
R. Karthick et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 280

Prevention of Pollution Attacks and DoS Attack in Network
Coding Using Node Identity Verification Scheme

R. Karthick1, K. Chandraprabha2 and B.G.Geetha3

1PG Scholar, K.S.Rangasamy College of Technology, Tiruchengode, India.
Email: Karthickrak@gmail.com, Mobile No: +91 9600459667.

2Assistant professor, K S Rangasamy College of Technology, Tiruchengode, India.
Email: knaprabha@gmail.com

3Head of the Department, K S Rangasamy College of Technology, Tiruchengode, India.
Email: hodcse@ksrct.ac.in

Abstract
In recent years, the information maintenance

is very difficult. Some attacks may occur on the local
system or network based systems. Without security
measures and controls in place, our data might be
subjected to an attack. Now a day’s several attacks are
evolved. The most common method of attack involves
sending enormous amount of request to server or
website and server will be unable to handle the requests
and website will be offline for few days or it may take
years depends upon the attack. Intra-session network
coding is inherently vulnerable to pollution attacks. In
this paper, first, we introduce a novel homomorphic
MAC scheme called SpaceMac, which allows an
intermediate node to verify whether received packets
belong to a specific subspace, even if the subspace is
expanding over time. Then, we use SpaceMac as a
building block to design a cooperative scheme that
provides complete defense against pollution attacks: (i)
it can detect polluted packets early at intermediate
nodes, and (ii) it can identify the exact location of all,
even colluding, attackers, thus making it possible to
eliminate them. Our scheme is cooperative: parents and
children of any node cooperate to detect any corrupted
packets sent by the node, and nodes in the network
cooperate with a central controller to identify the exact
location of all attackers. We Implement SpaceMac in
both C/C++ and Java as a library, which we make
publicly available. Our evaluation on both a PC and an
Android device shows that the SpaceMac algorithms
can becomputed quickly and efficiently and that our
defense scheme has low computation overhead and
significantly lower communication overhead than those
of state-of-the-art schemes.
Keywords: Communication networks, network coding,
cooperative systems, communication system security,
cryptographic protocols, message authentication,
pollution attacks.

I.INTRODUCTION

The Network coding paradigm advocates that
intermediate nodes in a network should mix incoming

packets instead of simply forwarding them, and
receivers should decode to obtain the original
packets. In this work, we consider networks that
employ intra-session linear network coding. An
inherent weakness of network coding is that it is
particularly vulnerable to pollution attacks. Malicious
nodes can inject corrupted packets into a network,
which get combined and forwarded by downstream
nodes, thus causing a large number of corrupted
packets propagating in the network. This wastes
resources and eventually prevents the decoding of the
original packets at the receivers. Thedetrimental
effect of pollution attacks has been shown through
both theoretical analysis as well as experimentation.
Proposed defense mechanisms against pollution
attacks can be classified into three categories: error
correction, attack detection, and locating attackers. In
this paper, we are interested in the latter two
approaches. In particular, we set out to design a
complete defense system that can not only detect
polluted packets in a timely manner but can also
accurately locate and eliminate all, even colluding,
attackers. This allows for dealing with an attack early
and at its root. To the best of our knowledge, none of
the existing defense mechanisms can provide this
level of protection. To this end, we first propose a
novel homomorphic message authentication code
(MAC) scheme for expanding spaces, called
SpaceMac. SpaceMac allows a node to verify if its
received packets belong to a specific subspace, even
if the subspace is expanding over time. Then, we
design a novel cooperative defense system which
includes both a detection scheme and a locating
scheme, using SpaceMac as their building block. Our
detection scheme relies on SpaceMac to force
intermediate nodes to send only linear combinations
of packets that they actually receive from their
parents. Parents and children of any intermediate
node cooperate to detect corrupted packets sent by
the intermediate node. Our locating scheme uses



R. Karthick et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 281

SpaceMac to force nodes in the network to truthfully
cooperate with a central controller so that the
controller can exactly locate the pollution attackers.
Finally, by leveraging multiple generations, our
scheme is able to deal with an arbitrary number of
colluding attackers. The main contributions of this
paper are the following:
The design and implementation of SpaceMac:

We describe the construction of SpaceMac
and provide a formal security proof for the
construction. We implement SpaceMac in both
C/C++ and Java as a ready-to-use library, which we
make available online. Our Java implementation is
compatible with the current Android OS (Android 2.2
Froyo).
The design of a novel cooperative defense system
based on SpaceMac:

