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Abstract— The advancein wireless sensor technologies has resulted in many new applications for military and/or civilian purposes. Many
cases of these applications rely on the information of personal locations, for example, surveillance and location systems. These location-
dependent systems are realized by using either identity sensors or counting sensors. For identity sensors, for example, bat and cricket,
each individual hasto carry a signal sender/ receiver unit with a globally unique identifier. With identity sensors, the system can pinpoint
the exact location of each monitored person. On the other hand, counting sensors, for example, photoelectric sensors, and thermal
sensor s, are deployed to report the number of personslocated in their sensing areasto a server.

Index Terms—L ocation privacy, wireless sensor networks, location monitoring system, aggregate query processing, spatial histogram

1 INTRODUCTION

The advance in wireless sensor technologies has resulted in many
new applications for military and/or civilian purposes. Many cases of
these applications rely on the information of personal locations, for
example, surveil-lance and location systems. These location-
dependent systems are realized by using either identity sensors or
counting sensors. For identity sensors, for example, Bat [1] and
Cricket [2], each individual has to carry asigna sender/receiver unit
with a globally unique identi er. With identity sensors, the system
can pinpoint the exact location of each monitored person. On the
other hand, counting sensors, for example, photoelectric sensors [3],
[4], and thermal sensors [5], are deployed to report the number of
persons located in their sensing areas to a server.

Figure 1 gives an example of a privacy breach in a location
monitoring system with counting sensors. There are 11 counting
sensor nodes installed in nine rooms Rj to Rg, and two hallways Cq

and Cy (Figure 1a). The non-zero number of persons detected by
each sensor node is depicted as a number in parentheses. Figures 1b
and 1c
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Fig. 1: A location monitoring system using counting sensors.
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give the numbers reported by the same set of sensor nodes at two
consecutive time instances tj+1 and tj+p, respectively. If R3 is
Alice's of ce room, an adversary knows that Alice isin room R3
at time t; . Then the adversary knows that Alice left R3 at time
tj+1 and went to Co by knowing the number of persons detected
by the sensor nodes in Rz and C» . Likewise, the adversary can

infer that Alice left Co at time tj;» and went to R7. Such
knowledge leakage may lead to several privacy threats. For
example, knowing that a person has visited certain clinical rooms
may lead to knowing the her health records. Also, knowing that a
person has visited a certain bar or restaurant in a mall building
may reveal con dential personal information.

This paper proposes a privacy-preserving location monitoring system
for wireless sensor networks to pro-vide monitoring services. Our
system relies on the well established k-anonymity privacy concept,
which requires each person is indistinguishable among k persons. In
our system, each sensor node blurs its sensing area into a cloaked
area, in which at least k persons are residing. Each sensor node
reports only aggregate location information, which is in a form of a
cloaked area, A, along with the number of persons, N, located in A,
where N k, to the server. It is important to note that the value of k
achieves a trade-off between the strictness of privacy protection and
the quality of monitoring services. A smaller k indi-cates less privacy
protection, because a smaller cloaked area will be reported from the
sensor node; hence better monitoring services. However, a larger k
results in a larger cloaked area, which will reduce the quality of
monitoring services, but it provides better privacy pro-tection. Our
system can avoid the privacy leakage in the example given in Figure
1 by providing low quality location monitoring services for small
areas that the adversary could use to track users, while providing
high quality services for larger areas. The de nition of asmall areais
relative to the required anonymity level, because our system provides
better quality services for the same areaif we relax the required
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anonymity level. Thus the adversary cannot infer the number of
persons currently residing in a small area from our system output
with any deity; therefore the adversary cannot know that Alice isin

room R3. To preserve personad location privacy, we propose two in-
network aggregate location anonymization agorithms, namely,
resource- and quality-aware agorithms. Both algorithms require the
sensor nodes to collaborate with each other to blur their sensing areas
into cloaked areas, such that each cloaked area contains at least k
persons to constitute a k-anonymous cloaked area. The resource-
aware algorithm aims to minimize communication and computational
cost, while the quality-aware algorithm aims to minimize the size of
the cloaked areas, in order to maximize the accuracy of the aggregate
locations reported to the server. In the resource-aware algorithm,
each sensor node nds an adequate number of persons, and then it uses
a greedy approach to cloaked area. On the other hand, the quality-
aware algorithm starts from a cloaked area A, which is computed by
the resource-aware algorithm. Then A will beiteratively re ned based
on extra communication among the sensor nodes until its area
reaches the minimal possible size. For both agorithms, the sensor
node reports its cloaked area with the number of monitored persons
in the area as an aggregate location to the server.

Existing System:

Unfortunately, monitoring personal locations with a
potentially un-trusted system poses privacy threats to the monitored
individuals, because an adversary could abuse the location
information gathered by the system to infer personal sensitive
information. For the location monitoring system using identity
sensors, the sensor nodes report the exact location information of the
monitored persons to the server; thus using identity sensors
immediately poses a major privacy breach. To tackle such a privacy
breach, the concept of aggregate location information, that is, a
collection of location data relating to a group or category of persons
from which individual identities have been removed, has been
suggested as an effective approach to preserve location privacy.
Although the counting sensors by nature provide aggregate location
information, they would also pose privacy breaches.

