
Prateek et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1208

Optimizing Aggregation Query Processing
Prateek Singhal1, Velagapudi Sreenivas2, K V D Kiran3

IV/IV B.Tech, Department of CSE, K L University, Andhra Pradesh, India
1srkprateek@gmail.com

Asst Professor, Department of CSE, K L University, Andhra Pradesh, India
2velagapudi@kluniversity.in

Asst Professor, Department of CSE, K L University, Andhra Pradesh, India
3 kiran_cse@kluniversity.in

Abstract-The selection query has been one of the most
widely used queries in databases. For instance, find the gas
stations that are within a given spatial range. Such queries
select a subset of records from a large collection of data
based on a given selection condition. A straightforward
approach to solve the selection-based aggregation problem
is: first find all the records that satisfy the selection
condition and then perform the aggregation on-the-fly.
The problem with this approach is that the query
performance is at least linear to the size of the selection
result. If many records satisfy the selection condition, the
performance is not satisfactory. A better approach is to
build some specialized index which can help compute the
aggregation result without scanning through the records.

Key words – Aggregation, Query, Hierarchical Temporal
Aggregation, Optimizing, Box Model.

I. INTRODUCTION

The first aggregation problem we address in this
paper is temporal aggregation. With the rapid increase of
historical data in data warehouses, temporal aggregates have
become predominant operators for data analysis. Computing
temporal aggregates is a significantly more intricate problem
than traditional aggregation without the time dimension. This
is because each database tuple is accompanied by a time
interval during which its attribute values are valid.
Consequently, the value of a tuple attribute affects the
aggregate computation for all those instants included in the
tuple’s time interval. Many approaches have been recently
proposed to address temporal aggregation queries. Earlier
work focused on the instantaneous temporal aggregation
problem, i.e. compute the aggregate value over objects whose
time intervals contains a query time instant.

II PROBLEM DEFINITION

2.1 Range-Temporal Aggregation

RTA given a set of temporal records, each having a
key, a time interval and a value, compute the total value of
records whose keys are in a given range and whose intervals

intersect a given time interval. Our approach [3] is the first
which addresses this problem. To solve the RTA problem
using the previous approaches, we would need to maintain a
separate index for each possible key range, which is
prohibitively expensive. We proposed a new index structure
called the Multi-version SB-tree (MVSB-tree) and we were
able to prove the following theorem:

Theorem 1. Using the MVSB-tree, a SUM, AVG, COUNT
RTA query is answered in O(logb n) I/Os. The
insertion/deletion cost is O(logb K) while the space
complexity is O(nb ¢ logb K). Here n is the total number of
insertions, K is the number of different keys ever inserted, and
b is the page capacity in number of records. The approach has
much better query performance than the existing approach
which indexes all the temporal records in an index structure
since the approach has guaranteed worst-case logarithmic
performance, while the existing approach has linear query
complexity. More details of the solution appear in [4].

2.2 Hierarchical Temporal Aggregation

We are interested in computing temporal aggregates
(both with and without the key-range predicate) with fixed
storage space. Since historical data accumulates over time,
while with fixed storage space we cannot keep all of them, we
have to live with storing partial information. One approach is
to keep just the most recent information. However, it leads to
lose of the ability to answer queries for the past. Another
approach is to aggregate all information at coarser granularity
(e.g. instead of aggregating on days, aggregate on months).
However, this approach leads to lose of aggregation details. In
[5], a proposal is made to maintain the temporal aggregates
under multiple granularities, with more recent information
being aggregated at finer granularities. Initially, all
information are aggregated at the finest granularity (e.g. by
day). As time advances, the storage size of the aggregate
information at the finest granularity increases. If we have
fixed storage space, once and a while we need to shrink the
storage size by removing part of the aggregated information
and aggregate it at coarser granularity (e.g. by month). Our
proposed structure (the 2SB-treeFS) systematically aggregates
information at coarser granularities to keep the index size
within a given limit.