To the best of our knowledge, our defense
system is the first that meets all of the following
requirements:
(i) it can provide timely in-network detection, (ii) it
can exactly locate all pollution attackers, (iii) it can
deal with an arbitrary number of colluding attackers,
and (iv) it has low communication and computation
overhead. We have extensively evaluated the
computation overhead of SpaceMac’s algorithms and
the computation and communication overhead of our
defense system, through implementation in both
C/C++ and Java, and on both a PC and an Android
device. Our evaluation results show that for a
practical parameter setting, all three algorithms of
SpaceMac (Mac, Combine, and Verify) can be
computed efficiently (requiring 64 KB of memory in
C/C++ or 128 KB in Java) and also quickly on a PC
(<28 μs in C/C++) and even on a smartphone (<2.3
ms). Evaluation results also demonstrate that for the
same practical parameter setting, when implementing
our defense system, nodes in the network introduce
very small computational delay per packet (in the
order of sub-millisecond on the PC and millisecond
on the smart phone). Moreover, our defense system
introducesvery low communication overhead per
packet (2%), significantly less than those of state-of-
the-art schemes.

II.RELATED WORK

Attack Detection
The scheme in HomMac, relies on cover free

set systems for pre-distributing keys to provide in-
network detection, and thus is only collusion
resistant. Furthermore, it is susceptible to tag-
pollution attacks, where malicious nodes tamper with
some subset of tags of a packet. The scheme is

collusion resistant as well as resistant against tag-
pollution attacks; however, it requires time
synchronization among nodes in the network. Both
schemes have low computation overhead since they
only require simple addition and multiplication
operations at intermediate nodes for both combining
MAC tags and tag verification. Our SpaceMac
scheme is inspired by and generalizes HomMac, with
the difference that SpaceMac allows intermediate
nodes to sign subspaces that expand over time, while
HomMac allows to sign only fixed subspaces. In this
paper, (i) we provide a much more efficient
construction of SpaceMac and (ii) we show that the
ability to authenticate expanding subspaces can also
be utilized to provide in-network detection.
Locating Attackers

Early work proposed that the subspace
properties of randomized network coding to locate
pollution attackers. The main observation was that
packets sent by a node have to belong to the space
spanned by source packets and also the space
spanned by the packets the node receives from its
parents. Using this observation, in a general network
topology having a single attacker, the authors can
locate the attacker with an uncertainty of at most two
nodes; when there are multiple attackers. The
uncertainty is within a set of nodes including the
attackers and their parents and children. Our scheme
builds on and significantly improves this work: we
make it possible to pinpoint the exact location of the
attackers, even in the case where there are multiple
colluding attackers, thereby allowing for the removal
of all attackers.

Wang et al. introduced a light-weight non-
repudiation protocol ensuring that (i) a malicious
node that injected a polluted packet cannot deny its
behavior and (ii) a malicious node cannot disparage
any innocent node. They built a defense scheme
based on the protocol to identify malicious nodes.
Moreover, because the success of the locating
scheme relies on the successful reception of the
checksums at every node, this scheme is vulnerable
to colluding attackers. The scheme is also unable to
locate all the attackers. We use the non-repudiation
protocol as a building block in our locating scheme.
However, our scheme is able to locate all, even
colluding attackers, without the need of checksums.
Design Goals

With this threat model in mind, we set out to
design adefense system with the following
capabilities and properties:
In-network Detection

Any intermediate node in the network
should be able to detect the attack as soon as its



R. Karthick et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 282

malicious parent sends it a corrupted packet. This
prevents corrupted packets from polluting the
downstream edges.

Exact Locating
The location of all pollution attackers should

be precisely identified. This allows for the removalof
the attackers from the network.
Arbitrary Collusion Resistance

The defense system should be able to detect
attacks and remove the attackers from the network
even when they collude.
Low Overhead

The system should require a small amountof
computing from intermediate nodes and should not
introduce a large amount of traffic, e.g., bandwidth of
the MAC tags, to the network. To achieve the above
goals, we design a defense system which consists of
two main components: the detection scheme and the
locating scheme. The detection scheme provides in-
network detection while the locating scheme provides
exact locating. Both the detection scheme and
locating scheme impose low computation as well as
low communication overhead. The defense system as
a whole is arbitrarily collusion resistant.

III. KEY OBSERVATIONS AND APPROACH
OVERVIEW

In-Network Detection
The detection works by first establishing

shared secret MAC keys between the source and the
intermediate nodes.Then, using these secret keys, the
source node can sign the fixed source space and the
intermediate nodes can verify if their received
packets belong to the source space. Our detection
scheme leverages a different observation: A packet
sent by an intermediate node must belong to the
space spanned by all packets that it received from its
parents. A packet sent by C must belong to the space
spannedby the packets it received from its parents: A
and B; otherwise C must be polluting the network.
Exact Locating

Leveraging the cooperation among nodes in
the network anda central controller, when there is a
single pollution attacker, its locationcan be narrowed
down to a set of at most two nodes. This is done by
analyzing the polluted edges identified based onthe
incoming subspaces reported by all nodes to the
central controller. When there are multiple attackers
in a general network topology, the number of

suspected nodes increases to include the attackers and
their parents and children.

