
Geetha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 980

Automatic Reconfiguration for
Large-Scale trustworthy Storage Systems

Abstract

Byzantine-fault-tolerant replication enhances the availability and reliability of Internet
services that store critical state and preserve it despite attacks or software errors. However,
existing Byzantine-fault-tolerant storage systems either assume a static set of replicas, or
have limitations in how they handle reconfigurations (e.g., in terms of the scalability of the
solutions or the consistency levels they provide). This can be problematic in long-lived,
large-scale systems where system membership is likely to change during the system lifetime.
This paper demonstrate the utility of this membership service by using it in a novel
distributed hash table called dBQS that provides atomic semantics even across changes in
replica sets. dBQS is interesting in its own right because its storage algorithms extend
existing Byzantine quorum protocols to handle changes in the replica set, and because it
differs from previous DHTs by providing Byzantine fault tolerance and offering strong
semantics. This implements the membership service and dBQS.

Dr.B.G.Geetha,M.E.,Ph.D
Professor/Hod,

Department of computer science and engineering,
K.S.Rangasamy college of Technology,Tiruchengode-637215

E-mail:hodcse@gmail.com
Mobile no:9894688866

P.Senthil Raja,M.E.,(Ph.D)
Assistant professor,

Department of computer science and engineering,
K.S.Rangasamy college of Technology,Tiruchengode-637215

E-mail:visitsenthilraja@gmail.com
Mobile no:9994049209

R.Vijay sai,(M.E.)
Lecturer,

Department of computer science and engineering
K.S.Rangasamy college of Technology,Tiruchengode-637215

E-mail:visitsenthilraja@gmail.com
Mobile no:9994049209

Introduction
Today, Internet services become

more important in functionality and store
critical state. These services are often
implemented on collections of machines
residing at multiple geographic locations
such as a set of corporate data centers. For
example, Dynamo uses tens of thousands
of servers located in many data centers

around the world to build a storage back-
end for Amazon’s S3 storage service and
its e-commerce platform. Additionally,
these systems are long lived and need to
continue to function even though the
machines they run on break or are
decommissioned. Thus, there is a need to
replace failed nodes with new machines;
also it is necessary to add machines to the

Geetha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 981

system for increased storage or throughput.
Thus, the systems need to be reconfigured
regularly so that they can continue to
function. This paper provides a complete
solution for reliable, automatic
reconfiguration in distributed systems.
This approach is unique because

 It provides the abstraction of a globally
consistent view of the system membership.
This abstraction simplifies the design of
applications that use it, since it allows
different nodes to agree on which servers
are responsible for which subset of the
service.

 It is designed to work at large scale, e.g.,
tens or hundreds of thousands of servers.
Support for large scale is essential since
systems today are already large and it can
expect them to scale further.

 It is secure against Byzantine (arbitrary)
faults. Handling Byzantine faults is
important because it captures the kinds of
complex failure modes that have been
reported for this target deployments. For
instance, a recent report about Amazon’s
S3 showed that a bit flip in a server’s
internal state caused it to send messages
with the wrong content. Additionally, the
Byzantine fault model makes it possible to
tolerate malicious intrusions where an
attacker gains control over a number of
servers.
This solution has two parts. The first is a
membership service (MS) that tracks and
responds to membership changes. The MS
works mostly automatically, and requires
only minimal human intervention; this way
it can reduce manual configuration errors,
which are a major cause of disruption in
computer systems. Periodically, the MS
publishes a new system membership; in
this way it provides a globally consistent
view of the set of available servers. The

choice of strong consistency makes it
easier to implement applications, since it
allows clients and servers to make
consistent local decisions about which
servers are currently responsible for which
parts of the service. Using a small group
for the MS is important since these
protocols work well only in this case. The
design provides scalability to a large
number of nodes, most of which are clients
of the MS. Additionally, it avoids
overloading the servers that form the MS
by offloading expensive tasks to other
nodes. When there is a reconfiguration, the
MS may need to move to a new group of
servers. This allow the system to continue
to operate correctly, even though the
failure bound in the original group of MS
replicas may subsequently be exceeded. A
design for reconfiguring the Byzantine-
fault-tolerant group is shown here.
Tracking membership is only part of what
is needed for automatic reconfiguration. In
addition, applications need to respond to
membership changes appropriately.
Therefore, the second part of this solution
addresses the problem of how to
reconfigure applications automatically as
system membership changes. This paper
presents a storage system, dBQS that
provides Byzantine-fault-tolerant
replicated storage with strong consistency.
This dBQS serves as an example
application that uses the membership
service and takes advantage of its strong
consistency guarantees.