Proposed System :

A privacy-preserving location monitoring system for
wireless sensor networks to provide monitoring services is proposed.
This system relies on the well-established k-anonymity privacy
concept, which requires each person is indistinguishable among k
persons. In this system, each sensor node blurs its sensing areainto a
cloaked area, in which at least k persons are residing. Each sensor
node reports only aggregate location information, which isin aform
of a cloaked area A, aong with the number of persons N, located in
A, where N = k, to the server. It is important to note that the value of
k achieves a trade-off between the strictness of privacy protection
and the quality of monitoring services.
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2 SYSTEM MODEL

Figure 2 depicts the architecture of our system, where there are
three major entities, sensor nodes, server, and system users. We
will de ne the problem addressed by our system, and then
describe the detail of each entity and the privacy model of our
system.

Problem de nition. Given a set of sensor nodes sq; sp;

; Sn with sensing areas ag; ap; : : : ; an, respectively, a set of
moving objects 01 ; 02; : : : ; Om, and a required anonymity level Kk,
(1) we nd an aggregate location for each sensor node s in a form of
Ri = (Areg ; Nj), where Aregj is a rectangular area containing the
sensing area of a set of sensor nodes S and Nj is the number of
objects residing in the sensing areas of the sensor
nodesin S, such that Nj k, Nj =] [g 25 Oj j k, Oj = fojjo; 2 g
g,1in and 11 m; and (2) we build a spatial histogram to
answer an aggregate query Q that asks about the number of
objects in a certain area Q:Area based on the aggregate
locations reported from the sensor nodes.

Sensor nodes. Each sensor node is responsible for deter-mining
the number of objects in its sensing area, blurring its sensing area
into acloaked area A, which includes at least k objects, and reporting
A with the number of objects located in A as aggregate location
information to the server. We do not have any assumption about the
network topology, as our system only requires a communication path
from each sensor node to the server through a distributed tree [10].
Each sensor nodeis also aware of itslocation and sensing area.

Server. The server is responsible for collecting the ag-gregate
locations reported from the sensor nodes, using a spatial histogram to
estimate the distribution of the monitored objects, and answering
range queries based on the estimated object distribution.
Furthermore, the administrator can change the anonymized level k of
the system at anytime by disseminating a message with a new value
of k to all the sensor nodes.

System users. Authenticated administrators and users can issue
range queries to our system through either the server or the sensor
nodes, as depicted in Figure 2. The server uses the spatial histogram
to answer their queries.
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Fig, 2: System architectune,

Privacy model. In our system, the sensor nodes con-stitute a
trusted zone, where they behave as de ned in our agorithm and
communicate with each other through a secure network channel to
avoid internal network attacks, for example, eavesdropping, traf ¢
analysis, and malicious nodes [6], [11]. Since establishing such a
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secure network channel has been studied in the literature [6], [11],
the discussion of how to get this network channel is beyond the scope
of this paper. However, the solutions that have been used in previous
works can be applied to our system. Our system aso provides
anonymous communication between the sensor nodes and the server
by employing existing anonymous communication tech-niques [12],
[13]. Thus given an aggregate location R, the server only knows that
the sender of R is one of the sensor nodes within R. Furthermore,
only authenticated administrators can change the k-anonymity level
and the spatia histogram size. In emergency cases, the admin-
istrators can set the k-anonymity level to a small value to get more
accurate aggregate locations from the sensor nodes, or even
set it to zero to disable our algorithm to get the original
readings from the sensor nodes, in order to get the best
services from the system. Since the server and the system user
are outside the trusted zone, they are untrusted.

We now discuss the privacy threat in existing location monitoring
systems. In an identity-sensor location mon-itoring system, since
each sensor node reports the exact location information of each
monitored object to the server, the adversary can pinpoint each
object's exact lo-cation. On the other hand, in a counting-sensor
location monitoring system, each sensor node reports the number of
objects in its sensing area to the server. The adversary can map the
monitored areas of the sensor nodes to the system layout. If the
object count of a monitored area is very small or equa to one, the
adversary can infer the identity of the monitored objects based on the
mapped monitored area, for example, Alice is in her of ce room at

timeinstancetj in Figure 1.

3 LOCATION ANONYMIZATION ALGORITHMS

In this section, we present our in-network resource- and quality-
aware location anonymization agorithms that is periodically
executed by the sensor nodes to report their k-anonymous
aggregate locations to the server for every reporting period.

3.1 The Resource-Aware Algorithm

Algorithm 1 outlines the resource-aware location anonymization
algorithm. Figure 3 gives an example to illustrate the resource-aware
algorithm, where there are seven sensor nodes, A to G, and the
required anonymity level isve, k = 5. The dotted circles represent the
sensing area of the sensor nodes, and a line between two sensor
nodes indicates that these two sensor nodes can communicate

directly with each other. In general, the algorithm has three
steps.

Sep 1. The broadcast step. The objective of this step is to
guarantee that each sensor node knows an adequate number of
objects to compute a cloaked area. To reduce communication cost,
this step relies on a heuristic that a sensor node only forwards its
received messages to its neighbors when some of them have not yet
found an adequate number of objects. In this step, after each sensor
node m initializes an empty list PeerList (Line 2 in Algorithm 1), m
sends a message with its identity m:ID, sensing area m:Area, and the
number of objects located in its sensing area m:Count, to its
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neighbors (Line 3). When m receives a message from a peer p,
i.e, (p:ID; p:Area; p:Count), m stores the message in its PeerList
(Line 5). Whenever m nds an adequate number of objects, m sends a
noti cation message to its neighbors (Line 7). If m has not received
the noti cation message from all its neighbors, some neighbor has not
found an adequate number of objects; therefore m forwards the
received message to its neighbors (Line 10).