Prateek et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1209

III. THE SIMPLE BOX-SUM PROBLEM

We differentiate between two types of objects: point
and box objects. Given two d-dimensional points
x = (x1, · · · , xd) and y = (y1, · · · , yd), we say that x
dominates y if for every i ∈ {1, · · · , d}, xi ≥ yi. A
dimensional box b can be described by two corner points: a
low point which is dominated by all other corner points of b
and a high point which dominates all other corner points of b.
The d-dimensional space is itself a box whose low point and
high point are represented as pmin and pmax, respectively.
Each object has a value which is used for the aggregation. We
refer to the following aggregations:

 (simple) box-sum: given a collection Sb of box
objects and a query box q, compute SUM{o.value|o
∈ Sb and o.box intersects q};

 range-sum: given a collection Sp of point objects
and a query box q, compute SUM{o.value|o ∈ Sp
and o .point is contained in q};

 dominance- sum: given a collectionSp of point
objects and a query point p, compute SUM{ o.value|o
∈ Sp and o. point is dominated by p}.

The box-sum problem is the most general since, (i) the range-
sum problem is a special case of the box-sum when the box of
each object reduces into a point, and, (ii) the dominance-sum
problem is a special case of the range-sum problem with query
box q = (pmin, p). The COUNT aggregation problems
(box-count, range-count and dominance count) are special
cases of the SUM aggregations, when the value of every
object is 1.

Fig 1. Existing technique reduces a box-sum query into
eight dominance-sum queries.

Since it is easy to maintain the sum of all objects, to
find the sum of objects intersecting a query box, it is
enough to compute the sum of objects NOT intersecting
the query box. These objects must be either above,
below, to the left of, or to the right of the query box. To
find the sum of objects which are to the left of the query
box can be done via a 1- dimensional dominance-sum

query. I.e. if we maintain the higher x of all objects, the
task is to find the dominance- sum regarding the lower x
of the query box. Similarly, we can compute the sum for
objects above, below, and to the right of the query box. If
we add up these results, we get a value larger than the
anticipated box-sum. The reason is that any object which
resides in the regions A, B, C or D is counted twice. We
note that the sum in each of these areas can be answered
by a 2-dimensional dominance-sum query. Hence, a 2-
dimensional box-sum query is reduced to four 1-
dimensional and four 2-dimensional dominance-sum
queries.

3.1 Temporal Aggregation with Fixed Storage

[1] proposed two approaches to incrementally
maintain temporal aggregates. Both approaches rely on
using two SB-trees collectively.[6] In this section we first
propose a slightly different approach and then we present
a technique to extend the approach under the fixed
storage model.

3.2 The 2SB-tree

A single SB-tree as proposed in [YW01] can be used
to maintain instantaneous temporal aggregates. One
feature about the SB-tree is that a deletion in the base
table is treated as an insertion with a negative value.
Thus in the rest we focus on the insertion operation.
[YW01] also proposed two approaches to maintain the
cumulative temporal aggregate. The first approach is
called Dual SB-tree. Two SB-trees are kept. One
maintains the aggregates of records valid at any given
time, while the other maintains the aggregates of records
valid strictly before any given time.[7] The latter SB-tree
can be implemented via the following technique:
whenever a database tuple with interval i is inserted in
the base table, an interval is inserted into the SB-tree
with start time being i.end and end time being +∞. To
compute the aggregation query with query interval I the
approach first computes the aggregate value at i.end It
then adds the aggregate value of all records with
intervals strictly before i.end and finally subtracts the
aggregate value of all records with intervals strictly
before i.start.

The second approach is called the JSB-tree.
Logically, two SB-trees are again maintained. One
maintains the aggregates of records valid strictly before
any given time, while the other maintains the aggregates
of records valid strictly after any given time. Physically,
the two SB-trees can be combined into one tree, where
each record keeps two aggregate values rather than one.

