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Abstract— State-of-the-art single image deblurring techniques
are sensitive to image noise. Even a small amount of noise, Which
is inevitable in low-light conditions, can degrade the Quality of
blur kernel estimation dramatically. The recent approach of Tai
and Lin  tries to iteratively denoise and deblur a blurry and noisy
image. However, as we show in this work, directly applying
image denoising methods often partially damages the blur
information that is extracted from the input image, leading to
biased kernel estimation. We propose a new method for handling
noise in blind image deconvolution based on new theoretical and
practical insights. Our key observation is that applying a
directional low-pass filter to the input image greatly reduces the
noise level, while preserving the blur information in the
orthogonal direction to the filter. Based on this observation, our
method applies a series of directional filters at different
orientations to the input image, and estimates an accurate Radon
transform of the blur kernel from each filtered image. Finally,
we reconstruct the blur kernel using inverse Radon transform.

Keywords— noise level estimation, weak blurred image, image
gradient, PCA

I.INTRODUCTION
Taking handheld photos in low-light conditions is

challenging.Since less light is available, longer exposure times
are needed – and without a tripod, camera shake is likely to
happen and produce blurry pictures. Increasing the camera
light sensitivity, i.e., using a higher ISO setting, can reduce
the exposure time, which helps. But it comes at the cost of
higher noise levels.Further, this is often not enough,
andexposure time remains too long for handheld photography,
and many photos end up being blurry and noisy. Although
many techniques have been proposed recently to deal with
camera shake, most of them assume low noise levels. In this
work, we do not make this assumption and aim to restore a
sharp image from a blurry and noisy input.1This work was
performed when the first author interned at Adobe
Research.Many single image blind deconvolutionmethods
have been recently proposed . Althoughthey generally work
well when the input image is noise-free,their performance
degrades rapidly when the noise level increases. Specifically,
the blur kernel estimation step in previous deblurring
approaches is often too fragile to reliablyestimate the blur
kernel when the image is contaminatedwith noise, as shown in

Fig. 1. Even assuming that an accurateblur kernel can be
estimated, the amplified image noiseand ringing artifacts
generated from the non-blind deconvolution also significantly
degrade the results. To handle noisy inputs in single image
deblurring, Taiand Lin  first apply an existing denoising
packageas preprocessing, and then estimate the blur kernel
and theatent image from the denoised result. This process
iteratesa few times to produce the final result. However,
applyingexisting denoising methods is likely to damage, at
least partially, the detailed blur information that one can
extract from the input image, thereby leading to biased kernel
estimation. In Sec., we illustrate that standard denoising
methods, from bilateral filtering tomore advanced
approachessuch as Non-Local Means and BM3D, have
negativeimpacts on the accuracy of kernel estimation.In this
paper, we propose a new approach for estimatingan accurate
blur kernel from a noisy blurry image. Our approach still
involves denoising and deblurring steps. However, we
carefully design the denoising filters and deblurring
procedures in such a way that the estimated kernel is not
affected by the denoising filters. That is, we shall see
that, unlike existing approaches, we can theoretically
guaranteethat our approach does not introduce any bias in the
estimated kernel. Our approach is derived from the key
observation thatif a directional low-pass linear filter is applied
to the inputimage, it can reduce the noise level greatly, while
the frequencycontent, including essential blur information,
along the orthogonal direction is not affected. We use this
property to estimate 1D projections of the desired blur kernel
tothe orthogonal directions of these filters. These projections,
also known as the Radon transform, will not be affected
by applying directional low-pass filters to the input image,

Figure 1.
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Previous deblurring methods are sensitive to image noise. (a)
Synthetic input image with 5% noise and the ground truth
kernel(overlayed). It is cropped to better show blur and noise.
(b) Estimated kernel and latent image by Cho and Lee. (c)
Results by Levin etal. (d) Results of our method.
We apply a series of directional low-pass filters at different
Orientations, and estimate a slice of kernel projection from
each image. This yields an accurate estimate of the Radon
transform. Finally, we reconstruct the blur kernel using
theinverse Radon transform. Once a good kernel is
obtained,we incorporate denoising filtering into the final
deconvolution process to suppress noise and obtain a high-
quality latent image. Results on synthetic and real noisy data
showthat our method is more robust and achieves better
resultsthan previous approaches.

