
Kunjesh et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1159

PREVENTION OF ONLINE PASSWORD HACKING PROCESS WITH SECURED
MULTI AUTHENTICATION SCHEME

Kunjesh Kumar Mishra (UG Scholar)*1, Vimal Chand (UG Scholar) 2, G. Michael (Asst. Professor) 3

*1Computer Science & Engineering/ Bharath University, Chennai, Tamil Nadu, India

kunjesh@live.com*1

2Computer Science & Engineering/ Bharath University, Chennai, Tamil Nadu, India

vimalchand23@gmail.com2

3Computer Science & Engineering/ Bharath University, Chennai, Tamil Nadu, India

micmgeo@yahoo.co.in3

Keywords: ATT, CAPTCHA, Multi-Authentication, SSH, Hacking, IP Address, SAN

1. Introduction

Online guessing attacks on password-based systems are
inevitable and commonly observed against web applications
and SSH logins. In nowadays report, SANS identified
password guessing attacks on websites as a top cyber
security risk. An example of SSH password-guessing
attacks, one experiment Linux honey pot setup has reported
that it suffered on average 2,810 SSH malicious login
attempts per computer per day (see also). Interestingly, SSH
servers that disallow standard password authentication may
also suffer guessing attacks, e.g., through the soaking of a
lesser known/used SSH server configuration called keyboard
interactive authentication. However, online attacks have
some implicit disadvantages compared to offline attacks:
attacking machines must engage in an synergistic protocol,
thus allowing easier detection; and in maximum cases,
attackers can try only limited number of guesses from a
single machine before being locked out, late, or challenged
to answer Automated Turing Tests (ATTs, e.g.,
CAPTCHAs). Hence, attackers often must employ a large
number of machines to avoid spotting or lock-out. On the
other hand, as users generally choose common and relatively
weak passwords (thus allowing effective password
dictionaries), and attackers recently control large botnets
(e.g., Conficker), online attacks are easier than before. One
emphatic defense against automated online password
guessing attacks is to restrict the number of failed trials
without ATTs to a very small number (e.g., three), limiting
automated programs (or bots) as used by attackers to three
free password guesses for a targeted account, even if various
machines from a botnet are used. However, this
discommodes the legitimate user who then must answer an
ATT on the next login attempt. Several other mechanisms
are diffused in practice, including: permitting login attempts
without ATTs from a different machine, when a few number

of unsuccessful attempts occur from a given machine;
allowing more attempts without ATTs after a timeout
period; and time limited account locking. Many available
mechanisms and proposals include ATTs, with the
underlying assumption that these challenges are sufficiently
difficult for bots and easy for many people. However, users
increasingly dislike ATTs as these are perceived as an
(unnecessary) extra step; see Yan and Ahmad [28] for
usability issues related to commonly used CAPTCHAs. Due
to well-turned attacks which break ATTs without human
solvers, ATTs deemed to be more difficult for bots are being
deployed. As a result of this arms-race, nowadays ATTs are
becoming increasingly difficult for human users, fueling an
expanding tension between security and usability of ATTs.
Therefore, we focus on reducing user peeve by challenging
users with fewer ATTs, while simultaneously subjecting bot
logins to more ATTs, to drive up the economic expenditure
to attackers.
Two well-known proposals for limiting online guessing
attacks using ATTs are Pinakas and Sander (herein notify
PS), and van Oorschot and Stubblebine (herein notify VS).
The PS proposal reduces the number of ATTs sent to legal
users, but at some meaningful loss of security; for instance,
in an example setup (with p = 0.05, the fraction of incorrect
login attempts requiring an ATT) PS allows attackers to
eliminate 95% of the password space without answering any
ATTs. The VS proposal reduces this but at a considerable
cost to usability; for example, VS may need all users to
answer ATTs in certain situations. The proposal in the
present paper, is known as Password Guessing Resistant
Protocol (PHOP), significantly improves the security-
usability trade-off, and can be more generally diffused
beyond browser-based authentication. PHOP builds on these
2 previous proposals. In particular, to bind attackers in
under control of a large botnet (e.g., comprising hundreds of
thousands of bots), PHOP enforces ATTs after a few (e.g.,

Abstract-- Online Guessing attacks on Password Based Systems are inevitable and commonly observed against Web

Applications. The Server Verifies User Name from the Cookie of the User’s Machine, System IP, CAPTCHA, Password of the

User, Number of Failure Attempts by the User and Web Browser that the User Uses for Browsing. This Process of Verification

is called as Automated Turing Tests (ATT). In this paper the Authentication of User is done by asking Secret Questions which

was answered during the Registration Phase.



