
Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1288

Effective Use of HTML5 for Developing Offline
Web Applications

K. Ram Sandilya1, Ramidi Sudheer2, Velagapudi Sreenivas3, K V D Kiran4

IV/IV B.Tech, Department of CSE, K L University, Andhra Pradesh, India
1sandy.kambhampati@gmail.com

IV/IV B.Tech, Department of CSE, K L University, Andhra Pradesh, India
2sudheerfriend01@gmail.com

Asst Professor, Department of CSE, K L University, Andhra Pradesh, India
3velagapudi@kluniversity.in

Asst Professor, Department of CSE, K L University, Andhra Pradesh, India
4 kiran_cse@kluniversity.in

Abstract[1][2]- One of the major constraints of web
applications has always been connectivity. We imagined
leveraging the browser to bring fully competent web
applications to the desktop, but failed due to the lack of decent
browser support. Although there were some caching
techniques available before, they were never really designed
with the intention of making web applications run completely
offline, making them fragile and complex to set up. HTML5
tries to make up for this missing browser capability by
introducing the offline application cache; a more reliable way
to make web applications truly available even offline. With
the offline capabilities and local persisted storage features,
you can deliver the same rich user experiences online and
offline that were previously available only in proprietary
desktop application development frameworks

Key words – HTML5, Offline Browsing, Web application,
Web DB.

I. INTRODUCTION

HTML 5 is the most recent version of Hyper Text
Markup Language (HTML), a language proposed by Opera
Software for Web (World Wide Web) content presentation.
HTML5 covers the features of HTML4, XHTML 1 and
DOM2HTML. It is a formatting language that programmers
and developers use to create documents on the Web. With a
number of new elements, attributes, 2D and 3D graphics,
video, audio elements, local Storage facility, local SQL
database support and a lot more exciting features, HTML 5
has brought a monumental change in World Wide Web.
HTML 5 is nothing but using shorthand for continuous
innovation in a client-centered application with new tags on a
general development framework with CSS3 and JavaScript. It
supports both desktop deployment and mobile deployment.
Smart phones like Apple iPhone, Google Android, and phones
running Palm WebOS have gained huge popularity with
HTML 5 based rich Web applications. HTML 5 contains a

number of new and easily understood elements in various
areas. Some of these are as follows:
HTML controls used in UI Multimedia file supports like video
and audio Database support like local SQL database
A number of new Application Programming Interfaces (APIs)
These elements can be used in interactive websites with little
customization to add an attractive effect and enhance the
performance.
Apart from the above features, the beauty of HTML5 comes
with the fact that it supports the development of Web
applications that can be used in offline mode when there is not
a prolonged and constant access to the internet due to usage
policies like social networking APIs (such as Facebook,
Twitter and so on).To store the data locally and to allow the
applications to run offline, HTML5 provides three different
APIs and these are:
Web storage: Can be used for basic local storage with key-
value pairs
Offline storage: Can be used to save files for offline use Index
DB: Supports relational database storage.

Fig 1. Storage architecture of a web application

There are primarily two offline capabilities in
HTML5: application caching and offline storage (or "client-
side storage"). The distinction is core application logic versus
data. Application caching involves saving the application's
core logic and user-interface. Offline storage is about



Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1289

capturing specific data generated by the user, or resources the
user has expressed interest in.

Web application capabilities are always been
dependent on connectivity. At its simplest, an offline web
application is a list of URLs — HTML, CSS, JavaScript,
images, or any other kind of resource. The home page of the
offline web application points to this list, called a manifest
file, which is just a text file located elsewhere on the web
server.

II. PRELUDE TO OFFLINE WEB APPLICATION API
AND WEB STORAGE API

To give the user the experience of the seamless Web
browsing, most of the browsers provide the facility of
caching. But caching suffers from the following limitations:

 Developers do not have any control over the pages to
be cached. Hence they cannot cache all the files of
any specific application.

 It does not provide a reliable way for you to access
pages while you are in offline mode (for example,
Airplanes).

To overcome the above limitations, HTML5 comes up with
the concept of Offline Web application API (App Cache)
which provides the following features:[3]

 The user can use cloud functions on a mobile device,
work offline with a locally deployed application on a
local database, and share data with the rest of the
cloud when going online again.

 App Cache caches only the specified pages that are
included in the manifest file and hence it is reliable.

 With a higher degree of certainty, it gives the user
the control of the way the Web applications should
look when offline.