A.Side effects of denoising as preprocessing
Before introducing our approach, we first analyze the

negative impact of employing denoising as preprocessingon
kernel estimation. In single image deblurring, a blurryand
noisy input image b is usually modeled as

where l, k and n represent the latent sharp image, blur kernel,
and additive noise, respectively, * is the convolution operator.
Solving l and k from input b is a severely ill posed problem,
and the additional noise n makes this problem even more
challenging.

Assuming that l is known, a common approach to solve
for k

where p(k) is the additional regularization term that imposes
smoothness and/or sparsity prior on k. Without considering
the regularization term, this becomes a leastsquaresproblem
and the optimal k can be found bysolvingthe following linear
system:

(3)where k and b are the corresponding vector forms of k
andb, respectively, and L is the matrix form of l`. We also
introducethe noise-free blurry image
B’=b-n. We estimatethe relative error of k with respect to the
noise in b usingthe condition number of the linear system, that

where e(k) and e(b) are relative errors in k and b,
respectively.Thus, the noise n in the input image will be
amplifiedat most by the condition number _(LTL) for kernel
estimation,where LTL is often called the deconvolution
matrixand has a block-circulant-with-circulant-block
(BCCB)structure . Eq. shows that the upper bound on the
errorin the estimated kernel isproportional to the amplitudeof
the noise in input image. Building on this result, one
canattempt to apply sophisticated denoising filter to the blurry
image to reduce the noise amplitude, hoping that this will

improve the kernel estimate. However, denoising filters also
alter the profile of edges, e.g., . This information is critical to
accurate kernel estimation, and as we shall see, the benefits of
the noise reduction are often outweighed bytheartifacts caused
by the profile alteration.To illustrate it, we first look at a
simple noise reductionmethod, Gaussian smoothing.
Convolving witha GaussianGg decreases the noise level.
However, the kernel estimationthen becomes:

where k is the blur kernel for the original input image andkg is
the optimal solution after Gaussian denoising. Eq.shows that
the estimated kernel kg is a blurred version ofthe actual kernel
k. Further, since Gg is a low-pass filter,the high frequencies of
k are lost and recovering them from
kg would be very difficult, if possible at all. This result
comes from the initial noise reduction and is independent

Figure 2.
The side effects of employing different denoising methods as
preprocessing step in single image deblurring. (a) the
synthetic
input image with 5% noise. (b) the ground truth kernel. (c) the
blur kernel estimated without applying any denoising method
to the input
image (a). (e)-(g) the estimated blur kernels after applying
different denoising filters. (h) the kernel estimated by our
methodof the kernel estimation method.except for the noise
reduction.

II. APPLYING DIRECTIONAL FILTERS
We now show that directional low-pass filters can be

appliedto an image without affecting its Radon
transform,while decreasing its noise level. We consider the
directionallow-pass filter

where I is an image, p is a pixel location, t is the spatial
distance from one pixel to p, c is the normalization factor
defined as

Is a unit vector of direction _. The profile of the filter is
determinedby w(t), for which we use a Gaussian function:
where _f controls the strength ofthe filter.Filtering the image
affects the estimated kernel. Withthe same argument as for
Eq, the kernel that weestimatefrom the filtered image is;
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Similarly to filtering with a 2D Gaussian Gg, applying f_
averages pixels and reduces the noise level. Since f_ filters
only along the direction _, it has nearly no influence on the
blur information in the orthogonal direction. We exploit this
property to estimate the projection of the original kernel k
along the direction _. The projection can be formulated as
Radon transform , which is the collection of integrals
of a signal (i.e., k) along projection lines.