Kunjesh et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1160

three) failed login attempts are made from unknown
machines. On the other hand, PHOP permits a large number
(e.g., 30) of failed attempts from known machines without
replying any ATTs. We define known machines as those
from which a successful login has occurred within a fixed
term of time. These are identified by their IP addresses
saved on the login server as a white-list, or cookies situated
on client machines. A white-listed IP address and/or client
cookie expires after a certain time. PHOP allows both
graphical user interfaces (e.g., browser-based logins) and
character-based interfaces (e.g., SSH logins), while the
previous protocols deal exclusively with the former,
searching for the use of browser cookies. PHOP allows
either cookies or IP addresses, or both for tracking legal
users. Tracking users through their IP addresses also allows
PHOP to increase the number of ATTs for password
guessing attacks and meanwhile to decrease the number of
ATTs for legitimate login efforts. Although NATs and web
proxies may (slightly) reduce the utility of IP address
information, in rehearse, the use of IP addresses for client
identification appears possible. In recent years, the trend of
logging in to online accounts through multiple personal
devices (e.g., PCs, laptops, smart-phones) is expanding.
When used from a home environment, these devices often
use a single public IP address (i.e., a simple NAT address)
which makes IP-based history tracking more user-friendly
with compare to cookies. For example, cookies must be
stored, though transparently to the user, in every device used
for login.

2. Related Work:

2.1 Module:
Although online password guessing attacks have been
known since the early days of the Internet, there is little
academic literature on prevention techniques. Account
locking is a customary mechanism to prevent an adversary
from attempting multiple passwords for a particular
username. Although locking is generally temporary, the
adversary can mount a DoS attack by making enough failed
login attempts to lock a particular account. Delaying server

response after receiving user credentials, whether the
password is correct or incorrect, prevents the adversary from
attempting a large number of passwords in a reasonable
amount of time for a particular username. However, for
adversaries with access to a large number of machines (e.g.,
a botnet), this mechanism is ineffective. Similarly,
prevention techniques that rely on requesting the user
machine to perform extra nontrivial computation prior to
replying to the entered credentials are not effective with
such adversaries. As discussed in Section 1, ATT challenges
are used in some login protocols to prevent automated
programs from brute force and dictionary attacks. Pinkas
and Sander [17] presented a login protocol (PS protocol)
based on ATTs to protect against online password guessing
attacks. It reduces the number of ATTs that legitimate users
must correctly answer so that a user with a valid browser
cookie (indicating that the user has previously logged in
successfully) will rarely be prompted to answer an ATT. A
deterministic function (Ask ATT) of the entered user
credentials is used to decide whether to ask the user an ATT.
To improve the security of the PS protocol, van Oorschot
and Stubblebine [23] suggested a modified protocol in
which ATTs are always required once the number of failed
login attempts for a particular username exceeds a threshold;
other modifications were introduced to reduce the effects of
cookie theft. For both PS and VS protocols, the decision
function Ask ATT requires careful design. He and Han [9]
pointed out that a poor design of this function may make the
login protocol vulnerable to attacks such as the “known
function attack” (e.g., if a simple cryptographic hash
function of the username and the password is used as Ask
ATT) and “changed password attack” (i.e., an adversary
mounts a dictionary attack before and after a password
change event initiated by a valid user). The authors
proposed a secure nondeterministic keyed hash function as
Ask ATT so that each username is associated with one key
that should be changed whenever the corresponding
password is changed. The proposed function requires extra
server-side storage per username and at least one
cryptographic hash operation per login attempt.