Our key observation here is that the
uncertainty aboutthe location of the attackers
originates from the fact that the attackers can lie
about their received spaces. Therefore, by ensuring
that all nodes in the network cannot lie about their
received spaces, we can exactly locate the attackers.

IV. THE CONSTRUCTION OF SPACEMAC

The key difference between SpaceMac and
HomMac is the security property that SpaceMac
brings: SpaceMac allows for signing spaces that
expand over time, while HomMac only allows for
signing fixed spaces. This is directly reflected in the
difference between the security games of SpaceMac
and HomMac, and consequently in the difference
between the constructions of the two schemes.

A (q, n,m) homomorphic MAC scheme is
defined by three probabilistic, polynomial-time
algorithms: Mac, Combine, and Verify. The Mac
algorithm generates a tag for a given vector; the
Combine algorithm computes a tag for a linear
combination of some given vectors and a tag is a
valid tag of a given vector.

 Mac(k, id, y):
– Input: a secret key k, the identifier id of the

source space and a vector y .
– Output: tag t for y.

 Combine ((y1, t1, α1),…., (yp, tp, αp)):
– Input: p vectors y1,….,yp, their tags t1,…, tp

under key k and their coefficients.
– Output: tag t for vector y = αi yi.

 Verify(k, id, y, t):
– Input: a secret key k, the identifier id of the

source space, a vector y and its tag t
– Output: 0 (reject) or 1 (accept)

V. DETECTION SCHEME

For ease of presentation, we describe the
detection scheme within the scope of a single
generation, i.e., considering a single source space id.
Assumptions

We assume that there is a controller who knows
the complete topology of the graph. The controller
could be the source itself. We further assume that
each nodeN shares with the controller a pair of secret
keys (k1N, k2N). These keys can be established with
a public key infrastructure.
Bootstrapping



R. Karthick et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 283

First, for every intermediate node N, the
controller determines the key, which is secret to N
itself and is used by the parents and children of N
when using SpaceMac. Each node can serve as either
a parent or a child. Hence, each node, depending on
its position in the network must know a different set
of keys to participate in the detection scheme. The
controller then sends to each node N a bootstrapping
packet consisting of the set of keys that are necessary
for it to participate in the detection scheme.

Sending and Coding
Before sending out each source packet, vi,

the source S calculates an end-to-end tag, tk using the
Mac algorithm of SpaceMac with key k and tag tk. S
then attaches this tag to every source packet and
sends wi. The packets traversing the network are
linear combinations of wi’s instead of vi’s. P needs to
calculate a helper tag which helps the children of N
to detect corrupted packets sent by N. In particular,
before sending y to N, P needs to calculate a MAC
tag.
Receiving and Verification

When a node N receives from its parent P a
packet P and the probability that P can forge a valid
tag tk, when y is outside of its received space. As
soon as N receives a corrupted packet from P, with
high probability, N is able to detect the attack
immediately. If N is a receiver, it further verifies the
end-to-end tag using key k. Since none of the
malicious intermediate node knows k∗, if w is outside
of the source space. This second level of verification
provides a detection mechanism in the presence of
colluding adversaries.

VI. LOCATING SCHEME

Reporting
For each received subspace P, from a parent

P, node N may report a randomly chosen packet yr,
of the space instead of the space itself; and by
checking if yr, the controller can determine to
identify the polluted edges.
Using SpaceMac

We use SpaceMac to prevent nodes from
lying about their received spaces as follows.
WheneverP sends a vector yi to N, it generates a tag,
tyi, of yi using the Mac algorithm with a secret key
shared by P andthe controller. Then, when N reports
yr, if yr is a linear combination of vectors that it
received from P, yi’s, then N can generate a valid tag
of yr by using the Combine algorithmon the tags of
yi’s that it received.

Non-Repudiation Transmission Protocol
SpaceMac forces nodes to report only

received subspaces are computationally difficult to
forge valid tags otherwise. However, it does not
prevent a malicious node from sendinginvalid tags to
its children to prevent the children from reporting
polluted spaces.
Locating the Attackers

To locate the attackers, we proceed by
partitioning the edges into two set: the set of polluted
edges, Ep, and non-polluted edges, Es, then analyzing
the nodes with respect to the identified Ep and Es.
Preventing nodes from lying, our scheme produces an
unambiguous partitioning of Ep and Es, which helps
to precisely locate the attacker. In particular, the
adversary isalways the node that has no incoming
edge belonging to Ep but has at least one outgoing
edge belonging to Ep. Due to limited space, we refer
the reader to a detailed description of the locating
scheme and (ii) adetailed analysis of the security of
the defense system, wherewe discuss (ii-a) multiple
colluding adversaries, (ii-b) tag pollution attacks, (ii-
c) denial of service attacks, as well as (ii-d) malicious
receiver scenarios.