The particularvalue on Radon transform corresponding to one
projectionline where k(x; y) indicates the value at the
coordinate (x; y) on
kernel k. øand yøare the angle and offset of the projection
line, respectively. Thus, the projection of kernel kø along
the projection direction ø is:

where R0’ is the Radon transform operator to the directionø,
andø = ø + π=2. It is a linear operator, and onecan verify that
Rø (f_) is a 1D delta function, given thedefinition of fø. Eq.
shows fø has no impact onthe Radon transform of the blur
kernel to the orthogonal directionof the filter. This is the
foundation of the proposedapproach. An example is shown in
Fig. 3.

III.THE ALGORITHM
We now explain how we recover the sharp image, with

the kernel estimation first, and then the deconvolution step.

Figure 3. Directional denoising mechanism in single image
deblurring.

(a)(b)(c) are the synthetic image before adding noise, after
adding noise, and after applying a directional filter(_ = 3_=4),

respectively. (d)(e)(f) are the corresponding estimated blur
kernels
and their Radon transforms in the same direction. Note that
the estimated kernel in (f) is largely damaged by the
directional
filter, but its Radon transform is the same as the one in (d). 4.
Experimental results
We implemented our method in Matlab on an Intel Core
i5 CPU with 8GB of RAM. We apply directional filters
along 36 regularly sampled orientations, that is, one sample
every 5_: The computation time is a few minutes for a
one-megapixel image. For all the experiments, we set the

Figure 4.
Comparing Tai and Lin’s method  and our method on
synthetic data. Three input blurry image examples with
different levels of noise are shown in (a),(b),(c). (d) and (e)
are the ground truth blur kernels from Levin etal. (d) is used
for the examples “Abbey” and “Chalet”, and (e) is used for the
example “Aque”. (f-k) show the estimated kernels and the
latent images of Tai and Lin’s method and our method with
5% noise and 10% noise. Due to the space limit only the areas
highlighted by the bounding boxes in (a-c) are shown. Full
size images for comparison are in the supplementary material.
extent _f of the directional filter to 30 pixels. We also set
w1 = 0:05 and w2 = 1 (Eq. 11), and w3 = 0:05 (Eq. 12).

IV. PROPOSED ALGORITHM
Noise Level Estimation Based on PCA

After decomposing the image into overlapping
patches, we canwrite the image model asyi = zi + ni
where zi is the original image patch with the i-th pixel at its
centerwritten in a vectorized format and yi is the observed
vectorized patchcorrupted by i.i.d zero-mean Gaussian noise
vector ni. The goal ofnoise level estimation is to calculate the
unknown standard deviation!n given only the observed noisy
image.The image patches can be regarded as data in Euclidean
space.Let us consider the variance of the data projected onto a
certain axis.We can define the direction of the axis using the
unit vector u. Assumingthat the signal and the noise are
uncorrelated, the variance of the projected data on direction u
can be expressed as:V (uT yi)= V (uT zi) + !2nwhere V
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(yi)represents the variance of the dataset {yi}, !n is
thestandard deviation of the Gaussian noise. We define the
minimumvariance direction umin as
umin = argminuV (uT zi) = argminuV (uT yi) .
Following the same manner of the maximum variance
formulationin , the minimum variance direction is calculable
using thePCA. The minimum variance direction is the
eigenvector associated to the minimum eigenvalue of the

covariance matrix defined as⌃y =1NXNi=1(yi − μ)(yi − μ)T ,
(4)where N is the data number and μ is the average of the
dataset {yi}.The variance of the data projected onto the
minimum variance direction equals the minimum eigenvalue
of the covariance matrix. Then we can derive the equation

"min(⌃y) = "min(⌃z) + !2n
,

Figure 5.
of the covariance matrixes the noisy patches as Eq. However,

the decomposition problem is an ill-posed problem
because the minimum eigenvalue of the covariance matrix
ofthenoise-free patches is unknown. Although this
decomposition problems an ill-posed problem in general, we
can estimate the noise level if we can select weak textured
patches from the noisy images as described below.
The weak textured patches are known to span only
lowdimensionalsubspace. The minimum eigenvalue of the
covariance matrix of such weak textured patches is
approximately zero. Then, the noise level can be estimated

simply asˆ!2n= "min(⌃y0 ) , (6)where ⌃y0 is the covariance
matrix ofthe selected weak texturedpatches.
Consequently, we can estimate the noise level easily if we
canselect the weak textured patches from the noisy image.
However, the weak textured image patch selection also
presents a challengingproblem, as discussed in the
nextsubsection