Figures 3a and 3b illustrate the broadcast step. When a reporting
period starts, each sensor node sends a message with its identity,
sensing area, and the number of objects located in its sensing area to
its neighbors. After the rst broadcast, sensor nodes A to F have found
an adequate number of objects (represented by black circles), as
depicted in Figure 3a. Thus sensor nodes A to F send a noti cation
message to their neighbors. Since sensor node F has not received a
noti cation message from its neighbor G, F forwards its received
messages, which include the information about sensor nodes D and
E, to G (Figures 3b). Finally, sensor node G has found an adequate
number of objects, so it sends anoti cation message to its neighbor, F
. As dl the sensor nodes have found an adequate number of objects,
they proceed to the next step.

Algorithm 1 Resource-aware |ocation anonymization

1: function RESOURCEAWARE (Integer k, Sensor m, List R)
2 PeerList  fig
/I Sep 1: The broadcast step
4: Send a message with m's identity m:ID, sensing area m:Area, and object count
m:Count to m's neighbor peers
5: if Receive a message from a peer p, i.e., (p:ID, p:Area, p:count) then
6: Add the message to PeerList

7 if m has found an adequate number of objects then

8 Send anoti cation message to m's neighbors

9: end if

10:  if Some m's neighbor has not found an adequate number of objects then
11: Forward the message to m's neighbors
12: end if
13: end if

/I Sep 2: The cloaked area step

14: Sfmg

15: Compute a score for each peer in PeerList

16: Repeatedly select the peer with the highest score from PeerList to S until the total
number of objectsin Sis at least k

17: Areaaminimum bounding rectangle of the senor nodesin S

18: N the total number of objectsin S
/I Sep 3: The validation step

19: if No containment relationship with Area and R 2 R then

20: Send (Area; N') to the peers within Area and the server

21: elseif m's sensing areebis contained by&ome R 2Rthen

22: RandorBIy select aR™ 2 R such that R™:Area contains m's sensing area

23: Send R™ to the peers within R™:Area and the server

24: else

25: Send Area with acloaked N to the peers within Area and the server

26: end if
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Fig. 3: The resource-aware location

approach to nd a cloaked area based on the information stored in
PeerList. For each sensor node m, m initializes a set S = fmg, and
then determines a score for each peer in its PeerList (Lines 13 to 14
in Algorithm 1). The score is de ned as aratio of the object count of
the peer to the Euclidean distance between the peer and m. The idea
behind the score is to select a set of peers from PeerList to Sto form
acloaked areathat includes at least k objects and has an area as small
as possible. Then we repeatedly select the peer with the highest score
from the PeerList to S until S contains at least k objects (Line 15).
Finally, m determines the cloaked area (Area) that is a minimum
bounding rectangle (MBR) that covers the sensing area of the sensor
nodesin S, and the total number of objectsin S (N ) (Lines 16 to 17).
Figure 3c illustrates the cloaked area step. The PeerList of sensor
node A contains the information of three peers, B, D, and E. The
object count of sensor nodes B, D, and E is 3, 1, and 2, respectively.

[b] Behnusiloast froemn

re=rterre manle 77 1ol Riesprrce-gomy olosked amea of senmor mixle A

anonymization algorithm (k = 5).

starts, m nulli es R. After m nds its aggregate location Ry, m checks
the containment rel ationship between Ry, and the aggregate locations
stored in R. If there is no containment relationship between Ry, and
the aggregate locations in R, m sends Ry to the peers within
Rm:Area and the server (Line 19 in Algorithm 1). Otherwise, m
randomly selects an ag-gregate location Ry from the set of aggregate
locations in R that contain m's sensing area, and m sends Rp to the

peers within Ry :Area and the server (Lines 21 to 22). In case that no
aggregate location in R contains m's sensing area, we nd a set of

aggregate locations in R that are contained by Ry, R and N |sthe
number of monitored persons in Ry that is not covered by any

aggregate location in RO. If N 0 k, the containment relationship does
not violate the k-anonymity privacy requirement;

We assume that the distance from sensor node A to sensor nodes B,
D, and Eis 17, 18, and 16, respectively. The scoreof B, D, and E is
3=17 = 0:18, 1=18 = 0:06, and 2=16 = 0:13, respectively. Since B
has the highest score, we select B. The sum of the object counts
of A and B is six which is larger than the required anonymity
level k = 5, so we return the MBR of the sensing area of the
sensor nodes in S, i.e,, A and B, as the resource-aware cloaked
areaof A, which isrepresented by a dotted rectangle.

Sep 3: The validation step. The objective of this step is to
avoid reporting aggregate locations with a con-tainment
relationship to the server. Let Rj and Rj be two aggregate
locations reported from sensor nodes i
and j, respectively. If Rj's monitored areaisincluded in
Rj 's monitored area, Rj :AreaR;j :Areaor Rj :AreaR; :Area, they
have a containment relationship. We do not alow the sensor
nodes to report their aggregate locations with the containment
relationship to the server, because combining these aggregate
locations may pose privacy leakage. For example, if Rj :Area R;.

