
Gurmeet et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 905

A review of TCP Reno, TCP Vegas and TFRC for
mobile ad hoc networks

Gurmeet Singh#1, Jaswinder Singh*2

Computer engineering & University college of engineering,
Punjabi university, Patiala , India

1 gurmeetsekhon73@gmail.com
*Assistant professor, Computer engineering & University college of engineering ,

Punjabi university, Patiala,
2 jaswindersinghmtech@gmail.com

ABSTRACT: The most common transport protocol
in a network is the Transmission Control Protocol.
There are different variants of TCP like TCP, Tahoe,
Reno, New Reno, Vegas, STCP and so on.TCP in its
present form is not well suited for mobile adhoc
networks (MANETs) where packet loss due to
broken routes can hinder the working of TCP‘s
congestion control mechanisms. In this paper we
studied 2 types of Congestion Control techniques.
One is Windows based Congestion Control and
seocnd is Rate based Congestion Control .TCP Reno,
TCP Vegas are windows based Congestion Control
variants and TFRC works on Rate based flow
congestion control.

1 .INTRODUCTION

Ad-hoc networks are self-organizing wireless
networks, in which all end nodes act as routers. This
network improves the efficiency, range of fixed or
mobile internet access and enables totally with new
applications. A Mobile Ad hoc Networks (MANET)
consists of a set of mobile hosts within
communication range and exchange the data among
themselves without using any preexisting
infrastructure. MANET nodes are typically
distinguished by their limited power, processing and
memory resources as well as high degree of mobility.
In such networks, the wireless mobile nodes may
dynamically enter the network and leave the network.
Due to the limited transmission range of wireless
network nodes, multiple hops are usually needed for

a node to exchange information with any other node
in the network. [1]

TCP is basically used for implemented congestion
control these days. TCP do not use resource
reservation on network for sending packet. It reacts
only if any event occurs in network. TCP is a reliable
protocol and provide reliable services for end to end
entities. TCP congestion control mechanism is well
suited for connection oriented network but for
wireless networks it is not well suited. For congestion
control in mobile Ad-Hoc networks different variants
of TCP are used which we will discuss in next
section.[2]

2. TCP PERFORMANCE IN MANET

TCP ensures reliable end-to-end message
transmission over wired networks, but a number of
researches have showed that TCP performance can be
substantially degraded in MANET. The following are
the different types of constraints influencing TCP
performance in MANET.

2.1. Route Failure

In MANET, the major reason for the route failure is
the mobility of the node and in case of route failure
reestablishment of the route is instantly needed. A
new route establishment may experience longer
duration than the RTO of the sender. As a result, the
congestion control mechanism will unnecessary
invoke by the TCP sender.

Gurmeet et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 906

2.2. Path Asymmetry Impact

Within MANET, the network topology is changed
very frequently and arbitrarily that leads to the
creation of an asymmetric path. Since TCP is highly
dependent on time responsive feedback information,
this path formation negatively influences the TCP
performance. The packet is lost when the sender
starts transmitting data in a burst when a number of
ACKs are received together .Path asymmetry can be
grouped into different forms such as loss rate
asymmetry, bandwidth asymmetry and route
asymmetry.

2.3. Network Partitioning

When a node departs from the network, a network
partition takes place which results in an isolation of
some parts of a mobile ad-hoc network. The
fragmented portions are defined as partitions.
Network partitioning is mainly caused due to the
mobility or energy-constrained (limited battery power)
operation of nodes and TCP considers network
partitioning as one of the most imperative challenges
in MANET. All transmitting packets are found to be
dropped by the network if the source and the
destination of a TCP connection lie in different parts
of the network .In consequence of that, TCP sender
will instantly invoke the congestion control
algorithm.[7]

3. TCP Reno

TCP Reno is one of the TCP variant which is used for
congestion control in mobile ad-hoc network. TCP
Reno is based on the principle of TAHOE but it also
use fast recovery so that lost packets are detected
earlier and the pipeline is not emptied every time a
packet is lost. It has four main parts.

a) Slow start

b) Congestion avoidance

c) Fast retransmit

d) Fast recovery

In TCP Reno slow start threshold value is use to
determine whether slow start is used or congestion
avoidance is used.

a) Slow Start

The slow start mechanism adds a new parameter that
controls the rate at which packets are sent, congestion
window denoted by cwnd.

