
Mohd Athar et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 180

Applying Genetic Algorithm to Optimize Path
Testing and to Achieve Total Code Coverage

Mohd Athar, Nargis Parveen
Research Scholars

Department of Computer Science, Shri Venkateshwara University
Gajraula, India

m.atharjmi@gmail.com, nargis.parveen@gmail.com

Abstract— The objective of programming is not to accomplish a
result, but relevance and correctness of the result also required.
Correctness can be tested by applying software testing on the
developed program. Testing is most important practice which is
performed for supporting better quality product. Efficient ways
can reduce percentage of cost and time incurred in testing. In
spite of scads of theoretical work in field of Software Testing, its
advancement is slow towards automation. In this approach,
Genetic Algorithm (GA), which is a meta-heuristic algorithm, is
employed for optimizing path testing to achieve total code
coverage. Random testing is used as a comparison of the
efficiency and effectiveness of test data generation using Genetic
Algorithms. The advantage of GAs is that through the search and
optimization process, test sets are improved such that they are at
or close to the input sub domain boundaries. The GAs gives most
improvements over random testing when these sub domains are
small. Optimization of software testing is achieved by employing
GA and the process is automated. It results in formulation of test
suite for a module that gives 100 % code coverage. The process of
code analysis to find all modules in a program, generation of
CFG, finding cyclomatic complexity, determination of all
independent paths and GA steps are automated.

Index Terms— Genetic Algorithm, BBT, SUT.

I. INTRODUCTION

Software testing is important but it possesses some
fundamental challenges. It poses two essentially arduous jobs;
selecting tests and assessing test results. Selecting test cases
are hard as there is enormous number of potential test inputs in
varied sequences but only some of them unwrap failures. In
Evaluation/assessment, the real output of test run is compared
with expected result. This evaluation is done in opaque-
testing. Test Suite (TS) generation from operational profile
can be automated but it poses substantial hardheaded
problems. Time plays a foremost constraint in case of testing.
Another vital component is cost. Due to these two constraints,
it is intricate task to execute all test cases. When coverage is
taken as optimization parameter then target is formulation of
TS that could give 100 % code coverage. Optimization
problems can be unbridled by GA which can be regarded as
computer model of biological evolution. It works on principle
of evolution, where superior chromosomes (having greater
fitness value) are chosen for mutation and crossover
operations. Evolution continues until the optimized solution is
achieved. Good results are found astoundingly speedily when

GA is implemented. Generating optimized TS is meta-
heuristic problem which can be resolved by GA. Testing tools
can be put in two class; dynamic & static.

It’s important to have adequate test cases for
accomplishment of testing and making software more
dependable [2]. Making system reliable is vital as flunking it
could sustain massive losses. In [2], BBT is optimized by
applying GA. It’s implemented in Matlab [version no 7]. Test
cases of SUT are heavily influenced by GA. GA depends on
various parameters. Population size is vital parameter. Bigger
population size brings variation in initial populace at cost of
more function evaluations and longer completing times.

Figure 1 Proposed solution
Figure 1 shows the procedure adopted in [2]. Fitness

function is defined. Threshold fitness is set. Population size is
set, crossover rate taken 0.6, mutation rate taken .001.While
halt condition is not met, reproduce by crossover and mutation

Testing job is reckoned to be optimization problem whose
intent is maximization of noticing errors with minimization of
effort. GAs with specification can obtain results with superior
quality in lesser time [2]. Figure 6 shows, experiments have
been done on “program to find largest number” Inputs are
obtained by program’s specification.

Figure 2 Block representation of input to the program and
output obtained

Figure 2 shows block representation of program designed
to generate test cases. The program is to finding largest

Mohd Athar et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 181

number among inputted numbers. It is having multiple inputs
and one output variable.