System model and assumptions
The system model and assumptions

in entire project is shown here:A system
comprised of nodes that can be servers
implementing a storage service or clients
using that service, without loss of

Geetha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 982

generality that the two sets are disjoint is
assumed. By assuming nodes are
connected by an unreliable asynchronous
network like the Internet, where messages
may be lost, corrupted, delayed,
duplicated, or delivered out of order, this
make no synchrony assumptions for the
system to meet its safety guarantees, it is
necessary to make partial synchrony
assumptions for liveness. Assume the
existence of the following cryptographic
techniques that an adversary cannot
subvert: a collision resistant hash function,
a public key cryptography scheme, and
forward-secure signing keys, also assume
the existence of a proactive threshold
signature protocol that guarantees that
threshold signatures are unforgeable
without knowing for more out of n secret
shares. Assume a Byzantine failure model
where faulty nodes may behave arbitrarily
and compromised node remains
compromised forever. This is a realistic
assumption because once a node is
Byzantine faulty, its secret information,
including its private key, may be known,
and therefore, it cannot be recovered, and
then, continue to be trusted. Instead it
needs a new key, which effectively means
its identity has changed. These nodes have
clocks whose rates should be loosely
synchronized to keep time windows during
which failure bounds must be met
reasonably short.

The membership service
The MS describes membership

changes by producing a configuration,
which identifies the set of servers currently
in the system, and sending it to all servers.
To allow the configuration to be
exchanged among nodes without
possibility of forgery, the MS

authenticates it using a signature that can
be verified with a well-known public key.
The MS produces configurations
periodically rather than after every
membership change. The system moves in
a succession of time intervals called
epochs, and this batch all configuration
changes at the end of the epoch. Producing
configurations periodically is a key design
decision. It allows applications that use the
MS to be optimized for long periods of
stability (expect that in storage
applications epochs could last for hours,
although this evaluation shows that it can
support short epochs if needed), and it
reduces costs associated with propagating
membership changes (like signing
configurations or transmitting them). It
also permits delayed response to failures,
which is important for several reasons: to
avoid unnecessary data movement due to
temporary disconnections, to offer
additional protection against denial of
service attacks (assuming that this wait for
longer than the duration of such attacks),
and to avoid thrashing, where in trying to
recover from a host failure the system over
stresses the network, which itself may be
mistaken for other host failures, causing a
positive feedback cycle.

The notion of epochs provides
consistency: all nodes in the same epoch
see exactly the same system membership.
Each epoch has a sequential epoch
number. Epoch numbers allow nodes to
compare the recency of different
configurations. Furthermore, application
messages include the epoch number of the
sender; this allows nodes to learn quickly
about more recent configurations.
The functionalities provided by MS are

 Membership Change Requests
 Probing

Geetha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 983

 Ending Epochs
 Freshness

Byzantine Fault Tolerance
To provide Byzantine fault

tolerance for the MS, implement it with
groups of replicas executing the PBFT
state machine replication protocol. These
MS replicas can run on server nodes, but
the size of the MS group is small and
independent of the system size. The MS
operations are translated to request
invocations on the PBFT group, and how
to reconfigure the MS (e.g., to handle
failures of the nodes that compose it).

PBFT Operations
PBFT provides a way to execute

operations correctly even though up to f
replicas out of 3 fare faulty. Therefore,
these implements ADD and REMOVE as
PBFT operations, which take as arguments
the respective certificate, and whose effect
is to update the current set of members
(which is the PBFT service state
maintained by the MS). Freshness
challenges can also be implemented as
PBFT operations.

Once the replica has collected the
signatures, it invokes the EVICT
operation, which runs as a normal PBFT
operation. This operation has two
parameters: the identifier of the node being
evicted and a vector containing signatures
from MS replicas agreeing to evict the
node. The operation will fail if there are
not enough signatures or they do not
verify.