In case that Rj N Rj :N <k, the adversary knows that the number
of objects in the non-overlapping is less than k, which violates
the k-anonymity privacy requirement. As this step ensures that no
aggregate location with the contain-ment relationship is reported
to the server, the adversary cannot obtain any deterministic

Algorithm 2 Quality-aware location anonymization
_solution, List R)

1. function QUALITYAWARE (Integer k, Sensor m, Set init
2 current min cloaked area init_solution
/I Sep 1: The search space step
4: Determine a search space S based on init solution
: Collect the information of the peers located in S
/I Sep 2: Theminimal cloaked area step

o

6: Add each peer located in Sto C[1] asanitem
7: Add m to eachitemset in C[1] asthe rstitem
8 fori =1; i 4; i ++do
9 for eachitemset X = fap;:::; g+1 9inC[i] do
10: if Area(M BR(X )) < Area(current min cloaked area) then
11 if N (M BR(X)) k then
11 current min cloaked area _ fXg
12 Remove X from C[i]
13: end if
14: else
15: Remove X from Cf[i]
16: end if
17: end for
18: ifi < 4 then
19: for each itemset pair X =fx1;::::;Xj+1 9, Y =fyq ;1 : 1 ;yi+1 9in C[i] do
20: ifxg = y1:;:000% =y andxjs1 6= yj+1 then
21: Add anitemset fXq ;@ Xj+1; Yi+1 9to C[i + 1]
22: end if
23: end for
24: end if
25: end for

: Area a minimum bounding rectangle of current min cloaked area

- N thetotal number of objectsin current min cloaked area _ -
/I Sep 3: The validation step

: Lines 18to 25in Algorithm 1

information from the aggregate locations.

In this step, each sensor node m maintains a list R to store the
aggregate locations sent by other peers. When areporting period

© 2013 IJAIR. ALL RIGHTS RESERVED
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therefore m sends R, to the peers within Ry:Area and the server.
However, if N O¢ k, m cloaks the number of monitored persons of
Rm, Rm:N, by increasing it by an integer uniformly selected between
k and 2k, and sends Ry, to the peers within Ryy:Area and the server
(Line 24). Since the server receives an aggregate location from each
sensor node for every reporting period, it cannot tell whether any

containment relationship takes place among the actual aggregate
locations of the sensor nodes.

3.2 The Quality-Aware Algorithm

Algorithm 2 outlines the quality-aware algorithm that takes the
cloaked area computed by the resource-aware algorithm as an initial
solution, and then re nes it until the cloaked area reaches the
minimal possible area, which still satis es the k-anonymity privacy
require-ment, based on extra communication between other peers.
The quality-aware algorithm initializes a variable current minimal
cloaked area by the input initial solution (Line 2 in Algorithm 2).
When the algorithm terminates, the current minimal cloaked area
contains the set of sen-sor nodes that constitutes the minimal cloaked
area. In general, the algorithm has three steps.

Sep 1: The search space step. Since a typical sensor network has a
large number of sensor nodes, it is too costly for a sensor node mto
gather the information of all the sensor nodes to compute its minimal
cloaked area. To reduce communication and computational cost, m
determines a search space, S, based on the input initial solution,
which is the cloaked area computed by the resource-aware
algorithm, such that the sensor nodes outside S cannot be part of the
minimal cloaked area (Line 3 in Algorithm 2). We will describe
how to determine S based on the example given in Figure 4.
Thus gathering the information of the peers residing in Sis
enough for m to compute the minimal cloaked area for m
(Line 4).

Figure 4 illustrates the search space step, in which we compute S
for sensor node A. Let Area be the area of the input initial solution.
We assume that Area = 1000. We determine Sfor A by two steps. (1)
We nd the minimum bounding rectangle (MBR) of the sensing area of
A. It isimportant to note that the sensing area can be in any polygon
or irregular shape. In Figure 4a, the MBR of the sensing area of Ais
represented by a dotted rectangle, where the edges of the MBR are
labeled by e1 to e4. (2) For each edge g of the MBR, we compute an
MBR; by extending the opposite edge such that the area of the
extended MBR; is equal to Area. Sis the MBR of the four extended
MBR; . Figure 4b depicts the extended MBR1 of the edge e1 by
extending the opposite edge e3, where MBR1:x is the length of
MBR1, MBR1:y = Area=MBR7:x and Area = 1000. Figure 4c shows

the four extended MBRs, MBR; to MBR4, which are represented by
dotted rectangles. The MBR of the four extended MBRs constitutes S,
which is represented by a rectangle (Figure 4d). Finally, the sensor
node only needs the information of the peerswithin S.
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Fig. 5: The lattice structure of a set of four items.

Sep 2: The minimal cloaked area step. This step takes a

set of peersresiding in the search space, S, as an input and computes
the minimal cloaked area for the sensor node m. Although the search
space step aready prunes the entire system space into S, exhaustively
searching the minimal cloaked area among the peers residing in S,
which needs to search all the possible combinations of these peers,
could still be costly. Thus we propose two optimization techniques to
reduce computational cost.
The basic idea of the rst optimization technique is that we do not
need to examine al the combinations of the peersin S; instead,
we only need to consider the combinations of at most four peers.
The rationale behind this optimization is that an MBR is de ned
by at most four sensor nodes because at most two sensor nodes de
ne the width of the MBR (paralé to the x-axis) while at most
two other sensor nodes de ne the height of the MBR (parallel to
the y-axis). Thus this optimization mainly reduces computational
cost by reducing the number of MBR computations among the
peersin S. The correctness of this optimization technique will be
discussed in Section 3.2.2.

The second optimization technique has two properties, lattice
structure and monotonicity property. We rst de-scribe these two
properties, and then present a progressive re nement approach for nding a
minimal cloaked area.