WEB STORAGE API

[4]To overcome the limitations of cookies, Web
storage APIs are being introduced in HTML5 that can be used
to store the data locally on the user's machine. This API
allows the developers to store the data in the form of KEY-
VALUE pairs that can be accessed by the Web applications
through scripting. Web storage works exclusively with client
side scripting where data can be transmitted to the server on
requirement basis and a Web server cannot write the data to
Web storage as well.

Fig 2. Data stored by a web browser
HTTP Cookies versus Webstorage API

 HTTP Cookies suffer from limited data storage (e.g.
4KB), whereas the data storage capacity of
Webstorage API for most of the browsers is 5MB as
per w3c specification with an exception to IE8 (and
upwards) that supports up to 10MB.

 Cookies limit the accessibility of data to a certain
domain name or a URL path where as Webstorage
can limit the access to a certain domain name, or to
domain TLD (like .org) or for the given user session.

 It is possible to iterate through all the key/value pairs
in HTTP cookies, whereas in Webstorage, it is not
possible to iterate through keys unless the key is
known.

 Data stored in cookies are passed on by every request
to the server, making it very slow and ineffective.

 However, the Webstorage API data is not passed on
by every server request and used only when asked.

 Webstorage is more public then cookies. This is the
reason why we need to take special precautions to
ensure the security.

III. THE CACHE MANIFEST

[5]An offline web application revolves around a
cache manifest file. The cache manifest in HTML5 is a
software storage feature which provides the ability to access a
web application even without a network connection. In order
to bootstrap the process of downloading and caching these
resources, you need to point to the manifest file, using
a manifest attribute on your <html>element.

Web applications consist of web pages that need to be
downloaded from a network. For this to happen there must be
a network connection. However there are many instances
when users cannot connect to a network due to reasons
beyond their control. HTML5 provides the ability to access
the web application even without a network connection using

Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1289

capturing specific data generated by the user, or resources the
user has expressed interest in.

Web application capabilities are always been
dependent on connectivity. At its simplest, an offline web
application is a list of URLs — HTML, CSS, JavaScript,
images, or any other kind of resource. The home page of the
offline web application points to this list, called a manifest
file, which is just a text file located elsewhere on the web
server.

II. PRELUDE TO OFFLINE WEB APPLICATION API
AND WEB STORAGE API

To give the user the experience of the seamless Web
browsing, most of the browsers provide the facility of
caching. But caching suffers from the following limitations:

 Developers do not have any control over the pages to
be cached. Hence they cannot cache all the files of
any specific application.

 It does not provide a reliable way for you to access
pages while you are in offline mode (for example,
Airplanes).

To overcome the above limitations, HTML5 comes up with
the concept of Offline Web application API (App Cache)
which provides the following features:[3]

 The user can use cloud functions on a mobile device,
work offline with a locally deployed application on a
local database, and share data with the rest of the
cloud when going online again.

 App Cache caches only the specified pages that are
included in the manifest file and hence it is reliable.

 With a higher degree of certainty, it gives the user
the control of the way the Web applications should
look when offline.

WEB STORAGE API

[4]To overcome the limitations of cookies, Web
storage APIs are being introduced in HTML5 that can be used
to store the data locally on the user's machine. This API
allows the developers to store the data in the form of KEY-
VALUE pairs that can be accessed by the Web applications
through scripting. Web storage works exclusively with client
side scripting where data can be transmitted to the server on
requirement basis and a Web server cannot write the data to
Web storage as well.

Fig 2. Data stored by a web browser
HTTP Cookies versus Webstorage API

 HTTP Cookies suffer from limited data storage (e.g.
4KB), whereas the data storage capacity of
Webstorage API for most of the browsers is 5MB as
per w3c specification with an exception to IE8 (and
upwards) that supports up to 10MB.

 Cookies limit the accessibility of data to a certain
domain name or a URL path where as Webstorage
can limit the access to a certain domain name, or to
domain TLD (like .org) or for the given user session.

 It is possible to iterate through all the key/value pairs
in HTTP cookies, whereas in Webstorage, it is not
possible to iterate through keys unless the key is
known.

 Data stored in cookies are passed on by every request
to the server, making it very slow and ineffective.

 However, the Webstorage API data is not passed on
by every server request and used only when asked.

 Webstorage is more public then cookies. This is the
reason why we need to take special precautions to
ensure the security.

III. THE CACHE MANIFEST

[5]An offline web application revolves around a
cache manifest file. The cache manifest in HTML5 is a
software storage feature which provides the ability to access a
web application even without a network connection. In order
to bootstrap the process of downloading and caching these
resources, you need to point to the manifest file, using
a manifest attribute on your <html>element.