Prateek et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1210

To compute an aggregate with query interval i, we find
the total value of records whose start times are less than
i.end and then subtract the total value of records whose
end times are less than i.start. Note that each such SB-
trees takes as input, besides a value, a point instead of an
interval. The point implies an interval from it to +∞.
Compared with the Dual SB-tree, to answer an
aggregation query we need to perform two SB-tree
traversals instead of three. Compared with the JSB-tree
approach, there is no need to maintain the total weight of
all records, and the two SB-trees have unified point
input. In the JSB-tree, we can also let the two SB-trees
take point input; however, the input points have different
meanings for the two trees. In one tree, it implies an
interval from -∞ to the point, while in the other tree, it
implies an interval from the point to +∞.

IV.PERFORMANCE ANALYSIS

We use SB FTW to represent the 2SB-tree with fixed
time window. Figure [3] compares the index generation
time while varying the by-minute window size. The
single-granularity indices SB day and SB min are not
affected when the by-minute window size varies.[8] As
expected, the SB day takes the shortest time to generate,
while the SB min takes the longest time. The generation
time of the SB FTW is between the other two (11 times
less than that of the SB min for 1% window size). As the
by-minute window size becomes larger, the generation
time of the SB FTW tends to be longer, too. The effect
of the size of the by-minute window on the generation
time is twofold.

Fig 2.Index sizes of temporal aggregation with fixed
time window.

Fig 3. Generation and query time of temporal
aggregation with fixed storage.

A larger window size means that the dividing time is
increased less often. On the other hand, a larger window
implies that the sizes of the indices which exist after the
dividing time are larger and thus the updates in them
take longer. The combined effect is shown in figure [2].
As shown in figure [4], the SB FTW and the SB day
have similar query performance which is much faster
than that of the SB min. For 1% window size, the SB
FTW is 30 times faster than the SB min.[9] The SB
FTW is preferred over the SB day since for the recent
history; the SB FTW has the ability to aggregate at a
finer granularity.

Fig 4. Performance of the range temporal aggregation
with fixed time window, varying number of keys.

4.1 Performance of Spatio-Temporal Aggregation with
Fixed Time Window

We use BA FTW to represent our spatio-temporal
aggregation index with fixed time window while BA day
and BA min denote the corresponding single-granularity
indices. For the data sets we generated, besides the time
dimension there are two spatial dimensions. The number
of different locations per spatial dimension varies from
50 to 1000. Again, the by-minute window size is set to
10% of the time space,as the number of locations per
spatial dimension increases, both the index sizes and the
query time of the indices become larger. The reason is
that the BA-tree is sensitive to the number of different
spatial locations a point object may reside at. This is

Prateek et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1211

more apparent with the BA FTW since to perform a
query, besides the main index, we also query a separate

V. BOX MAX AGGREGATION

We focus on the MAX aggregation and the
techniques we propose can be directly applied to
compute MIN aggregates. More formally, the problem
we focus on is defined as follows .box-max: given a
collection S of box objects and a query box q, compute
MAX{ o. value | o E S and o.box intersects q}. An
example of box-max query is: “find the max
precipitation in the Los Angeles district”. Again,
straightforward approaches find the actual objects that
intersect with the query and thus are not efficient. Our
aim is to provide specialized indices which focus on the
MAX aggregate computation.

Although the box-max problem is similar to the box-
sum problem, the solutions we proposed for the box-sum
problems cannot be applied to the box-max problem.
The reason lies in a inherent difference between the
MAX problem and the SUM problem. The SUM
operator has a inverse operator SUBTRACT, which
means that to compute the SUM of a set of records
(figure 5 a), we can compute the SUM of a larger set of
records (figure 5 b) and SUBTRACT from it the SUM
of records in the difference between the superset and the
original set (figure 5 c).

Fig 5.1: SUM aggregate has an inverse operator, but MAX
aggregate does not.