2.2 Module Description
2.2.1 USER REGISTRATION:
In the online accessing system we have to register the user
with certain details for his future retrieval process. Without
registering, a user can’t access the further details. For
registering, the user should give the User name, CAPTCHA,
and password. Once a user registered his details he can
access the online facilities further. Each user will be
identified by a unique username, password, System IP, Web
browser which is stored in cookies.
2.2.2 SERVER:
A server is a computer program running to serve the
requests of other programs, the "clients". Thus, the "server"
performs some computational task on behalf of "clients".
The clients either run on the same computer or connect
through the network. Here the Server acts as the main
resource for the client. Server is responsible for maintaining
all the client information and further used for the
Authentication process when the user reenters the online
process.
2.2.3 COOKIES VERIFICATION:
The details got from the user during registration are stored in
cookies and then sent to the server. When the user reenters
the online process, for e.g.: banking process the cookie will

verify for the details such as Username, System IP,
CAPTCHA, Password, Web browser and the number of
attempts of the user and then allows only the authorized
user.
2.2.4 SYSTEM IP & CAPTCHA:
The System IP is nothing but the IP address of the System
which was used by the user during online registration
process. CAPTCHA is the verification text displayed inside
the box. These two verifications will help the online
processing to be more secure.
2.2.5 PASSWORD & WEB BROWSER:
The user should enter the password and the type of web
browser during registration itself. So that it will be stored
and it is used with other details for the authentication
process. If the user needs to change the web browser or the
System IP then he need to answer the secret Question.
2.2.6 VERIFICATION:
In this project, Verification is done by means of Cookies.
Using cookies, the data already entered by the user is
compared with the currently given data by the user. If the
Username, System IP, CAPTCHA, Password and Web
browser matches, then he will be allowed for the further
processing or else access is denied. Among the above details
if the user needs to change the System IP or Web browser



Kunjesh et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1161

then he needs to answer the secret question and CAPTCHA. After authentication, updating will be done.

3. Algorithm

3.1 Algorithm
Input:
t1 (def=30d), t2 (def=1d), t3 (def=1d), k1 (def=30), k2 (def=3)
// The keyword ‘def’ denotes the default parameter value and‘d’ denotes day, k1, k2 ≥ 0
Un, pw,cookie //username, password, and remote host’s browser cookie if any
W (global variable, expires after t1)

1 //white list of IP addresses with successful login
FT (global variable, def=0, expires after t2) //table of number of failed logins per username
FS (global variable, def=0, expires after t3) //table of number of failed logins indexed by (srcIP, username) for hosts

in W or hosts with valid cookies
1 begin
2 ReadCredential(un, pw, cookie) // login prompt to enter username/password pair
3 if LoginCorrect(un, pw) then //username/ password pair is correct
4 if (((Valid(cookie, un,k1,true) ˅ ((srcI P,un) W)) ˄ (FS[srcIP,un]<k1)) ˅ (FT[un] < k2)) then
5 FS[srcIP,un] <= 0
6 Add scrIP to W // add source IP address to the white list
7 GrantAccess(un, cookie) // this function also sends the cookie if applicable
8 else
9 if (ATTChallenge() = Pass) then
10 FS[secIP,un] <= 0
11 Add srcIP to W
12 GrantAccess(un, cookie)
13 else
14 Message (‘The answer to the ATT challenge is incorrect’)

15 else //username/password pair is applicable
16 if ((Valid(cookie, un,k1,false) ˅ ((srcIP,un) ∈W)) ˄ (FS[srcIP,un] <k1)) then
17 FS[srcIP,un] <= FS[srcIP,un] + 1
18 Message(‘The username or password is incorrect’)
19 else if (ValidUsername(un) ˄ (FT[un] <k2)) then
20 FT[un] <=FT[un] + 1
21 Message(‘The username or password is incorrect’)
22 else
23 if(ATTChallenge() = Pass) then
24 Message(‘The username or password is incorrect’)
25 else
26 Message(‘The to the ATT challenge is incorrect’)

27 end

Algorithm. PHOP: Password Hacking Obstructive Protocol

3.1. Architectural Diagram:

4. Implementation and Experimental Setup

4.1. Implementation.
Implementation generally refers to the results and
information that are generated by the system for many end-
users; output is the main reason for developing the system
and the basis on which they evaluate the usefulness of the
application. In the project, the admin details and employee
details once are given. It stores in to the data base added.