Two central issues in process of evolution of genetic
search are population diversity and selective pressure. There
may be chances of converging early to local optimum
solutions if strong pressure is given on selection. On other
hand, weaker selection pressure may leads to unproductive
search and optimization [3]. Fitness is the key for selection of
parents. Fitter chromosomes have more likelihood to get
selected. Crossover works on two chromosomes which are
chosen as parents to construct two children. In this research
work [3], point crossover is employed; two parents are divided
partly, with both children getting half of each of parents.
Mutation is applied to amend genes in chromosome. For
example, let a chromosome be: ‘abdfag’, Mutation may pick
gene at position 2 and transform it to a ‘z’, thus, ensuing a new
chromosome: ‘azdfag’.

In the work done by Dhawan et.al.[3], test data for input
set is delimitated in terms of stipulations which illustrate valid
and invalid data values. Stipulations are determined from
program’s specification.
Role of fitness function to improve WBT

GA is used by WBT to search for precise test data which
give high coverage of SUT. Fitness function is necessary
feature of GA and is engineered on basis of SUT [10].
Objective function is used to construct fitness function which
is applied to sequent genetic ops. Intent of GA is to maximize
fitness function. If fitness function is modeled well,
probability of reaching higher coverage is enhanced
considerably. Based on CFG and requisite test aim, test
criteria are separated in different classes [10]:

• Node-oriented methods: It requires traversal of
particular nodes in CFG. Statement test and condition test can
be categorized in this class. Accomplishment of partial aim of
this method isn’t reliant on path executed in CFG.

• Path-oriented methods: It requires traversal of definite
path in CFG. This class comprise of every variation of path
test. Finding fitness functions for this class of test is less
sophisticated compare to node-oriented method.

Other test criteria can be node-path-oriented method and
node-node-oriented method [10]. Baresel et.al [10] separates
test into partial objectives and fitness functions are defined for
each partial objective, i.e., each statement corresponds partial
objective when applying coverage criterion. Ultimate goal of
fitness function can be summarized as:

 Substantially enhance chance of detecting solution
and attain improved coverage of SUT
 Reduce count of iterations to achieve optimization.

Intention of Baresel et.al [10] is to better formulation of
fitness functions, so that, evolutionary testing could be
enhanced by getting prominent coverage. It is difficult to
investigate reasons behind unsuccessfulness of optimizations
because of large search space and existence of many
dimensions.

Operators of GA

Execution of GA commence with stochastic population of
chromosomes. Fitness function assist evaluation of population
and reproductive chances is allowed to population which
symbolizes a more adept solution to problem. Chromosomes
having superior fitness value are selected by Selection
operator. Selection operator is crucial in GA. Jadaan et.al. [12]
has proposed altered Roulette Wheel Selection(RWS) to
reduce incertitude in selection process. RWS probabilistically
choose individuals based on their fitness values (F). Fittest
chromosome takes largest share within roulette wheel and
chromosome with least fitness value takes smallest share. A
random number is generated in interval [0, S] where S is ΣF,
chromosome whose segment is closer to random number is
picked.

II. MOTIVATION

Software testing is a principal technic which is employed
for bettering quality attributes of Software Under Test(SUT),
particularly reliability and correctness but is also regarded to
be tedious. This is also supposed to be intricate work.
Software testing suffers from the cognitive biasing of the
testers. Automation of testing is a proficient way which can
foreshorten time taken and cost incurred in software
development. It can also notably better the quality of software.

III. PROBLEM STATEMNT

“To automate generation of TS for each module of
SUT by applying GA that could give 100% code coverage”

Random generation of TS does not certify the traversal of
all segments of code. There may be odds that the code
segment which is not checked could end the program
abnormally. So, to obtain optimized TS from set of many
feasible TSs, GA is applied.

IV. APPROACH

Intent is to optimize TS which could give 100 % code
coverage. This optimization which is grounded on total code
coverage needs that inner composition of program is well-
known. Inner composition of program can be discovered by
Path testing in which a set of test-paths are selected in a
program. The different independent paths in the program could
be determined through CFG. An independent path is that path
in CFG that has one novel set of processing statements or novel
conditions. Test cases carrying the information of the path
covered by them are grouped together to form initial
population of chromosomes and GA is applied. In the end, TS
is obtained for each module that gives hundred per-cent code
coverage.