In this chapter, we present a specialized aggregate index, the
Min/Max R-tree (MR-tree) for the MIN/MAX aggregation.
Based on the R*-tree, we propose four optimizations. One of
the optimizations (the k-max) attempts to eliminate more
paths from the index traversal when the aggregate is
computed. As such, it can be used either on the SAM that
indexes the objects, or, on a specialized aggregate index. The
other optimizations (union, box-elimination and area-
reduction) eliminate or resize object MBRs when they do not
affect the MIN/MAX computation. Thus they apply only to
specialized MIN/MAX aggregate indices.

As a by-product, we discuss how a specialized aggregate
index, the MSB-tree [YW00], can be improved by applying
the box-elimination optimization. The MSB-tree efficiently
solves the MIN/MAX problem for the special case of one-

dimensional interval objects. The optimization allows the
MSB-tree to avoid frequent reconstructions that were needed
in its original version.

VI. THE PROPOSED OPTIMIZATIONS

To compute box-max aggregates, we could use an R-
tree to index the objects and reduce the box-max computation
to a range search, which means to locate the actual objects that
intersect the query box while keeping a running max value of
the objects seen so far. Based on the R-tree index, in this
section we propose four optimizations that improve the
performance.

We first introduce some notations. An index/leaf record is an
entry in an internal/leaf node of the tree.[10] Given an leaf
record r,let r.box and r.value denote the MBR and the value of
the record, respectively. Given an index record r, let r.box
denote its MBR, r.value denote the maximum value of all
records in sub tree (r) and r.child denote the child page
pointed by r.

6.1 The k-max optimization

The a R-tree [PKZ+01] is an R-tree where each index
record stores the aggregate (in this case, maximum) value of
all leaf records in the sub-tree.[11] If a query box contains the
MBR of an index record, the value stored at the record
contributes to the query answer and the examination of the
sub-tree is omitted. However, the index records at higher
levels of the a R-tree have large MBRs. So the box-max query
is not likely to stop at higher levels of the a R-tree. The M-
max optimization is an extension such that even if the query
box does not contain the MBR of an index record, the
examination of the sub-tree may be omitted.

The M-max optimization Along with each index record r,
store the objects (for a small constant k) which are in subtree
(r) and have the largest values among the objects in the
subtree. When examining record r during a box-max query, if
the query box intersects with any of the k max-value objects
in r, the examination of subtree (r) is omitted.

Clearly, the k-max optimization allows for more paths to be
omitted during the index traversal.[12] However, the benefit
of M-max on the query performance is not provided for free.
The overall space is increased (since each node stores more
information) as well as the update time (effort is needed to
maintain the M objects). Hence in practice the constant M
should be kept small.

As pointed out, the next three optimizations apply for
an index explicitly maintained for the MIN/MAX aggregation
(to avoid confusion we call such an explicit index the
MIN/MAX index). Since the MIN/MAX problem is not

Prateek et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1212

incrementally maintainable when tuples are deleted from the
database [YW01], the following discussion assumes an
append-only database (i.e., spatial objects are inserted in the
database but never deleted). When a spatial object o with
MBR o.box and value o.value is inserted in the database,
o.box accompanied by o.value is inserted as a leaf record in
the MIN/MAX index as well. However, as we will describe,
some of these insertions may not be applied to the MIN/MAX
index, or may cause existing MBRs to be deleted or altered
from the MIN/MAX index. As such, we can use an R*- tree to
implement the MIN/MAX index. The result after applying all
four optimizations will be the MR-tree.

VII. CONCLUSION

Temporal aggregation has become predominant
operators in analyzing time-evolving data. Many applications
produce massive temporal data in the form of streams. For
such applications the temporal data should be processed (pre-
aggregation, etc.) in a single pass. In this chapter we examined
the problem of computing temporal aggregates over data
streams. Furthermore, aggregates are maintained using
multiple levels of temporal granularities: older data is
aggregated using coarser granularities while more recent data
is aggregated with finer detail. We presented two models of
operation. In the fixed storage model it is assumed that the
available storage is limited.