Web applications consist of web pages that need to be
downloaded from a network. For this to happen there must be
a network connection. However there are many instances
when users cannot connect to a network due to reasons
beyond their control. HTML5 provides the ability to access
the web application even without a network connection using

Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1289

capturing specific data generated by the user, or resources the
user has expressed interest in.

Web application capabilities are always been
dependent on connectivity. At its simplest, an offline web
application is a list of URLs — HTML, CSS, JavaScript,
images, or any other kind of resource. The home page of the
offline web application points to this list, called a manifest
file, which is just a text file located elsewhere on the web
server.

II. PRELUDE TO OFFLINE WEB APPLICATION API
AND WEB STORAGE API

To give the user the experience of the seamless Web
browsing, most of the browsers provide the facility of
caching. But caching suffers from the following limitations:

 Developers do not have any control over the pages to
be cached. Hence they cannot cache all the files of
any specific application.

 It does not provide a reliable way for you to access
pages while you are in offline mode (for example,
Airplanes).

To overcome the above limitations, HTML5 comes up with
the concept of Offline Web application API (App Cache)
which provides the following features:[3]

 The user can use cloud functions on a mobile device,
work offline with a locally deployed application on a
local database, and share data with the rest of the
cloud when going online again.

 App Cache caches only the specified pages that are
included in the manifest file and hence it is reliable.

 With a higher degree of certainty, it gives the user
the control of the way the Web applications should
look when offline.

WEB STORAGE API

[4]To overcome the limitations of cookies, Web
storage APIs are being introduced in HTML5 that can be used
to store the data locally on the user's machine. This API
allows the developers to store the data in the form of KEY-
VALUE pairs that can be accessed by the Web applications
through scripting. Web storage works exclusively with client
side scripting where data can be transmitted to the server on
requirement basis and a Web server cannot write the data to
Web storage as well.

Fig 2. Data stored by a web browser
HTTP Cookies versus Webstorage API

 HTTP Cookies suffer from limited data storage (e.g.
4KB), whereas the data storage capacity of
Webstorage API for most of the browsers is 5MB as
per w3c specification with an exception to IE8 (and
upwards) that supports up to 10MB.

 Cookies limit the accessibility of data to a certain
domain name or a URL path where as Webstorage
can limit the access to a certain domain name, or to
domain TLD (like .org) or for the given user session.

 It is possible to iterate through all the key/value pairs
in HTTP cookies, whereas in Webstorage, it is not
possible to iterate through keys unless the key is
known.

 Data stored in cookies are passed on by every request
to the server, making it very slow and ineffective.

 However, the Webstorage API data is not passed on
by every server request and used only when asked.

 Webstorage is more public then cookies. This is the
reason why we need to take special precautions to
ensure the security.

III. THE CACHE MANIFEST

[5]An offline web application revolves around a
cache manifest file. The cache manifest in HTML5 is a
software storage feature which provides the ability to access a
web application even without a network connection. In order
to bootstrap the process of downloading and caching these
resources, you need to point to the manifest file, using
a manifest attribute on your <html>element.

Web applications consist of web pages that need to be
downloaded from a network. For this to happen there must be
a network connection. However there are many instances
when users cannot connect to a network due to reasons
beyond their control. HTML5 provides the ability to access
the web application even without a network connection using



Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1290

the cache manifest.

File headers:

The cache manifest file consists of three section headers.

1. Explicit section with the header CACHE.
2. Online whitelist section with the header NETWORK.
3. Fallback section with the header FALLBACK.

Cache manifest file can be located anywhere on web server,
but it must be served with the content type text/cache-
manifest.

Example for Cache Manifest:
/test.css

/test.js

/test.png

Example for Cache Manifest Network:

/checking.cgi

CACHE: /test.css

/test.js

/test.png

Example for Cache Manifest Fallback:

/ /offline.html

NETWORK:

…

IV. THE FLOW OF EVENTS

[6]In offline web applications, the cache manifest,
and the offline application cache (“appcache”) are semi-
magical terms. First, we have to consider flow of events.
Specifically, DOM events. When browser visits a page that
points to a cache manifest, it fires off a series of events on
the window.applicationCache object.

1. As soon as the browser notices a manifest attribute
on the <html> element, it fires a checking event. (All
the events listed here are fired on
the window.applicationCache object.)

The checking event is always fired, regardless of
whether we have previously visited this page or any
other page that points to the same cache manifest.

2. If browser has never seen this cache manifest
before...

 It will fire a downloading event, then start to
download the resources listed in the cache
manifest.