V. SYNTHETIC DATA
We first conducted experiments on images that we

convolvedwith a known blur kernel and to which we
addednoise in a controlled fashion. This allows us to report
quantitativemeasures in addition to visual results.
Comparisons with Tai and Lin’s method Tai and Lin’s
method  is the most related work to ours since it also
seeks to handle noisy images. This section focuses on
comparingthis method with our approach. We first ran
comparisonson synthetic images Fig, where the latent
sharpimages were blurred using two blur kernels provided
byLevin etal. We then added Gaussian noise with zeromean
and standard deviations of 0.05 and 0.1 for a [0,1]intensity
range. Tai and Lin kindly provided the resultsfor their method.

The comparison shows that visually ourestimated blur kernels
are closer to the ground truth, andour estimated latent images
contain more details and lessringing artifacts. We also
evaluate the results quantitatively
by computing the Peak Signal-to-Noise Ratio (PSNR) and
Structural SI Milarity (SSIM) (Table 1).
Comparisons with other methods We also conducted
experiments to explore how noise affects the performanceof
other state-of-the-art single-image blind
deconvolutionmethods. Using the “Aque” image and the blur
kernelshown in Fig, we generated 10 input images with noise
from 1% to 10%. We then applied different blind
deconvolution methods to these test images, and measure the
PSNR PSNR SSIM

Table 1.
The comparison experiments of our method and Tai and
Lin [17] on synthetic blurry images with different amount of
noises. The performances are evaluated by PSNR and SSIM,
comparing
the generated latent images with the ground truth.

Figure 6.
The PSNR curves of various blind deconvolution algorithms,
including Goldstein and Fattal , Cho and Lee, Cho et
al. Levin et al.  and our method, on the 10 synthetic test
images with noise level from 1% to 10%, generated by the
“Aque”image and the kernel shown in fig. The two data points
ofTai and Lin’s method are shown as black diamonds,
whichare provided by the authors. While the PSNR values are
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closerto ours, the visual difference is still significant; our
approach producescleaner images. All images are included in
the supplementarymaterial.curve of each method fig. The
accuracies of previousmethods degrade rapidly when the noise
level increases.On the contrary, our method is more robust,
i.e., it worksmore reliably in the presence of noise, and
achieves satisfactory results even when the input noise level is
high. This figure also includes two data points of the Tai and
Lin’smethod  provided by the authors themselves.
4.2. Results on real examples We first compared our method
and Tai and Lin’s method on real-world images shown in their
original paper and the results are shown in Fig. . The results of
other state-of heart methods can be found in [Our estimated
kernels are sharper than Tai and Lin’s. The close-ups show
that our method recovers more high-frequency details. For the
boundaries of objects, our results have less noticeable ringing
Artifacts. Overall, our approach produces visually more
satisfying results.We further show our results on real-world
photographsthat were captured under common low-light
conditions witha Nikon D90 DLSR camera and a 18 �
105mm lens.We compare our results with those of other state-
of-theartmethods, including Goldstein and Fattal, Cho and
Lee, Cho et al., Levin et al. The results show that our
recovered latent images exhibit less artifacts, such as noise
and ringing, and contain more high-frequency details at the
same time. These observations are consistent across all test
images. We provide additional examples in supplemental
material.

VI. CONCLUSION
We have shown that most state-of-the-art image

deblurring techniques are sensitive to image noise. In this
paper,we propose a new single image blind deconvolution
method that is more robust to noise than previous approaches.
Our method uses directional filters to reduce the noise while
keeping the blur information in their orthogonal direction
intact. By applying a series of such directional filters, we
showed how to recover correct 1D projections of the kernel
in all directions, which we use to estimate an accurate blur
kernel using the inverse Radon transform. We also introduced

a noise-tolerant non-blind deconvolution technique
that generates high-quality final results. The effectiveness
of the proposed approach is demonstrated on several
comparisons on synthetic and real data.
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