1. Start with cwnd=1 (slow start).
2. On each successive acknowledgement value

of cwnd is increased by 1.
cwnd cwnd+1

3. There is exponential growth of cwnd
Each RTT: cwnd 2*cwnd

4. Enter Congestion Avoidance when
cwnd >= ssthresh

b) Congestion Avoidance

1. Starts when cwnd >= ssthresh
2. On each successful acknowledgement

cwnd cwnd+1/cwnd

3. There is a linear growth of cwnd
Each RTT:
cwnd cwnd+1

c) Fast Retransmit

In Fast Retransmit mechanism when 3 duplicate
acknowledgements are received, it is understood that
there is packet loss. Hence even before the actual
packet loss is detected, the packet is retransmitted.

1. Waiting for a timeout is too long
2. Retransmit data immediately after 3

duplicate acknowledgments without waiting
for timeout
Timeout :
ssthresh cwnd/2
cwnd=1

3. Adjust threshold value
Flightsize = min(cwnd, cwnd)
ssthresh max(flightsize/2,2)

4. Enter slow start cwnd=1

d) Fast Recovery

Gurmeet et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 907

The motivation of fast recovery is to prevent the pipe
from emptying after retransmission. The main idea
behind fast recovery is each duplicate ACK
represents a packet having left the pipe (successfully
received).

1. Enter Fast recovery after 3 duplicate ACK.
2. Set ssthresh max(flightsize/2,2)
3. Retransmit loss packet
4. Set cwnd ssthresh+ndup(window

inflation)
5. Wait till W = min(awnd, cwnd) is large

enough; transmit new packet(s).
6. On non-dup ACK (1 RTT later), set

cwnd ← ssthresh (window deflation)
Enter CA

There are some flaws in TCP Reno.

1. Reno work very well in tcp when packet
loss is small but when packet loss is high or
there is multiple pack loss TCP Reno is not
suited for that.

2. In tcp reno window size is small so 3
duplicate packets can’t be received for fast
retransmission so we can retransmit packet
only when timeout is expire. because of this
TCP Reno cannot detect multiple packet loss
effectively. [3]

To remove these flaws we use another variant
of TCP called TCP Vegas.

4. TCP Vegas

It is proposed by Brakmo and Peterson in 1995.it is a
Congestion control algorithm which uses RTT time
to measure the network situation. It basically
Compare the expected efficiency and actual
efficiency to decide whether increasing or decreasing
the cwnd value.
Vegas use following three modified mechanism to
increase delivery throughput and decrease packet
loss.[4]

a. Modified Slow-Start Mechanism
b. New Congestion Avoidance Mechanism
c. New Retransmission Mechanism

a) Modified Slow Start Mechanism

 Limited Slow-Start Mechanism

 To be able to detect and avoid congestion during
slow-start, Vegas reduce the increasing rate of
cwnd.

 Cwnd is allowed exponential growth only every
other RTT. (doubles the size of cwnd every 2
RTT time while there are no losses).

 In between, the cwnd stayed fixed so a valid
comparison of the expected and actual rate can
be made.

 When the actual rate falls below the expected
rate by a certain amount - the γ threshold -
Vegas changes from slow-start mode to linear
increase/decrease mode.

 By limiting the maximum increase in the cwnd
in a round-trip time, Limited Slow-Start can
reduce the number of drops during slow-start,
and improve the performance of TCP
connections with large congestion windows.

 When Vegas detect there is queuing in network ,
the queue length exceed γ,and the actual rate
falls below the expected rate, Vegas will change
its state from slow-start mode to congestion
avoidance mode, and set cwnd to 7/8 of current
value.

b) Modified Congestion Avoidance

 TCP Vegas has another New Congestion
Avoidance Mechanism to control the size of
cwnd by observing the variation of RTT.

 When the sender receives an ACK, Vegas
calculate the difference between the expect send
rate and the actual send rate.

 Vegas defines two thresholds, α and β, and
Diff = Expected send rate – Actual send rate

 Expected send rate= Window size / Base RTT

 Actual send rate= (the bytes transmitted between
the time that the segment is sent and its ACK is
received) / (the Segment’s RTT)

 Base RTT is the minimum of all measured RTT,
that is updated if the Diff < 0.

Slow
Start

Congestion
Avoidance

Fast
Retransm

it

Fast
Recovery

Gurmeet et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 908

 When Diff < α, Vegas increase the cwnd linearly
during next RTT, and when Diff > β, Vegas
decrease the cwnd linearly during the next RTT.

 Vegas leaves the cwnd unchanged when α < Diff
< β. The default value of (α, β) is (1,3).

c) New Retransmission Mechanism

Vegas improved the Fast retransmit mechanism in
order to detect packet loss earlier and retransmit
immediately.