A. Lattice structure. In a lattice, structure, a data set that
contains n items can generate 2" * itemsets excludi ng a null

set. In the sequel, since the null set is meaningless to our
problem, it will be neglected. Figure 5 shows the lattice

structure of a set of four items S=fsq; Sp ; S3; 40, where each
black line between two itemsets indicates that an itemset at a
lower level is a subset of an itemset at a higher level. For our

the possible combinations of these sensor nodes are the non-
empty subsets of S; thus we can use a lattice structure to
generate the combinations of the sensor nodes in S. In the
[attice structure, since each itemset at level i hasi itemsin S,
each combination at the lowest level, level 1, contains a
distinct item in S; therefore there are n itemsets at the lowest

level. We generate the lattice structure from the same, x1 = y1,
X2 =Y, 1L, X 1=Yi1,and X 6=yj, we generate a new

In the example, we use bold lines to illustrate the con-struction of
the lattice structure based on the generation rule. For example, the

itemset fsg; sp; s3; 49 at level 4 is combined by the itemsets fs1; sp;
s3g and fsy; sp; s4g at
195
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level 3, so thereisabold line from fsy; sp; s3; g to fsq; Sp; s3g and
another oneto fs1; S; 9.

B. Monotonicity property. Let S be a set of items, and P be the
power set of S, ZS . The monotonicity property of a function f
indicates that if X isasubset of Y , then f (X ) must not exceed f
(Y)ie,8X;Y2P:(XY)!f(X)f(Y). Forour problem, the
MBR of a set of sensor nodes S has the monotonicity property,
because adding sensor nodes to S must not decrease the area of
the MBR of S or the number of objects within the MBR of S. Let
Area(M BR(X )) and N (M BR(X )) be two functions that return
the area of the MBR of an itemset X and the number of
monitored objects located in the MBR, respectively. Thus, given
two item sets X and
Y ,if XY, then Area(M BR(X )) Area(M BR(Y )) and N (M
BR(X )) N (M BR(Y )). By this property, we propose two
pruning conditions in the lattice structure.

C. Progressive re nement. Since the monotonicity prop-erty shows
that we would not need to generate a com-plete lattice structure to
compute a minimal cloaked area, we generate the lattice structure of
the peers in the search space, S, progressively from the lowest level
of the lattice structure to its higher levels, in order to minimize the
computational and storage overhead. To compute the minimal
cloaked area for the sensor node m, we rst generate an itemset for
each peer in S at the lowest level of the lattice structure, C[1] (Line5
in Algorithm 2). To accommodate with our problem, we add m to
each item-set in C[1] as the rst item (Line 6). Such accommodation
does not affect the generation of the lattice structure, but each itemset
has an extra item, m. For each itemset X in C[1], we determine the
MBR of X , M BR(X ). If the area of M BR(X ) is less than the
current minimal cloaked area and the total number of objects in M
BR(X ) is at least k, we set X to the current minimal cloaked area,
and remove X from C[1] based on the rst pruning condition of the
monotonicity property (Lines 11 to 12). However, if the area of M
BR(X ) is equa to or larger than the area of the current minimal
cloaked area, we aso remove X from C[1] based on the second
pruning condition of the monotonicity property (Line 15). Then we
generate the itemsets, where each itemset contains two items, at the
second lowest level of the lattice structure, C[2], based on the
remaining itemsets in C[1] based on the generation rule of the lattice
structure. We repeat this procedure until we produce the itemsets at
the highest level of the lattice structure, C[4], or al the itemsets at
the current level are pruned (Lines 19 to 23). After we examine all
non-pruned itemsets in the lattice structure, the current minimal
cloaked area stores the combination giving the minimal cloaked area
(Lines 26 to 27).

Figure 6 illustrates the minimal cloaked area step that computes
the minimal cloaked area for sensor node A. The set of peersresiding
in the search space is S = fB; D; Eg. We assume that the area of the
MBR of fA; Bg, fA; Dg, and fA; Eg is 1000, 1200, and 900,
respectively. The number of objects residing in the MBR of fA; Bg,
fA; Dg, and fA; Egissix, four, and ve, respectively, as depicted in

Figure 3. Figure 6a depicts the full lattice structure of Swhere A is
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added to each itemset as the rst item. Initialy, the current minimal
cloaked area is set to the initial solution, which is the MBR of fA;
Bg 'computed by the resource-aware algorithm. The area of the MBR
of fA; Bg, Area(M BR(fA; Bg)), is 1000 and the total number of
monitored objects in M BR(fA; Bg), N (M BR(fA; BQg)), issix. It is
important to note that the progressive re nement approach may not
require our algorithm to compute the full lattice structure. As
depicted in Figure 6b, we construct the lowest level of the lattice
structure, where each itemset contains a peer in S. Since the area of
M BR(fA; Bg) is the current minimal cloaked area, we remove fA;
Bg from the lattice structure; hence the itemsets at the higher levels
that contain fA; Bg, fA; B; Dg, fA; B; Eg, and fA; B; D; Eg
(enclosed by a dotted oval), will not be considered by the agorithm.
Then, we consider the next itemset fA; Dg. Since the area of M
BR(fA; Dg) is larger than the current minimal cloaked area, this
itemset is removed from the lattice structure. After pruning fA; Dg,
the itemsets at the higher levels that contain fA; Dg, fA; D; Eg
(enclosed by a dotted oval), will not be considered (Figure 6¢). We
can see that al itemsets beyond the lowest level of the lattice
structure will not be considered by the ago-rithm. Findly, we
consider the last itemset fA; Eg. Since the area of M BR(fA; Eg) is
less than current minimal cloaked area and the total number of
monitored objects in M BR(fA; Eg) is k = 5, we set fA; Eg to the
current minimal cloaked area (Figure 6d). As the algorithm cannot
generate any itemsets at the higher level of the lattice structure, it
terminates. Thus the minimal cloaked area is the MBR of sensor
nodes A and E, and the number of monitored objects in this area is
ve.

