
B. Karthikaet al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED

120

A Privacy-Preserving in Wireless Sensor Networks
using generalization and suppression methods

B.Karthika#1,J.K.Jeevitha*2

Assistant Professor,
Department of Information Technology,

PSNA College of Engineering and Technology
Dindigul,

Tamilnadu,
India.

1karthikabm@gmail.com
2selvajeeva31@gmail.com

Abstract— Monitoring personal locations with a potentially
untrusted server poses privacy threats to the monitored
individuals. This paper provides a formal presentation of
combining generalization and suppression to achieve k-
anonymity. Generalization involves replacing a value with a less
specific but semantically consistent value. Suppression involves
not releasing a value at all. The Preferred Minimal
Generalization Algorithm (MinGen), which is a theoretical
algorithm presented herein, combines these techniques to
provide k-anonymity protection with minimal distortion.

Index Terms— Location privacy, wireless sensor networks,
location monitoring system.

I.    INTRODUCTION

Today’s globally networked society places great demand on
the collection and sharing of person-specific data for many
new uses [1]. This happens at a time when more and more
historically public information is also electronically
available. When these data are linked together, they provide
an electronic image of a person that is as identifying and
personal as a fingerprint even when the information contains
no explicit identifiers, such as name and phone number.
Other distinctive data, such as birth date and postal code,
often combine uniquely[2] and can be linked to publicly
available information to re-identify individuals. So in today’s
technically-empowered data rich environment, how does a
data holder, such as a medical institution, public health
agency, or financial organization, share person-specific
records in such a way that the released information remain
practically useful but the identity of the individuals who are
the subjects of the data cannot be determined? One way to
achieve this is to have the released information adhere to k-
anonymity [3]. A release of data is said to adhere to k-
anonymity if each released record has at least (k-1) other

records also visible in the release whose values are indistinct
over a special set of fields called the quasi-identifier [4]. The
quasi-identifier contains those fields that are likely to appear
in other known data sets. Therefore, k-anonymity provides
privacy protection by guaranteeing that each record relates to
at least k individuals even if the released records are directly
linked (or matched) to external information.

This paper provides a formal presentation of achieving k-
anonymity using generalization and suppression.
Generalization involves replacing (or recoding) a value with
a less specific but semantically consistent value. Suppression
involves not releasing a value at all. While there are
numerous techniques available2, combining these two offers
several advantages. First, a recipient of the data can be told
what was done to the data. This allows results drawn from
released data to be properly interpreted. Second, information
reported on each person is “truthful” which makes resulting
data useful for fraud detection, counter-terrorism
surveillance, healthcare outcome assessments and other uses
involving traceable person-specific patterns3. Third, these
techniques can provide results with guarantees of anonymity
that are minimally distorted. Any attempt to provide
anonymity protection, no matter how minor, involves
modifying the data and thereby distorting its contents, so the
goal is to distort minimally. Fourth, these techniques can be
used with preferences a recipient of the released data may
have, thereby providing the most useful data possible. In this
way, algorithmic decisions about how to distort the data can
have minimal impact on the data’s fitness for a particular
task. Finally, the real-world systems Datafly [5] and m-Argus
[6], which are discussed in subsequent sections, use these
techniques to achieve k-anonymity. Therefore, this work
provides a formal basis for comparing them.
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II SYSTEM MODEL

Figure 1depicts the architecture of our system, where there
are three major entities, sensor nodes, server, and system
users. We will define the problem addressed by our system,
and then describe the detail of each entity and the privacy
model of our system

Problem definition: Given a set of sensor nodes s1; s2; : : : ;
sn with sensing areas a1; a2; : : : ; an, respectively,a set of
moving objects o1; o2; : : : ; om, and a required anonymity
level k, (1) we find an aggregate location for each sensor
node si in a form of Ri = (Areai ;Ni), where Areai is a
rectangular area containing the sensing area of a set of sensor
nodes Si and Ni is the number of objects residing in the
sensing areas of the sensor nodes in Si, (2) we build a spatial
histogram to answer an aggregate query Q that asks about the
number of objects in a certain area Q:Area based on the
aggregate locations reported from the sensor nodes.