Reconfiguring the MS
There are two plausible ways to run

the MS. The first is to use special, separate
nodes that are located in particularly

secure locations. The second is to use an
“open” approach in which the MS runs on
regular system members: servers
occasionally act as MS replicas, in
addition to running the application. This
system can accommodate either view, by
considering the first one as a special case
of the open approach: This can mark
servers (when they are added) to indicate
the roles they are allowed to assume. At
the end of the epoch, the system may
decide to move the MS to a different set of
servers. This can happen because one of
the MS replicas fails; in the open approach
it may also happen proactively (every k
epochs) since the nodes running the MS
are attractive targets for attack and this
way it can limit the time during which
such an attack can be launched. The steps
that are needed to move the MS occur after
the old MS executes the MOVEEPOCH
operation.

Faulty Servers
Faulty servers cannot cause the

system to behave incorrectly, it define in
but they can degrade performance of this
protocols. In the case of PBFT, this can be
problematic due to the fact the primary
replica plays a special role in the protocol,
but recent work explains how to minimize
this performance degradation. In this
remaining protocols, the roles of different
replicas are symmetric, so they are less
affected by Byzantine replicas. The
aggregation protocol is an exception: a
single Byzantine replica can prevent
freshness responses, but if this happens
clients will switch to a different aggregator
after a timeout.

Dynamic replication
The storage applications (or other

services) can be extended to handle

Geetha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 984

reconfigurations using the membership
service. In particular, it present dBQS, a
read/write block storage system based on
Byzantine quorums. dBQS uses input from
the MS to determine when to
reconfigure.dBQS is a strongly consistent
distributed hash table (DHT) that provides
two types of objects. Public-key objects
are mutable and can be written by multiple
clients, whereas content-hash objects are
immutable: once created, a content hash
object cannot change. In this paper, this
describes only public-key objects. In a
separate document, it describe the simpler
protocols for content-hash objects, and
also dBFT, a state machine replication
system based on the PBFT algorithm, and
a general methodology for how to
transform static replication algorithms into
algorithms that handle membership
changes.

A complete, formal description of
the main protocols used in dBQS and a
proof of their correctness can be found in a
technical report. Data objects in dBQS
have version numbers that are used to
determine data freshness, and identifiers
that are chosen in a way that allows the
data to be self-verifying (similarly to
previous DHTs such as DHash). The ID of
a public key object is a hash of the public
key used to verify the integrity of the data.
Each object is stored along with a
signature that covers both the data and the
version number. When a client fetches an
object its integrity can be checked by
verifying the signature using a public key
that is also validated by the ID of the
object. Version numbers are assigned by
the writer (in such a way that distinct
writers always pick distinct version
numbers, e.g., by appending client
IDs).dBQS ensures that concurrent
accesses to the entire set of public-key

objects are atomic: all system operations
appear to execute in a sequential order that
is consistent with the real-time order in
which the operations actually execute.
Designing the protocols for public-key
objects from scratch is avoided, but instead
extended existing Byzantine quorum
protocols in novel ways to support
reconfigurations, and provided some
optimizations for them.

Performance during an Epoch
The performance of the MS during

an epoch, and the impact of super
imposing the service on dBQS servers are
good. A more detailed evaluation of the
base performance of dBQS can be found.
Three types of membership activities
happen during an epoch: processing of
membership events, such as node additions
and deletions; handling of freshness
certificates; and probing of system
members.

The main conclusion is that the
architecture can scale well without
interfering with dBQS performance

Moving to a New Epoch
The second part of the evaluation

concerns the cost of moving from one
epoch to the next. Here, this has two
concerns: the cost at the MS and the
impact on the performance of the storage
protocols.

Cost at the MS
This part of the evaluation

addresses the cost of reconfiguring the
membership service at the end of an epoch.
The deployed system in Planet Lab, which
represents a challenging environment with
frequently overloaded nodes separated by