 While it’s downloading, your browser will
periodically fire progress events, which
contain information on how many files have
been downloaded already and how many
files are still queued to be downloaded.

3. After all resources listed in the cache manifest have
been downloaded successfully, the browser fires one
final event, cached.

Fig 3. Flow Diagram of cache manifest

4. On the other hand, if a previously visited this page or
any other page that points to the same cache
manifest, then your browser already knows about this
cache manifest. It may already have some resources
in the appcache. It may have the entire working
offline web application in the appcache. So now the
question is, has the cache manifest changed since the
last time browser checked it?

o If the answer is no, the cache manifest has
not changed, browser will immediately fire
a noupdate event and work is done.

Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1290

the cache manifest.

File headers:

The cache manifest file consists of three section headers.

1. Explicit section with the header CACHE.
2. Online whitelist section with the header NETWORK.
3. Fallback section with the header FALLBACK.

Cache manifest file can be located anywhere on web server,
but it must be served with the content type text/cache-
manifest.

Example for Cache Manifest:
/test.css

/test.js

/test.png

Example for Cache Manifest Network:

/checking.cgi

CACHE: /test.css

/test.js

/test.png

Example for Cache Manifest Fallback:

/ /offline.html

NETWORK:

…

IV. THE FLOW OF EVENTS

[6]In offline web applications, the cache manifest,
and the offline application cache (“appcache”) are semi-
magical terms. First, we have to consider flow of events.
Specifically, DOM events. When browser visits a page that
points to a cache manifest, it fires off a series of events on
the window.applicationCache object.

1. As soon as the browser notices a manifest attribute
on the <html> element, it fires a checking event. (All
the events listed here are fired on
the window.applicationCache object.)

The checking event is always fired, regardless of
whether we have previously visited this page or any
other page that points to the same cache manifest.

2. If browser has never seen this cache manifest
before...

 It will fire a downloading event, then start to
download the resources listed in the cache
manifest.

 While it’s downloading, your browser will
periodically fire progress events, which
contain information on how many files have
been downloaded already and how many
files are still queued to be downloaded.

3. After all resources listed in the cache manifest have
been downloaded successfully, the browser fires one
final event, cached.

Fig 3. Flow Diagram of cache manifest

4. On the other hand, if a previously visited this page or
any other page that points to the same cache
manifest, then your browser already knows about this
cache manifest. It may already have some resources
in the appcache. It may have the entire working
offline web application in the appcache. So now the
question is, has the cache manifest changed since the
last time browser checked it?

o If the answer is no, the cache manifest has
not changed, browser will immediately fire
a noupdate event and work is done.

Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1290

the cache manifest.

File headers:

The cache manifest file consists of three section headers.

1. Explicit section with the header CACHE.
2. Online whitelist section with the header NETWORK.
3. Fallback section with the header FALLBACK.

Cache manifest file can be located anywhere on web server,
but it must be served with the content type text/cache-
manifest.

Example for Cache Manifest:
/test.css

/test.js

/test.png

Example for Cache Manifest Network:

/checking.cgi

CACHE: /test.css

/test.js

/test.png

Example for Cache Manifest Fallback:

/ /offline.html

NETWORK:

…

IV. THE FLOW OF EVENTS

[6]In offline web applications, the cache manifest,
and the offline application cache (“appcache”) are semi-
magical terms. First, we have to consider flow of events.
Specifically, DOM events. When browser visits a page that
points to a cache manifest, it fires off a series of events on
the window.applicationCache object.

1. As soon as the browser notices a manifest attribute
on the <html> element, it fires a checking event. (All
the events listed here are fired on
the window.applicationCache object.)

The checking event is always fired, regardless of
whether we have previously visited this page or any
other page that points to the same cache manifest.

2. If browser has never seen this cache manifest
before...

 It will fire a downloading event, then start to
download the resources listed in the cache
manifest.

 While it’s downloading, your browser will
periodically fire progress events, which
contain information on how many files have
been downloaded already and how many
files are still queued to be downloaded.

3. After all resources listed in the cache manifest have
been downloaded successfully, the browser fires one
final event, cached.

Fig 3. Flow Diagram of cache manifest

4. On the other hand, if a previously visited this page or
any other page that points to the same cache
manifest, then your browser already knows about this
cache manifest. It may already have some resources
in the appcache. It may have the entire working
offline web application in the appcache. So now the
question is, has the cache manifest changed since the
last time browser checked it?

o If the answer is no, the cache manifest has
not changed, browser will immediately fire
a noupdate event and work is done.



Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1291

o If the answer is yes, the cache
manifest has changed; browser will fire
a downloading event and start re-
downloading every single resource listed in
the cache manifest.

o While it’s downloading, browser will
periodically fire progress events, which
contain information on how many files have
been downloaded already and how many
files are still queued to be downloaded.

o After all resources listed in the cache
manifest have been re-downloaded
successfully, the browser fires one final
event, updateready. This is a signal, that the
new version of offline web application is
fully cached and ready to be used
offline. The new version is not yet in
use. To “hot-swap” to the new version
without forcing the user to reload the page,
you can manually call
the window.applicationCache.swapCache()
function.

V. STEPS TO FOLLOW FOR CREATING OFFLINE WEB
APPLICATION

Checking Browser Compatibility

Due to the variation in browser support, first we should check
the compatibility of the browser before availing an application
offline.

It can be done in two ways:

 Without using Modernizer Object
 Using the Modernizer Object

Creating a manifest file

This file resides on the server and decides which files
should be stored client-side in the browser's AppCache, that
can be used when the user goes offline .This file contains a list
of URLs to various resources such as Javascript files, HTML
CSS, images and flash files. The manifest file has a basic
structure that should start with CACHE MANIFEST. File
names must be listed exactly as they appear on disk as it is
case sensitive.

Using the Application Cache API

To use the files from application cache, we can use
the application Cache API. The “window.applicationCache”
object provides events and properties that can be used to deal
with data retrieval. Current status of the application cache can
be checked using window.applicationCache.status.

Events

Certain events also get fired, depending on what is
going on with the AppCache at the moment.

Add the manifest file to the local server

Once the .manifest file is created we need to add that
file to the root Web directory of our application. The directive
makes sure that every manifest file is served.

Linking manifest file to html page

The manifest file once created can be added to the
html pages with the help of “manifest” attribute of the <html>
element.

VI. RISKS INVOLVED IN OFFLINE WEB APPLICATION

[7]Although the offline web application is a serious
advantage. The menace in building this kind of applications is
if even a single resource listed in your cache manifest file fails
to download properly, the entire process of caching your
offline web application will fail. Your browser will fire the
error event, but there is no indication of what the actual
problem was. The second important point is something that is
not an error, but it will look like a serious browser bug until
we realize what’s going on. It has to do with exactly how
browser checks whether a cache manifest file has changed.
These issues are making the offline web applications unstable.

VII.BROWSER’S SUPPORT FOR OFFLINE
APPLICATIONS

As HTML is a client-oriented technology, the

features that are supported always depend on the client

browser itself.[8] As with many of the features of HTML5,

not all browsers support the offline web application caching

feature. Below is the list of prominent browsers that do

support the offline feature.

1. Chrome 5.0 and more

2. Safari 4.0 and more



Ram et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1292

3. Firefox 3.5 and more

Offline Web Application API is fully supported by most

modern browsers and mobile phones including:

 Android 2.0+

 I Phone 2.1+

 Blackberry 5.0+

 Firefox 3.5+

 Chrome 5.0+

 Opera 10.6+

 Safari 4.0+

VIII.ADVANTAGES OF OFFLINE WEBAPPLICATIONS:

 Used to view and write e-mail message
 Documents and presentations can be edited offline, in

places that does not have Wi-Fi.
 Game state, navigation location, or storing some

specific information that can be used across the entire
Web application

 Intimating the user about the changes done (for
example, account no.) if the same page is opened in
multiple tabs.

IX.CONCLUSION:

At this point of time, support for the development of
offline Web applications under the light of HTMl5 has limited
scope and is not supported by most of the browsers available
in the market. Different browser providers are following
different approaches to achieve the same. This approach is
also suffering from the size constraint as per browser
implementation. However, going forward, it is expected that
these APIs will be supported by almost all the leading
browsers so that there will be a unified approach for the
implementation and users can get the best out of these.

X. REFERENCES:

[1] "Mac Developer Library: System-Declared Uniform Type
Identifiers". Apple. 2009-11-17.

[2] "HTML5 Differences from
HTML4". WorkingDraft. World Wide Web Consortium.

[3] http://viralpatel.net/blogs/2010/10/introduction-html5-
domstorage-api-example.html

[4] http://dev.opera.com/articles/view/offline-applications-
html5-appcache/

[5] Dion Almaer, “How to take your Web Application Offline
with Google Gears”,

[6] Google System Blog, “YouTube Uploader Powered by
Gears”,

[7] Wordpress Security, “How to enable Google Gears in
WordPress2.7”,

[8] Google, “Google Reader – Offline reading”,