Sensor node: Each sensor node is responsible for determining
the number of objects in its sensing area, blurring its sensing
area into a cloaked area A, which includes at least k objects,
and reporting A with the number of objects located in A as
aggregate location information to the server. We do not have
any assumption about the network topology, as our system
only requires a communication path from each sensor node to
the server through a distributed tree [8]. Each sensor node is
also aware of its location and sensing area.

Server: The server is responsible for collecting the aggregate
locations reported from the sensor nodes, using a spatial
histogram to estimate the distribution of the monitored
objects, and answering range queries based on the estimated
object distribution. Furthermore, the administrator can
change the anonymized level k of the system at anytime by
disseminating a message with a new value of k to all the
sensor nodes.

System users: Authenticated administrators and users can
issue range queries to our system through either the server or
the sensor nodes, as depicted in Figure 2. The server uses the
spatial histogram to answer their queries.

Privacy model: In our system, the sensor nodes constitute a
trusted zone, where they behave as defined in our algorithm
and communicate with each other through a secure network
channel to avoid internal network attacks, for example,
eavesdropping, traffic analysis, and malicious nodes [7], [9].
Since establishing such a secure network channel has been
studied in the literature [7],[9], the discussion of how to get
this network channel is beyond the scope of this paper.
However, the solutions that have been used in previous

works can be applied to our system. Our system also provides
anonymous communication between the sensor nodes and the
server by employing existing anonymous communication
techniques [10], [11]. Thus given an aggregate location R,
the server only knows that the sender of R is one of the
sensor nodes within R. Furthermore, only authenticated
administrators can change the k-anonymity level and the
spatial histogram size. In emergency cases, the administrators
can set the k-anonymity level to a small value to get more
accurate aggregate locations from the sensor nodes, or even
set it to zero to disable our algorithm to get the original
readings from the sensor nodes, in order to get the best
services from the system. Since the server and the system
user are outside the trusted zone, they are untrusted.

Since our system only allows each sensor node to report a
k-anonymous aggregate location to the server, the adversary
cannot infer an object's exact location with any delity. The
larger the anonymity level, k, the more difficult for the
adversary to infer the object's exact location. With the k-
anonymized aggregate locations reported from the sensor
nodes.This is a nice privacy-preserving feature, because the
object count of a small area is more likely to reveal personal
location information. The dentition of a small area is relative
to the required anonymity level, because our system provides
lower quality services for the same area if the anonymized
level gets stricter.

Fig.1:System Architecture.

III ANONYMIZATION METHODS
3.1. Generalization including suppression

The idea of generalizing an attribute is a simple concept. A
value is replaced by a less specific, more general value that is
faithful to the original. In Figure 2 the original ZIP codes
{02138, 02139} can be generalized to 0213*, thereby
stripping the rightmost digit and semantically indicating a
larger geographical area.

In a classical relational database system, domains are used
to describe the set of values that attributes assume. For
example, there might be a ZIP domain, a
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number domain and a string domain. We extend this notion
of a domain to make it easier to describe how to generalize
the values of an attribute. In the original database, where
every value is as specific as possible, every attribute is
considered to be in a ground domain. For example, 02139 is
in the ground ZIP domain, Z0.In order to achieve k-
anonymity we can make ZIP codes less informative. we do
this by saying that there is a more general, less specific
domain that can be used to describe ZIPs, say Z1, in which
the last digit has been replaced by 0 (or removed altogether).
There is also a mapping from Z0 to Z1, such as 02139
→0213*.

Given an attribute A, we say a generalization for an
attribute is a function on A.

That is, each f: A →B is a generalization.

is a generalization sequence or a functional generalization
sequence. Given an attribute A of a private table PT, I define
a domain generalization hierarchy DGHA for A as a set of
functions fh : h=0,…,n-1 such that:

A=A0 and |An| = 1. DGHA is over:

Clearly, the fh’s impose a linear ordering on the Ah’s where
the minimal element is the ground domain A0 and the
maximal element is An. The singleton requirement on An
ensures that all values associated with an attribute can
eventually be generalized to a single value. In this
presentation we assume Ah, h=0,…,n, are disjoint; if an
implementation is to the contrary and there are elements in
common, then DGHA is over the disjoint sum of Ah’s and
definitions change accordingly. Given a domain
generalization hierarchy DGHA for an attribute A, if viεAi
and vjεAj then I say vi ≤vj if and only if i ≤j and:

This defines a partial ordering ≤on:

Such a relationship implies the existence of a value
generalization hierarchy VGHA for attribute A. Here
expand the representation of generalization to include
suppression by imposing on each value generalization
hierarchy a new maximal element, atop the old maximal
element. The new maximal element is the attribute's
suppressed value. The height of each value generalization
hierarchy is thereby incremented by one. No other changes
are necessary to incorporate suppression. Figure 2 and Figure
3 provides examples of domain and value generalization
hierarchies expanded to include the suppressed maximal
element (*****). In this example, domain Z0 represents ZIP
codes for Cambridge, MA, and E0 represents race. From now
on, all references to generalization include the new maximal
element; and, hierarchy refers to domain generalization
hierarchies unless otherwise noted.

Figure 2 ZIP domain and value generalization hierarchies including
suppression

Figure 3 Race domain and value generalization hierarchies including
suppression

Given table PT, generalization can be effective in producing
a table RT based on PT that adheres to k-anonymity because
values in RT are substituted with their generalized
replacements. The number of distinct values associated with
each attribute is non-increasing, so the substitution tends to
map values to the same result, thereby possibly decreasing
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the number of distinct tuples in RT. Figure 4.a and 4.b are
example for generalization table.

A generalization function on tuple t with respect to A1,…,
An is a function ft on A1×…×An such that:


ft(A1,………,An)=(ft1(A1),……,fm(An))

where for each i: 1,…,n, fti is a generalization of the value
t[Ai]. The function ft is a set function. I say ft is generated by
the fti’s. Given f, A1,…,An, a table T(A1,…,An) and a tuple
tεT, i.e., t(a1,…,an) g(T)={k.f(t):tεT and|f-1(f(t)) |=k}

The function g is a multi-set function and f-1 is the inverse
function of f. We say that g is the multi-set function
generated by f and by the fi’s. Further, We say that g(T) is a
generalization of table T. This does not mean, however, that
the generalization respects the value generalization hierarchy
for each attribute in T. To determine whether one table is a
generalization with respect to the value generalization
hierarchy of each attribute requires analyzing the values
themselves.

Let DGHi be the domain generalization hierarchies for
attributes Ali where
i=1,…,An Let Tl[Al1,…,AlAn] and Tm[Am1,…,AmAn] be
two tables such that for each
i:1,..,n, Ali,AmiεDGHi. Then, We say table Tm is a
generalization of table Tl,
written Tl ≤Tm, if and only if there exists a generalization
function g such that g[Tl] = Tm and is generated by fi’s
where: tlTl, ali ≤fi(ali) = ami and fi : Ali→ Ami and
each fi is in the DGHi of attribute Ali. From this point
forward, I will use the term generalization (as a noun) to
denote a generalization of a table.

Figure 4.a Examples of generalized tables for PT

3.2. Algorithm for finding a minimal generalization with
minimal distortion

The algorithm presented in this section combines these
formal definitions into a theoretical model against which real-
world systems will be compared.
Figure 5 presents an algorithm, called MinGen, which, given
a table
PT(Ax,…,Ay), a quasi-identifier QI={A1,…,An}, where
{A1,…,An} Í {Ax,…,Ay}, a k-anonymity constraint, and
domain generalization hierarchies DGHAi, produces a table
MGT which is a k-minimal distortion of PT[QI]. It assumes
that k < |PT|, which is a necessary condition for the existence
of a k-minimal generalization

Figure 4.b Examples of generalized tables for PT

The steps of the MinGen algorithm are straightforward.
[step 1] Determine if the original table, PT, itself satisfies the
k-anonymity requirement; and if so, it is the k-minimal
distortion. In all other cases execute step 2. [step 2.1] Store
the set of all possible generalizations of PT over QI into
allgens. [step 2.2] Store those generalizations from allgens
that satisfy the k-anonymity requirement into protected. [step
2.3] Store the k-minimal distortions (based on Prec) from
protected into MGT. It is guaranteed that |MGT| ³ 1. [step 2.4]
Finally, the function preferred() returns a single k-minimal
distortion from MGT based on user-define specifications.
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Figure5 Examples of generalized tables for PT
IV   CONCLUSION

In this paper, we propose a privacy-preserving location
monitoring system for wireless sensor networks. We design
two in-network location anonymization methods
generalization and suppression methods.
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