 When a duplicate-ACK is received, Vegas
checks if the RTT time, which is the
difference of the current time and the
timestamp recorded for the relevant segment,
is greater than the timeout value. If it is,
Vegas retransmit the segment immediately
without 3 duplicate-ACKs

 When a non-duplicate ACK is received, if it
is the first second one after a transmission,
Vegas again checks if the time interval since
the segment was sent is larger than the time
out value. If it is, retransmit the segment.

 Vegas only decrease the cwnd if the
retransmitted segment was previously sent
after the last decrease.[5]

d) TFRC(TCP Friendly Rate Control)

TFRC is a congestion control mechanism designed
for unicast flows operating in an Internet
environment and competing with TCP traffic. TFRC
is designed for applications that use a fixed packet
size, and vary their sending rate in packets per second
in response to congestion. TFRC should only be used
when the application has a requirement for smooth
throughput such as telephony or streaming media
where a relatively smooth sending rate is of
importance. TFRC is a receiver-based mechanism,
with the calculation of the congestion control
information (i.e., the loss event rate) in the data
receiver rather in the data sender.
A new transport protocol was proposed by the
Internet Engineering Task Force (IETF), in response
to the problems of TCP , which is named as TCP-
Friendly Rate Control protocol. To be friendly to
TCP flows and at the same time maintain the
smoothness of the changing rate to avoid severe

performance degradation are the main objectives of
TFRC.

1. Initial slow start:

Initial rate：4 packets/RTT

The rate Double every RTT
2. Linear increase / decrease

No window size
In this Sending rate is regulated by Markov Model

3. The model is based on TCP Reno[6]

Table 1
Comparison Of TCP Reno and TCP Vegas

Parameters TCP Reno TCP Vegas

RTT measurement Coarse grained
timer is used

Fine-grained
clock values
are used

Retransmission
decision

When
receiving 3

duplicate ACK

When
receiving a

duplicate ACK
check whether

timeout is
expire and if so
then retransmit

Congestion window
decrease

Decrease more
than once
during one
RTT

Reduced only
for first fast
retransmission

Congestion detection 1.it is reactive
protocol
2. Uses the loss
of segments as
a signal that
there is
congestion in
the network.

1. it is
proactive
protocol
2. it tries to
detect incipient
congestion by
comparing the
measured
throughput to
its notion of
expected
throughput

Congestion window
increase

doubles
congestion
window size
every RTT

doubles
congestion
window size
every other
RTT (valid
comparison of
the expected
and the actual
rates)

Gurmeet et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 909

6. CONCLUSION

TCP Reno is one of the TCP variant used for
congestion control in mobile ad-hoc networks. but it
is well suited only if there is single packet loss in a
network. When there is multiple packet loss in a
network then it is not working properly. TCP Vegas
which is another variant of TCP is used for
congestion control when there is multiple packet loss
in network. TFRC is used for applications which
need smooth output like internet telephony and
multimedia streaming. It is implemented for those
applications which use fixed packet size.

7. REFERENCES

[1] Saher S. Manaseer, "On backoff mechanisms for
wireless mobile ad hoc networks," in Ph. D thesis,
The Faculty of Information and Mathematical
Sciences at University of Glasgow, Scotland, 2009,
PP. 1-156.

[2] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J.
Jetcheva.. A performance comparison of multi-hop
wireless ad hoc network routing protocols. In

[3]http://www.arl.wustl.edu/~jst/cse/770/talks/georg1
0-14-04.pdf

[4] M.Jehan Dr.G.Radhamani T.Kalakumari
“VEGAS: Better Performance Than Other TCP
Congestion Control Algorithms on MANETs”
International Journal of Computer Networks (IJCN)
Volume (3), Issue (2) , june 2011

[5] S. R. Biradar, Subir Kumar Sarkar , Puttama
dappa C “A Comparison of the TCP Variants
Performance over different Routing Protocols on
Mobile Ad Hoc Networks” (IJCSE) International
Journal on Computer Science and Engineering Vol.
02, No. 02, 2010, 340-344

[6] Floyd, S., M. Handley, J. Padhye and J. Widmer ,
2008. TCP Friendly Rate Control (TFRC): Protocol
specification. University College London

[7] Md Nazmul Islam Khan, Rashed Ahmed and Md.
Tariq Aziz “A SURVEY OF TCP RENO, NEW
RENO AND SACK OVER MOBILE AD-HOC

NETWORK” International Journal of Distributed
and Parallel Systems (IJDPS) Vol.3, No.1, January
2012