3.21 Analysis

A brute-force approach of nding the minima cloaked area of a
sensor node has to examine al the combinations of its peers. Let N
be the number of sensor nodes in the system. Since each sensor node
has N 1 peers,

; 1
we have to consider

N 1 1

=N
i=1 i
to nd the minimal cloaked area. In our agorithm, the search space
step determines a search space, S, and prunes the peers outside S.
Let M be the number of peers in S, where M N 1. Thus the
computational
cost is reduced to

C 1 MBRs

M M

=M
=i

cloaked area step, the rst optimization technique in-dicates that an
MBR can be de ned by a most four peers. As we need to

C 1. In the minimal

consider the combinations of a most four peers, the
gomputational cost is reduced to
A LY Y M3+ 1M 2 + 14M )=24 = OM *).
i=1 i
Furthermore, the second optimization technique uses the

monotonicity property to prune the combinations, which cannot give
the minimal cloaked area. In our example, the brute-force approach
considers all the combinations of six peers, hence this approach
computes 26 1 = 63 MBRs to nd the minimal cloaked area of sensor
node A. In our agorithm, the search space step reduces the entire
space into S, which contains only three peers; hence this step needs

to compute 23 1=7 MBRs. After examining the

three itemsets at the lowest level of the lattice structure,
all other itemsets at the higher levels are pruned. Thus the
progressive re nement ap-proach considers only three combinations.
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Therefore our agorithm reduces over 95% computational cost of the
brute-force approach, as it reduces the number of MBR computations
from 63 to 3.

3.2.2 Proof of Correctness

In this section, we show the correctness of the quality-aware
location anonymization algorithm.

Theorem 1: Given a resource-aware cloaked area of size
Area of a sensor node s, a search space, S, computed by the
quality-aware algorithm contains the minimal cloaked area.

Proof: Let X be the minimal cloaked area of size equal to or
less than Area. We know that X must totally cover the sensing
area of s. Suppose X is not totally covered by S, X must contain

at least one extended MBR, MBR; , where 1 i 4 (Figure 4c). This
means that the area of X is larger than the area of an extended
MBR, Area This contradicts to the assumption that X is the
minimal cloaked area; thus X isincluded in S. O

Theorem 2: A minimum bounding rectangle (MBR) can be
de ned by at most four sensor nodes.

Proof: By de nition, given an MBR, each edge of the MBR
touches the sensing area of some sensor node. In an extreme case,
thereis adistinct sensor node touching each edge of the MBR but not
other edges. The MBR is de ned by four sensor nodes, which touch
different edges of the MBR. For any edge e of the MBR, if multiple
Sensor nodes touch e but not other edges, we can simply pick one of
these sensor nodes, because any one of these sensor nodes gives the
same e. Thus an MBR is de ned by at most four sensor nodes. [

4 SPATIAL HISTOGRAM

In this section, we present a spatial histogram that is embedded
inside the server to estimate the distribution of the monitored objects
based on the aggregate | ocations reported from the sensor nodes. Our
spatial histogram is represented by a two-dimensiona array that
models a grid structure G of Nr rows and N¢ columns; hence, the
system space is divided into Nr N¢ digoint equal-sized grid cells. In
each grid cell G(i; j), we maintain a oat value that acts as an
estimator H[i; j] (11 Nc, 1j NR) of the number of objects within its
area. We assume that the system has the ability to know the total
number of moving objects M in the system. The value of M will be
used to initidize the spatial histogram. In practice, M can be
computed online for both indoor and outdoor dynamic environments.
For the indoor environment, the sensor nodes can be deployed at
each entrance and exit to count the number of users entering or
leaving the system [4], [5]. For the outdoor environment, the sensor
nodes have been aready used to count the number of people in a
prede ned area [3]. We use the spatial histogram to provide
approximate location monitoring services. The accuracy of the spa-
tial histogram that indicates the utility of our privacy-preserving
location monitoring system will be evaluated in Section 6.
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Algorithm 3 Spatial histogram maintenance

1: function HISTOGRAMMAINTENANCE (AggregateLocationSet R)
2: for each aggregate location R 2 R do

3:  if there is an existing partition P = fRy ; : ::; Rjp jg such that

R:Area\

Rg :Area = ;forevery Rk 2P then
4: AddR to P
5. else
6: Create a new partition for R
7:  endif
8: end for
9: for each partition P do
10: for each aggregi:a’te locationRk 2P do

-~ HI; j]

11 Rk :N Gli]2Rk  :Area R N
12 For even/b cell G(i; j) 2 Ry :Area, H[i; j] \'/\‘vﬁhionT cells Ry :Area
13:  end for
14: P:Area Rq:Area[:::[RijpjArea