V. METHODOLOGY

Generating TS that guarantees full coverage of statements
in program, is complex task. There are also odds that more
than one test case in TS are checking same path. This
redundancy is not appreciated. It is imperative to have
optimized test data sets. In this section, GA is employed for
optimizing Path testing.

Mohd Athar et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 182

Figure 3 Block diagram of methodology
Figure 3 illustrates approach applied in this work to
accomplish the objective. Program analyzer analyzes the java
program and discovers all the modules in it. CFG generator
generates the CFG for each module. CFG is used to find CC
and total independent paths. Test cases are generated and
paths followed by them are found. The data regarding test
cases and path followed are put in a file. This file is utilized
when GA is employed. Each of the blocks is explicated fully
in this chapter.

Methodology is divided into two approaches:

 Testing
 Applying Genetic Algorithm

VI. SURVEY

Generation of chromosomes
Chromosomes are constituted by grouping genes. In GA,

chromosomes are optimized. In this work, TS need to be
optimized; TS is taken as chromosome, so, test cases are
genes. Test cases are randomly grouped to form
chromosomes. This grouping form feasible solutions which
are optimized to acquire best solution. Initially, size of
chromosome is equal to count of total independent paths.

Selection and Crossover operator
Chromosomes having superior fitness value are selected

by Selection operator. Reproduction of chromosomes is done
by mutation and crossover operator.

Selection operator
This operator is employed to choose parents for mating

pool. In this work, roulette selection wheel (RSW) is used as
selection operator.

Steps of RSW:

Step 1: Total fitness of all chromosomes in population is
calculated.

Step 2: Calculated accumulated frequency for each
chromosome.

Step 3: Spawn a random number between zero & total
sum of fitness

Step 4: [Loop] Find the sum of accumulated fitness of
chromosomes from 0. When sum is greater than random
number, return the chromosome.

In this way, parents are selected for mating pool.

Crossover operator
In this work, single point crossover is used.

Steps of single point crossover:

Step 1: Random points are selected in both the parents.
This divides the chromosomes into two haves each.

Step 2: Replace second half of first chromosome with
second half of second chromosome.

Step 3: Similarly, replace second half of second
chromosome with second half of first chromosome.

VII. RESULTS AND ANALYSIS

This section discusses regarding implementation of
problem statement and goals attempted to accomplish by
employing GA. Results got are analyzed graphically.
Snapshots have been taken of a sample problem resolved by
employing methodology discoursed in chapter 5. It also gives
clear picture of implementation.

A sample problem is taken which is a java program. Since
WBT is concerned with code structure not functionality, the
module is doing simple task of displaying some statements.

Figure 4 Sample problem
In first step, program is analyzed to discover the modules

in it. Figure 4 is showing the result of code analysis.

Figure 5 Output of Code Analyzer in TextArea
As depicted in figure 5, path of java file is given by

clicking on “click” button. Class and methods information are
displayed in “TextArea”. Information includes “class name”,
”methods in class”, “parameters of methods”. Code Analyzer
also writes output in a “*.txt” file, which is used to fetch line
numbers at which method definition exists.

Modules find by code analyzer is used by CFG generator
to build CFG. CFG generator fetches the line number from
where module begins from text file generated by code
analyzer.

Program Analyzer CFG GeneratorModules

Graph

Paths info. Determining cyclomatic complexity
and independent pathsTest cases

generationFile storing
info.

regarding test
cases and path

covered

Applying Genetic
Algorithm

Optimized
test suite

Mohd Athar et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 183

Figure 6 CFG of main module
Figure 6 shows the CFG of main module of sample

problem. Orange buttons are vertices of CFG and arrows are
edges of CFG. Arrows are labeled like “1:2” showing the flow
of control from vertex “1” to vertex “2”.