VII. PERFORMANCE EVALUATION

Detection scheme
For the online overhead per packet, i.e., the

additional bandwidth required per packet sent in the
network, our detection scheme requires each packet
to carrythree SpaceMac tags: an end-to-end tag, a
helper tag, and averification tag. Our communication
overhead is fixed, regardless of the network topology.
Locating Scheme

For each packet received, each nodeverifies δ
tags using the Verify algorithm. For each packet
itsends out, each node needs to compute λ tags using
the Mac algorithm. The total overhead is therefore (δ
+ λ) (n + 2m) number of multiplications.
Combined Scheme

The overall computation overhead per
packet per node of our combined scheme is (3 + δ
+λ)(n + 2m) + w. We implement multiplication in
F28 by creating anoffline multiplication table, storing
all 216 products of pairs of elements in this field. The
table only occupies about 64KB in C/C++ and 128
KB in Java. The numbers reported areaveraged over
106 multiplications. Our PC has a quad-core 2.8 Ghz
processor and 32 GB of RAM, and our Android
device isa Samsung Captivate with a single 1 Ghz
processor and 512MB RAM. The computational
latency of our detection scheme is in the same order
of magnitude as the other two detection schemes. We



R. Karthick et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 284

note, however, that our detection scheme achieves all
of the desired properties: in-network detection,
arbitrary collusion resistance and tag-pollution
resistance without the need of time synchronization.
The latency of our combined detection-locating
scheme is about 10 times higher than that of our
detection scheme. This is the trade-off when one
wants to locate and eliminate all attackers.

VIII. CONCLUSION

In this work, we introduce a novel
homomorphic MAC scheme for expanding spaces,
called SpaceMac, and we propose a cooperative
defense system against pollution attacks built on
SpaceMac. To the best of our knowledge, our system
is the first that can provide both in-network detection
and exact locating of the attackers. In addition, our
system is collusion resistant and tag-pollution
resistant. Our evaluation results using real
implementation in C/C++ and Java on multiple
devices demonstrate that our defense system incurs
both low communication and low computation
overhead. We implemented SpaceMac as a ready-to-
use library and make it available online.

REFERENCES

[1] Sidharth Jaggi, Michael Langberg, Tracey Ho (2003)
“Correction of Adversarial Errors in Networks”, IEEE
INTERNATIONAL SYMPOSIUM ON INFORMATION
THEORY (ISIT), PAGE 368, YOKOHAMA.

[2] Ralf Koette and Muriel Médard (2009),” An Algebraic
Approach to Network Coding”, Science Direct on Advances in
Control Engineering and Information Science.

[3] Anh Le and Athina Markopoulou (2009),” Locating Byzantine
Attackers in Intra-Session Network Coding using SpaceMac”,

IEEE TRANSACTIONS ON INFORMATION FORENSICS
AND SECURITY, VOL. 4.

[4] Mahdi Jafarisiavoshani, Christina Fragouli, Suhas Diggavi
(2006), “Subspace Properties of Randomized Network
Coding”, IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING, VOL. 3.

[5] Shuo-Yen Robert Li, Raymond W. Yeung and Ning Cai
(2004),” Linear Network Coding” , IEEE TRANSACTIONS
ON INFORMATION THEORY, VOL. 49, NO. 2.

[6] Dan Boneh, David Freeman, Jonathan Katz and Brent Waters
(2005),” Signing a Linear Subspace: Signature Schemes for
Network Coding”, IEEE Trans. on Information Theory 54,
2596–2603.

[7] Shweta Agrawal1 and Dan Boneh (2007), “Homomorphic
MACs: MAC-based Integrity for Network Coding”,
IEEE/ACM Transactions on Networking, 11:782{795.

[8] Ning Cai and Raymond W. Yeung,” Secure Network Coding
on a Wiretap Network” IEEE TRANSACTIONS ON

INFORMATION THEORY, VOL. 46, NO. 4, JULY 2008.
[9] Jing Dong, Reza Curtmola and Cristina Nita-Rotaru (2005)

“Practical Defenses Against Pollution Attacks in Intra-Flow
Network Coding for Wireless Mesh Networks” Science
Direct on the journal of systems and software, 75(2005)63.

[10] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung,
“Network information flow,” IEEE TRANSACTIONS ON
INFORMATION THEORY, vol. 46, no. 4, pp. 1204–1216,
2000.

[11] D. Silva, F. R. Kschischang, and R. Koetter, “A rank-metric
approach to error control in random network coding,” in IEEE
INFORMATION THEORY WORKSHOP, 2007.

[12] J. S. Plank, “Fast galois field arithmetic library in C/C++,”
University of Tennessee, Tech. Rep. UT-CS-07-593, March
2007.