For every cell G(1; J)
15. 2= r:Area,

- - Rk :N Rk
HEi; ] = HE I+ R
‘N

16: end for No. of cells outside P:Area

Algorithm 3 outlines our spatial histogram approach.
Initialy, we assume that the objects are evenly dis-tributed in the
system, so the estimated number of objects within each grid cell is
H[i; j] = M=(NR Nc ). The input of the histogram is a set of
aggregate locations R reported from the sensor nodes. Each
aggregate location R in R contains a cloaked area, R:Area, and the
number of monitored objects within R:Area, R:N . First, the

aggregate locations in R are grouped into the same partition P = fRy;

other, which means that for every pair of aggregate locations R and
RjinP, R; :Area\ R :Area= (Lines 2 to 8. Then, for each partition
P.
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locations to the spatial histogram at the same time. For
cach aggregale location K in F, we recond the eslimalion
crror, which is the d tilicrence between the sum of the
eslimators witlun B, R.Ju, and BN, and then BN
is uniformly distributed among the estimators within
I Area: hence, each estimator within T deen 12 set o
WV divided by the total number of 2rid cells within
H.Avca (Lines 10 to 13}, Aller processing all the aggre
gate localions In #, we sum up the eslimalion crror of
cach aggregale location in P, "_‘,fj Ry & HeN. thal
is uniformly distributed among the estimators outsice
P Aren, where P Aren iy the srea covered by some a i
gregate keation in P, Podvea — L o Aven (Tine 15).
Formally, for each partition P that contains |F| aggrezate
locations H (1 < £ = |[F|) every estimator in the
histogram is updated as tollows:

et
PR

Ml vells wilkin f) Avew? for Gii ) & B drea
4T
N =
iL J] Q4T | . L!_ILJ?'”J\F—RJ.-.J\-' o
! t[' 2217 My, of el vutsisde PAreg Y1500 § #Arez

5 SYSTEM EVALUATION

In this section, we discuss an attacker model, the exper-iment
setting of our privacy-preserving location mon-itoring system in a
wireless sensor network, and the performance metrics.

5.1 Attacker Model

To evaluate the privacy protection of our system, we simulate an
attacker attempting to infer the number of objects residing in a sensor
node's sensing area. We will analyze the evaluation result in Section
6.1. The key idea of the attacker model is that if the attacker cannot
infer the exact object count of the sensor node from our system
information
corresponding to an individual object. We consider the worst-case
scenario where the attacker has the background knowledge about the
system, i.e., the map layout of the system, the location of each sensor
node, the sensing area of each sensor node, the total number of
objects currently residing in the system, and the aggregate locations
reported from the sensor nodes. In general, the attacker model is de

output, the attacker cannot infer the location

ned as: Given an area
A (that corresponds to the monitored area of a sensor node)

and a set of aggregatelocationsR =fR1; Ro; : 1 1 ; RjRjg
overlapping with A, the attacker estimates the nunber of
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The }1rn|"-.|lit||l:'. of n distinct I'l""i.l ts in a region S of size
sis: P(N(S)=n)=Z PO0” here A is computed as
the Iml'n'lk: of objects in the system divided by the area
of the systom,

Suppose that the object count of each aggregate lo-

cation R; is ny, where 1 < ¢ < |R|, and the aggregale
locations in R and A constitute w nor- uerﬂ].pu..
subregions 5;, where 1 < j m; hence, N(R) =
Y.aen NIS;) = .-.. Fach subregion must either intersect

0r Mg I 1|‘|{um ct A, and it intersects one or more ageregate
locations. If a '.-ul"fﬁ.';;]HT‘I S mitersects A, but none of the
aggregate locations in R, then N(5;) = 0. The probabil-
ity mass tunction of the number of distinet objects in 4
being equal to gy, N = n,, given the aggregate locations
m K can be m.pn.in:-ull as follows:

PN =n:N Ry =ngee..yd N{R Rl =mm )
f’l."'..*H..-..\ll.{h_lfn'-'j.. .."hlfi.l;l*-r-rl' |
=5 f'[."."lj'ijl=u|....._-"-'|f1’!-g;_l=u w1 )
Tr. X R .l"',l.'.,...,l':".:-
= SPNEVSTVA) : II = : ; 1)
Loviev S Wty B A
where the notation V' =< v v, .0 vm > represents the

juint probability that there are v objects in a subregion
5 {1 i = ml; the jont prebability is computed as
[Ticicm FIN(S:) = v). The lower and upper bounds of
v (denoted as LB{v,) and U B(v,), respectively) are zero
and the minimum n; of the aggregale locations inter-

6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we show and analyze the experimental
results with respect to the privacy protection and the
quality of location monitoring services of our system.

6.1 Anonymization Strength

Figure 7 depicts the resilience of our system to the at-
tacker model with respect to the anonymity level and the
number of objects. Inthe gure, the performance of the
resource- and quality-aware algorithms is represented by

black and gray bars, respectively. Figure 7a depicts that

the stricter the anonymity level, the larger the attacker
model error will be encountered by an adversary. When

the anonymity level gets stricter, our agorithms generate
larger cloaked areas, which reduce the accuracy of the

aggregate locations reported to the server. Figure 7b
umber SNOWSENG o ojectsetakengts g model Thissrorgeioes ecause henihe

there are more objects, our algorithms generate smaller cloaked aress,
which increase the accuracy of the aggre-gate locations reported to the
server. It is dif cult to set a hard quantitative threshold for the attacker
model error. However, it is evident that the adversary cannot infer the

number of objects in the sensor node's sensing area with any delity.