Figure 7 Displaying cyclomatic complexity and
independent paths of “main” module

As depicted in Figure 7 cyclomatic complexity of “main”
module is 11 and all the independent paths are displayed.

Next step is generation of random test cases. For each test
case, corresponding path in CFG is determined. Information
regarding the paths covered by test cases is stored in file.

(a) Test cases and path information are loaded from
file and initial population is set 30

(b) Initial population of chromosomes are generated.
Generation 1

(c) Redundant genes are removed

Mohd Athar et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 184

(d) Fitness values are calculated

1

(e) Displaying best chromosome at generation 1.
Selection and crossover are applied on population 1

(f) Displaying population at generation 2

(g) Displaying best chromosomes at different
generations.

Figure 8 GA steps to sample problem (a,b,c,d,e,f,g)

Figure 8 shows the implementation of GA on the sample
problem. In figure (a) information regarding genes is taken
from a file and initial population size is defined. In figure (b)
the initial populations of chromosomes are formulated from
the genes. In figure (c) redundancy of chromosomes are
removed. In figure (d), fitness of chromosomes are displayed.
Fitness is calculated by the fitness function as proposed in
methodology chapter. In figure (e), working of selection
operator and crossover operator are shown. In figure (f),
generation 2 is displayed obtained from generation 1 and by
applying the GA operators. Figure (g) shows best chromosome
of different generations.

Figure 9 Initial population vs Generation graph
Figure 9 shows graph of initial population taken and

number of generations taken to get an optimized solution.
Here initial chromosomes size is 11 and number of test cases
provided are 14. The graph shows if population is less, then,
GA takes more generations to optimize. But after certain limit,
if the population is increased then also GA doesn’t perform
well.

Figure 10 Generation vs Average fitness graph
Figure 10 shows graph between generation and average

fitness of population. Initial chromosome size is 11 and test
cases provided are 14 and population size is 30. It is noted that
with every passing generation, average fitness of population is
improving.

The same methodology is obtained on other problems
also.

Figure 11 Chromosome size vs. Generation graph

Mohd Athar et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 185

Figure 11 depicts graph between initial size of
chromosomes (x-axis) and number of generations (y-axis)
taken to get an optimized solution. Initial population is fixed
to 5. Chromosome’s size is unswervingly proportional to
intricacy of module. So, as the intricacy of module increases,
it takes more generations to obtain an optimized solution.

VIII. CONCLUSION AND LIMITATIONS

In this work, optimization of software testing is achieved
by employing GA and the process is automated. It results in
formulation of test suite for a module that gives 100 % code
coverage. The process of code analysis to find all modules in a
program, generation of CFG, finding cyclomatic complexity,
determination of all independent paths and GA steps are
automated. GA is employed on a set of different software
programs and analyses are done on results obtained which
decide performance of GA.

In this work, test cases are created manually and paths
followed by them are manually determined. RSW selection
operator is employed for selecting parents and single point
crossover is employed as crossover operator. In future, test
case generation from operational profile and path followed by
them in CFG can be automated. Other selection operators and
crossover operator can be applied and comparison can be
drawn between performances of different operators.

ACKNOWLEDGMENT

This paper could not be written to its fullest without the
guidance of Dr. Avdhesh Gupta, who served as my supervisor,
as well as one who challenged and encouraged me throughout
my time spent studying under him. He would have never
accepted anything less than my best efforts, and for that, I
thank him.

REFERENCES

[1] Bayliss, D. and Taleb-Bendiab, A.: 'A global optimisation
technique for concurrent conceptual design', Proc. Of
ACEDC'94, PEDC, University of Plymouth, UK., pp. 179-184,
1994

[2] BCS SIGIST (British Computer Society, Specialist Interest
Group in Software Testing): Glossary of terms used in software
testing, 1995

[3] DeMillo R. A. and Offutt A. J.: 'Experimental results from an
automatic test case generator', ACM Transactions on Software
Engineering and Methodology, Vol. 2, No. 2, pp. 109-127, April
1993