Geetha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 985

a wide area network, and measured the
time it takes to move the MS during epoch
transitions. The goal of the experiment was
to provide a conservative estimate of
running the sequence of steps for changing
epochs (PBFT operations, threshold
signatures, and resharing). For analysis
and evaluation of the individual steps. Ran
the MS for several days and measured, for
each reconfiguration, the amount of time
that elapsed between the beginning of the
reconfiguration and its end. The MS was
running on a group of four replicas (i.e.,
fMS ¼ 1) and moved randomly among the
system nodes. Even though, it is limited by
the size of the test bed (in this case,
hundreds of nodes), the main costs are
proportional to the number of changes and
the MS size, not the number of nodes, and
therefore, this expect the results to apply to
a larger deployment. Some
reconfigurations were fast, but there is a
large variation in the time to reconfigure;
this is explained by the fact that nodes in
the Planet Lab test bed are running many
other applications with varying load, and
this concurrent activity can affect the
performance of the machines significantly.
The main conclusion is that, even in a
heterogeneous, often overloaded
environment, most reconfigurations take
under 20 seconds to complete. This
indicates that the time to reconfigure is not
a serious factor in deciding on epoch
duration.

dBQS
When the system moves to a new

epoch, any application that uses the MS
must adapt to the membership changes. In
this section, this evaluates the cost using
dBQS. The experiment measures the cost
of a reconfiguration by considering servers
that run dBQS but are not implementing

MS functions. In this case, the cost of
reconfiguration is minor: for a particular
client, there is the possibility that a single
operation is delayed because of the need
for either the client or the servers to
upgrade to the new epoch, but all other
operations complete normally. Note that
this result assumes that state transfer is not
required, which would be the case if the
replica group did not move at the end of
the epoch. State transfer can delay replies
for objects that have not been transferred
yet.

Conclusion
This paper presents a complete

solution for building large scale, long-
lived systems that must preserve critical
state in spite of malicious attacks and
Byzantine failures. By presenting a storage
service with these characteristics called
dBQS, and a membership service that is
part of the overall system design, but can
be reused by any Byzantine-fault tolerant
large-scale system. The membership
service tracks the current system
membership in a way that is mostly
automatic, to avoid human configuration
errors. It is resilient to arbitrary faults of
the nodes that implement it, and is
reconfigurable, allowing us to change the
set of nodes that implement the MS when
old nodes fail, or periodically to avoid a
targeted attack. When membership
changes happen, the replicated service has
work to do: responsibility must shift to the
new replica group, and state transfer must
take place from old replicas to new ones,
yet the system must still provide the same
semantics as in a static system. This show
how it is accomplished in dBQS. This
implements the membership service and
dBQS. These experiments show that this
approach is practical and could be used in

Geetha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 986

a real deployment: the MS can manage a
very large number of servers, and
reconfigurations have little impact on the
performance of the replicated service.

References

[1] G. DeCandia, D. Hastorun, M.
Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W.
Vogels(2009)“Dynamo: Amazon’s
Highly Available Key-Value Store,”

Proc. 21st ACM Symp. Operating
Systems Principles, pp. 205-220.

[2] J. Dean(2009) “Designs, Lessons and
Advice from Building Large
Distributed Systems,” Proc. Third
ACM SIGOPS Int’l Workshop Large
Scale Distributed Systems and
Middleware (LADIS ’09), Keynote
talk.

[3] Amazon S3 Availability Event (July
2008),http://status.aws.amazon.com/s
320080720.html.

[4] A. Clement, M. Marchetti, E. Wong,
L. Alvisi, and M. Dahlin(Apr,2009)
“Making Byzantine Fault Tolerant
Systems Tolerate Byzantine Faults,”
Proc. Sixth USENIX Symp.
Networked Systems Design and
Implementation (NSDI ’09).

[5] J. Cowling, D.R.K. Ports, B. Liskov,
R.A. Popa, (June,2009)“Census:
Location Aware Membership
Management for Large- Scale
Distributed Systems,” Proc. Ann.
Technical Conf. (USENIX’09).

[6] D. Schultz, B. Liskov, and M.
Liskov(Aug,2008) “Brief
Announcement: Mobile Proactive
Secret Sharing,” Proc. 27th Ann.
Symp. Principles of Distributed
Computing (PODC ’08).

[7] B. Liskov and R. Rodrigues,
“Tolerating Byzantine Faulty Clients
in a Quorum System(2006)” Proc.
26th IEEE Int’l Conf. Distributed
Computing Systems (ICDCS ’06).

[8] J.R. Lorch, A. Adya, W.J. Bolosky,
R.Chaiken, J.R.Douceur, and J.
Howell,(2006) “The Smart Way to
MigrateReplicated Stateful Services,”
Proc. European Conf. Computer
Systems (EuroSys ’06), pp. 103-115.

