors are very thankful to the Department of

Computer Science and Engineering, KSR College of

Technology, Tiruchengode, Tamilnadu, India for every

support to carry out this research work.

International Journal of Advanced and Innovative Research (2278-7844) / # 26 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 26

REFERENCES

1. Poulding, S.; Clark, J.A., “Efficient Software

Verification:Statistical Testing Using Automated

Search”, IEEE Transactions on Software

Engineering, Volume: 36 , Issue: 6 , Page(s): 763 –

777, 2010.

2. Ilene Burnstein, “Practical Software Testing”,

Springer International Edition , 2010.

3. ManjitKaur, “Comparative Study of Automated

Testing Tools”, International Journal of Computer

Applications (0975 – 8887), Volume 24– No.1, June

2011.

4. Mesbah, A.; van Deursen, A.; Roest, D., “Invariant-

Based Automatic Testing of Modern Web

Applications”, IEEE Transactions on Software

Engineering, Volume: 38 , Issue: 1 , Page(s): 35 – 53,

2012.

5. Hong Mei; Dan Hao; Lingming Zhang; Lu Zhang; Ji

Zhou; Rothermel, G., “A Static Approach to

Prioritizing JUnit Test Cases”, IEEE Transactions on

Software Engineering, Volume: 38 , Issue: 6 , Page(s):

1258 – 1275, 2012.

6. Roberto Pietrantuo, Stefano Russo, Kishore Trivedi,

“Software Reliability and Testing Time Allocation: An

Architecture-Based Approach”, IEEE Transactions on

Software Engineering, Volume: 36 , Issue: 3 , Page(s):

323 – 337, 2010.

7. Ammar Masood, Rafae Bhatti, Arif Ghafoor, Aditya

Mathur, “Scalable and effective Test generation for

role based access control systems”, IEEE Transactions

on Software Engineering, Volume: 35 , Issue: 5 ,

Page(s): 654 – 668, 2009.

8. Sebastian Elbaum, Hui Nee Chin, Matthew B.

Dwyer, Matthew Jorde, “Carving and Replaying

Differential Unit Test Cases from System Test Cases”,

IEEE Transactions on Software Engineering, Volume:

35 , Issue: 1 , Page(s): 29 – 45, 2009.

9. Myra B. Cohen, Matthew B. Dwyer, Jiangfan Shi,

“Constructing Interaction Test Suites for Highly-

Configurable Systems in the Presence of Constraints:

A Greedy Approach”, IEEE Transactions on

Software Engineering, Volume: 34 , Issue: 5 , Page(s):

633 – 650, 2008.

10. Matthew J. Rutherford, Antonio Carzaniga,

Alexander L. Wolf, “Evaluating Test Suites and

Adequacy CriteriaUsing Simulation-Based Models of

Distributed Systems”, IEEE Transactions on Software

Engineering, Volume: 34 , Issue: 4 , Page(s): 652 –

470, 2008.

11. Ingo Sturmer, Mirko Conrad, Heiko Do¨ rr, and

Peter Pepper, “Systematic Testing of Model-Based

CodeGenerators”, IEEE Transactions on Software

Engineering, Volume: 33 , Issue: 9 , Page(s): 622 –

634, 2007.

12. Wes Masri, Andy Podgurski, David Leon, “An

Empirical Study of Test CaseFiltering Techniques

Based on Exercising Information Flows”, IEEE

Transactions on Software Engineering, Volume: 33 ,

Issue: 7 , Page(s): 454 – 477, 2007.

13. Zheng Li, Mark Harman, and Robert M. Hierons,

“Search Algorithms for Regression Test Case

Prioritization”, IEEE Transactions on Software

Engineering, Volume: 33 , Issue: 4 , Page(s): 225 –

237, 2007.

International Journal of Advanced and Innovative Research (2278-7844) / # 27 / Volume 3 Issue 4

 © 2014 IJAIR. ALL RIGHTS RESERVED 27

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5644729
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6141067
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6363456