The reports here generated vividly and the employee salary
details & his transaction details can be seen through the
reports.
The implementation of the proposed system is as follows:
1. Comparison of user name from the user with the
user name in cookies of the user’s machine.
2. User’s system IP of login is verified with the
system IP of the same user when registered.
3. User’s CAPTCHA is also verified.
4. Password of the user is also verified.
5. Number of failure attempts by the user.
6. Web browser that the user uses for browsing.

4.2. Experimental Setup:
The database design is a must for any application developed
especially more for the data store projects. Since the chatting
method involves storing the message in the table and
produced to the sender and receiver, proper handling of the
table is a must. The salary and attendance table is common



Kunjesh et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 1162

for all staff details. The different users view the data in
different format according to the privileges given.

Figure 1. Registration Phase:
It shows the user’s registration form. The user registers with the user’s
name password, date of birth, email, mobile, balance amount and the
CAPTCHA generated in the flowing code.

Figure 2. User’s Login Phase:
It shows the user login after registering. After registering of the user the
system generates the user account number. The user uses his/her account
number and password which he/she created during the login phase. After
clicking on submit button the user enter into its newly created account.

Figure 3. Database Connection:
It shows the database profile saved in the database connection. We can
easily see the relevant information such as user name, password, account
number, system IP, web browser used and answer of the security questions.

5. CONCLUSION

Online password guessing attacks on password-only systems
have been observed for decades. Present-day attackers

targeting such systems are empowered by having control of
thousand to million node botnets. In former ATT-based
login protocols, there exists a security-useful trade-off with
respect to the number of free failed login attempts (i.e., with
no ATTs) versus user login convenience (e.g., less ATTs
and other requirements). In particular, PHOP is more
restrictive against brute force and dictionary attacks while
safely allowing a large number of free failed attempts for
legitimate users. Our empirical experiments on two datasets
(of one-year duration) gathered from operational network
environments show that while PHOP is apparently more
effective in preventing password guessing attacks (without
answering ATT challenges), it also offers more appropriate
login experience, e.g., a few number of ATT challenges for
legitimate users even if no cookies are available. However,
we again say that no user-testing of PHOP has been
conducted so far.

REFERENCES

[1] Amazon Mechanical Turk. Accessed: June 2010.
https://www.mturk.com/mturk/.

[2] S. M. Bellovin. A technique for counting natted hosts.
In ACM SIGCOMM Workshop on Internet
measurement, pages 267–272, New York, USA, 2002
ACM.

[3] E. Bursztein,, S. Bethard, J. C. Mitchell, D. Jurafsky,
and C. Fabry. How good are humans at solving
CAPTCHAs: A large scale evaluation? In IEEE
Symposium on Security and Privacy, Oakland, CA,
USA, May 2010.

[4] M. Casado and M. J. Freedman. Peering through the
shroud: The effect of edge opacity on ip-based client
identification. In 4th USENIX Symposium on
Networked Systems Design and Implementation
(NDSS’07), 2007.

[5] S. Chiasson, P. C. van Oorschot, and R. Biddle. A
usability study and critique of two password managers.
In USENIX Security Symposium, pages 1–16,
Vancouver, B.C., Canada, 2006.

[6] D. Florˆencio, C. Herley, and B. Coskun. Do strong web
passwords endow anything? In USENIX workshop on
Hot topics in securities (Hot Sec’07), page 1–6,
Berkeley, CA, United State, 2007.

[7] K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and
dont’s of client authentication on the web. In USENIX
Security Symposium, pages 251–268, Washington, DC,
USA, 2001.