198



Udhaya et al. / IJAIR

6.2 Effect of Query Region Size

Figure 8 depicts the privacy protection and the quality of our location
monitoring system with respect to in-creasing the query region size
ratio from 0.001 to 0.256, where the query region sizeratio isthe
ratio of the query region area to the system area and the query region
size ratio 0.001 corresponds to the size of a sensor node's

o
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Fig. 8: Query region size.

sensing area. The results give evidence that our system provides low
quality location monitoring services for the range query with a small
query region, and better quality services for larger query regions.
This is an important feature to protect persona location privacy,
because providing the accurate number of objects in a small area
could reveal individua location information; therefore an adversary
cannot use our system output to track the monitored objects with any
delity. The de nition of asmall query region isrelative to the required
anonymity level k. For example, we want to provide low quality
services, such that the query error is at least 0.2, for small query
regions. For the resource-aware algorithm, Figure 8a shows that
when k = 10, aquery region is said to be small if its query region size
is not larger than 0.002 (it is about two sensor nodes' sensing area).
However, when k = 30, aquery region is only considered as small if
its query region sizeis not larger than 0.016 (it is about 16 sensor
nodes sensing area). For the quality-aware algorithm, Figure 8b
shows that when k = 10, a query region is said to be small if its
query region size is not larger than 0.002, while when k = 30, a
query region is only considered as small if its query region sizeis
not larger than 0.004. The results also show that the quality-
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aware algorithm always performs better than the resource-aware
algorithm.

6.3 Effect of the Number of Objects

Figure 9 depicts the performance of our system with respect to
increasing the number of objects from 2,000 to 10,000. Figure 9a
shows that when the number of objects increases, the communication
cost of the resource-aware algorithm is only dlightly affected, but the
quality-aware algorithm signi cantly reduces the communication cost.
The broadcast step of the resource-aware agorithm ef-fectively
allows each sensor node to nd an adegquate number of objects to blur
its sensing area. When there are more objects, the sensor node nds
smaler cloaked areas that satisfy the k-anonymity privacy
reguirement, as given in Figure 9b. r; hence the communication cost
of gathering the information of the peers in such a smaller required
search space reduces. Likewise, since there are less peers in the
smaller required search space as the number of objects increases,
nding the minimal cloaked area incurs less minimum bounding
rectangle (MBR) computation (Figure 9c). Since our algorithms
generate smaller cloaked areas when there are more users, the spatia
histogram can gather more accurate aggregate locations to estimate
the object distribution; therefore the query answer error reduces
(Figure 9d). The result also shows that the quality-aware algorithm
al-ways provides better quality services than the resource-aware
algorithm.

6.4 Effect of Mobility Speeds

Figure 11 gives the performance of our system with respect to
increasing the maximum object mobility speed from [0; 5] and [O;
30]. The results show that increas-ing the object mobility speed only
dightly affects the communication cost and the cloaked area size of
our agorithms, as depicted in Figures 11a and 11b, respec-tively.
Since the resource-aware cloaked areas are dlightly affected by the
mobility speed, the object mobility speed has a very small effect on
the required search space computed by the quality-aware agorithm.
Thus the computational cost of the quality-aware agorithm is aso
only slightly affected by the object mobility speed (Figure 11c).
Although Figure 11d shows that query answer error gets worse when
the objects are moving faster, the query accuracy of the quality-
aware algorithm is consistently better than the resource-aware
algorithm.

7 RELATED WORK

Straightforward approaches for preserving users location
privacy include enforcing privacy policies to re-strict the use of
collected location information [15], [16] and anonymizing the
stored data before any disclo-sure [17]. However, these
approaches fail to prevent interna data thefts or inadvertent
disclosure. Recently, location anonymization techniques have been
widely used to anonymize personal location information before any
server gathers the location information, in order to preserve personal
location privacy in location-based services. These techniques are
based on one of the three concepts. (1) False locations. Instead of
reporting the monitored object's exact location, the object reports n
different locations, where only one of them is the object's actual
location while the rest are false locations [18].

(2) Spatial cloaking. The spatia cloaking technique blurs a user's

199



Udhaya et al. / IJAIR
location into a cloaked spatial area that satisfy the user's species

privacy requirements (3) Space transformation. This technique
transforms the location information of queries and data into another
space, where the spatia relationship among the query and data are
encoded [29].

Among these three privacy concepts, only the spatial cloaking
technique can be applied to our problem. The main reasons for this
are that (a) the false location tech-niques cannot provide high quality
monitoring services due to a large amount of false location
information;

(b) the space transformation techniques cannot provide privacy-
preserving monitoring services as it reveal s the monitored object's
exact location information to the query issuer; and (c) the spatial
cloaking techniques can provide aggregate location information to
the server and balance a trade-off between privacy protection and the
quality of services by tuning the speci ed privacy requirements, for
example, k-anonymity and minimum area privacy requirements [17],
[27]. Thus we adopt the spatial cloaking technique to preserve the
monitored ob-ject's location privacy in our location monitoring
system.

Architecture diagram:

8 CONCLUSION

In this paper, we propose a privacy-preserving location monitoring
system for wireless sensor networks. preserves personal location
privacy that enabling the system to provide location monitoring
services. Both agorithms rely on the well-established k-anonymity
privacy concept that requires a person is indistinguishable among k
persons. Sensor nodes execute our location anonymization
algorithms to provide k-anonymous aggregate locations, in which
each aggregate location is a cloaked area A with the number of
monitored objects, N, located in A, where N = k, for the system.
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