[4] Feldman, M. B. and Koffman, E. B.: 'ADA, problem solving and
program design', Addison-Wesley Publishing Company, 1993

[5] Frankl P. G. and Weiss S. N.: 'An experimental Comparison of
the effectiveness of branch testing and Data Flow Testing', IEEE
Transactions on Software Engineering, Vol. 19, No. 8, pp. 774-
787, August 1993

[6] Gallagher M. J. and Narasimhan V. L.: 'A software system for
the generation of test data for ADA programs', Micro processing
and Microprogramming, Vol. 38, pp. 637-644, 1993

[7] Gutjahr W.: 'Automatische Testdatengenerierung zur
Unterstuetzung des Software tests', Informatik Forschung und
Entwicklung, Vol. 8, Part 3, pp. 128-136, 1993

[8] Hills, W. and Barlow, M. I.: 'The application of simulated
annealing within a knowledge-based layout design system',
Proc. of ACEDC'94, PEDC, University of Plymouth, UK., pp.
122-127, 1994

[9] Holmes, S. T., Jones, B. F. and Eyres, D. E: 'An improved
strategy for automatic generation of test data', Proc. of Software
Quality Management '93, pp. 565-77, 1993

[10] Jin L., Zhu H. and Hall P.: 'Testing for quality assurance of
hypertext applications', Proceedings of the third Int. Conf. on
Software Quality Management SQM 95, Vol. 2, pp. 379-390,
April 1995

[11] Korel B.: 'Dynamic method for software test data
generation', Software Testing, Verification and Releliability,
Vol. 2, pp. 203-213, 1992

[12] Lucasius C. B. and Kateman G.: 'Understanding and using
genetic algorithms; Part 1. Concepts, properties and context',
Chemometrics and Intelligent Laboratory Systems, Vol. 19, Part
1, pp. 1-33, 1993

[13] Müllerburg, M.: 'Systematic stepwise testing: a method for
testing large complex systems', Proceedings of the third Int.
Conf. on Software Quality Management SQM 95, Vol. 2, pp.
391-402, April 1995

[14] O'Dare, M. J. and Arslan, T.: ' Generating test patterns for VLSI
circuits using a genetic algorithm', Electronics Letters, Vol. 30,
No. 10, pp. 778-779, February 1994

[15] Parmee, I. C. and Denham, M. J.: 'The integration of adaptive
search techniques with current engineering design practice',
Proc. of ACEDC'94, PEDC, University of Plymouth, UK., pp.
1-13, 1994

[16] Parmee I. C., Denham M. J. and Roberts A.: 'evolutionary
engineering design using the Genetic Algorithm', International
Conference on Design ICED'93 The Hague 17-19, August 1993

[17] Rayward-Smith, V. J. and Debuse, J. C. W.: 'Generalized
adaptive search techniques', Proc. of ACEDC'94, PEDC,
University of Plymouth, UK., pp. 141-145, 1994

[18] Reeves, C., Steele, N. and Liu, J.: 'Tabu search and genetic
algorithms for filter design', Proc. of ACEDC'94, PEDC,
University of Plymouth, UK., pp. 117-120, 1994

[19] Roberts, A. and Wade, G.: 'Optimization of finite wordlength
Filters using a genetic algorithm', Proc. of ACEDC'94, PEDC,
University of Plymouth, UK., pp. 37-43, 1994

[20] Roper, M.: 'Software testing', International software quality
assurance Series, 1994

[21] Schultz A. C., Grefenstette J. J. and DeJong K. A.: 'Test and
evaluation by Genetic Algorithms', U.S. Naval Res. Lab.
Washington D.C. USA, IEEE Expert, Vol. 8, Part 5, pp. 9-14,
1993

[22] Sthamer, H.-H., Jones, B. F. and Eryes, D. E.: 'Generating test
data for ADA generic Procedures using Genetic Algorithms',
Proc. of ACEDC'94, PEDC, University of Plymouth, UK., pp.
134-140, 1994