The fixed time window model guarantees the length
of every aggregation granularity. For both models we
presented specialized indexing schemes for dynamically and
progressively maintaining temporal aggregates. An advantage
of our approach is that the levels of granularity as well as their
corresponding index sizes and validity lengths can be
dynamically adjusted. This provides a useful trade-off
between aggregation detail and storage space. Based on our
temporal aggregation work, we summarized a framework for
computing aggregates over time-evolving data and we
discussed how the solutions can be extended to solve the more
general range temporal and spatio-temporal aggregation
problems under the fixed time window model. Finally, an
extended performance evaluation validated the advantages of
the proposed structures.[13] As future work we plan to further
investigate techniques to aggregate at multiple spatial
granularities as well. Moreover, we are extending our
framework to the multiple data stream environment.

In this paper, we have summarized and presented
specialized aggregation index structures for the range-
temporal aggregation, the hierarchical temporal aggregation,
the box-sum aggregation, the functional box-sum aggregation,
and the box-max aggregation problems. In all cases, our
proposed specialized index structures have much better query
performance than the existing non-specialized indices.
Furthermore, the proposed indices are all disk-based and suit
for dynamic updates. Their index sizes are either smaller or
very close to the existing structures. Based on these findings,
we recommend that the proposed index structures should be

implemented in commercial DBMSs when the aggregation
query performance is crucial.

VIII. REFERENCES:

[1] [YK97] X. Ye and J. Keane “Processing temporal
aggregates in parallel”, Proc. of Int. Conf. on
Systems, Man, and Cybernetics, pp. 1373-1378, 1997..

[2] J. L. Bentley, Multidimensional Divide-and-Conquer",
Communications of theACM 23(4), 1980.

[3]. B. Becker, S. Gschwind, T. Ohler, B. Seeger and P.
Widmayer, \An Asymptotically Optimal Multiversion B-
Tree", VLDB Journal 5(4), 1996.
[4]. N. Beckmann, H. Kriegel, R. Schneider and B. Seeger,
The R* tree: An Efficient and Robust Access Method for
Points and Rectangles", Proc. of SIGMOD, 1990.

[5]. H. Edelsbrunner and M. H. Overmars, \On the
Equivalence of Some Rectangle Problems", Information
Processing Letters 14(3), 1982.

[6]. S. Ge®ner, D. Agrawal and A. El Abbadi, \The Dynamic
Data Cube", Proc. Of EDBT, 2000.

[7]. I. Lazaridis and S. Mehrotra, \Progressive Approximate
Aggregate Queries with a Multi-Resolution Tree Structure",
Proc. of SIGMOD, 2001.

[8]. D. Papadias, P. Kalnis, J. Zhang and Y. Tao, \E±cient
OLAP Operations in Spatial Data Warehouses", Proc. of
SSTD, 2001.

[9]. J. Yang and J. Widom, \Incremental Computation and
Maintenance of Temporal Aggregates", Proc. of ICDE, 2001.

[10] C. Chung, S. Chun, J. Lee and S. Lee, \Dynamic Up-
date Cube for Range-Sum Queries", Proc. of VLDB, 2001.

[11] C. Chan, Y. E. Ioannidis, \Hierarchical Cubes for
Range-Sum Queries", Proc. of VLDB, 1999.

[12] Y. Chiang and R. Tamassia, \Dynamic Algorithms in
Computational Geometry", Proc. of the IEEE, Special
Issue on Computational Geometry, G. Toussaint (Ed.),
80(9), 1992.

[13] H. Edelsbrunner and M. H. Overmars, \On the Equiv-
alence of Some Rectangle Problems", Information Pro-
cessing Letters 14(3), 1982.

