
Achyut / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 862

Fine grained group based job
scheduling algorithm with highest

computing resource in grid
Achyut Sakadasariya

1#

1 Shantilal shah engineering college Bhavnagar, Gujarat, India.
#Achyut.patel13@gmail.com

Abstract— Load balancing is the process of load distribution,
handling incoming requests and better resource utilization. In a
distributed grid computing system it is desirable to achieve an
efficient distribution of workload among systems so that each and
every machine would have the same workload. No machine should
remain idle while other machines are overloaded. Load distribution is
done to achieve better response time, better resource utilization and
thus improved performance. For improve the performance we have
various load balancing algorithms, different types of load balancing
strategies and techniques.

Keywords- Computational grid, resource utilization, request
handling, data migration, fine grained, job scheduling.

I. INTRODUCTION

Generally there are three type of phases related to
Load balancing i.e. Information Collection, Decision Making,
Data Migration. Grid computing is a type of parallel and
distributed system that enables the distribution, selection and
aggregation of geologically resources dynamically at run time
depending on their availability, capability, performance, cost,
user quality-of–self-service requirement [1]. Grid Computing
should enable the job in question to be run on an idle machine
elsewhere on the network [2]. Grids functionally bring
together globally distributed computers and information
systems for creating a universal source of computing power
and information [3].

A key characteristic of Grids is that resources (e.g.,
CPU cycles and network capacities) are shared among various
applications. Load balancing is a technique to enhance
resources, utilizing parallelism, exploiting throughput
improvisation, and to reduce response time through an
appropriate distribution of the application [4].

A key characteristics of grid is that all the resources
are shared among various applications and therefore, the
amount of resources available to any given application highly
fluctuates over times. Load balancing is the technique to
enhance resources, utilizing Parallelism, exploiting throughput
improvisation, and to cut response time through the
appropriate distribution of the application. To minimize the
decision time is one of the objectives for load balancing which
has yet not been achieved.

However, grid performance can be improved in terms
of job processing time by making sure all the resource
available in the grid are utilized optimally [4] using a good job
scheduling algorithm. In traditional computing system, job
scheduling is well studied problem. Job scheduler are exists for

many computing environments. These scheduler systems are
designed to work under the assumption that they have
complete control of a resource and thus can implement the
mechanisms and policies needed for the effective use of that
resource. Unfortunately, this assumption does not apply to the
grid. When dealing with the grid we must develop methods for
managing grid resources across separately administered
domains, with the resource heterogeneity (grid resources are
typically heterogeneous) and differences in local policy.

II. RELATED WORK

This section presents a brief expansion of the work
already done in this field so I am trying to improving efficiency
of resource utilization.

The scheduler select the available highest priority resource and
groups independent lightweight jobs together based on chosen
resources processing capability. These jobs are grouped in such
a way to maximize the utilization of resources. After grouping
all jobs sends to the corresponding resources. This algorithm
minimize the network latency, but the scheduling strategy is
not ensuring that the resource having a sufficient bandwidth to
send the group jobs within required time.

In [5], T.F. Ang, et. al. presents a grouping based
bandwidth-aware scheduling strategy that schedules the jobs
by taking into consideration of their computational capabilities
and the communication capabilities of the resources, same as
[6]. But the job groups are sent to the corresponding resources
based on Largest Job First (LJF) strategy and the results of the
processing are sent back to the user after they have been
computed at their respective resources. The principle behind
the bandwidth-aware scheduling is the scheduling priorities
taking into consideration the communication capabilities of the
resources. This does not considered the dynamic resource
characteristics into account and the scheduling strategy is not
ensuring that the resource having a sufficient bandwidth to
send the group jobs within required time same as above
approach.

A grouping-based fine-grained job scheduling model is
presented in [7] by Liu and Liao, the fine-grained jobs grouped
into forming coarse-grained are allocated to the available
resources according to their processing capabilities and
network bandwidth in Largest Job First(LJF) order. But here
resource are selected in FCFS order, there is no priority for
selecting resources.

 Job Scheduling Model

Achyut / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 863

The four basic building blocks of grid model are user,
job scheduler, Grid Information System (GIS) and resources.
User jobs submitted to the grid scheduler for scheduling to the
resources with an objective of minimizing the processing time
and utilizing the resources effectively. The scheduling
framework depicts the design of the job scheduler and its
interactions with other entities. The job scheduler is a service
that resides in a user machine. When the user creates a list of
jobs in the user machine, these jobs are sent to the job
scheduler for scheduling. The job scheduler obtains
information of available resources from the Grid Information
Service (GIS) [8]. Based on this information, the job
scheduling algorithm is used to grouping the jobs and then
resource selection for grouped jobs. When all the jobs are put
into groups with selected resources, the grouped jobs are
dispatched to their corresponding resources for computation by
the dispatcher [9].

Figure 1. Scheduler model for job grouping

III. PROPOSED WORK

 Algorithm Description

In this section we present a job grouping-based fine-
grained job scheduling algorithm. The algorithm mainly
consists of two phases: (1) Create available resource list and
(2) Job grouping and scheduling. The jobs are described as:
Job = {JOB IDi, JOB MIi, JOB INPUT SIZEi} Resources are
described as: RESj = {RES IDj, RES MIPSj, RES BW RATEj, RES
COSTj} after grouping job new Group jobs will be created,
described as:

Grouped JOBk = {GroupedJOB IDk, GroupedJOB MIk, Grouped
JOB INPUT SIZEk}.

 Algorithm1: Listing of the Available Resources

1: Create a List RES LIST.2: Collect all available resource characteristics and add them
to RES LIST.3: Sort the RES LIST in descending order with respect to
available processing capability (in MIPS).

 Algorithm 2: Job Grouping and Scheduling1: while JOBLIST.SIZE! = 0 do2: for i = 0→JOBLIST.SIZE−	1	do3: for j = 0→RES LIST.SIZE−	1	do4: if (((GroupedJOBMIj + JOBMIi) < (RESMIPSj ∗ Graularity Time))and (((GroupedJOBINPUT SIZEj +JOBINPUT SIZEi)/RESBWRATEj)< GraularityTime)) then5: assign the JOB i to GroupedJOB j;6: update JOBi status to assigned withRESIDj;7: break;8: end if9: end for10: if JOBi is not assigned then11: Add the JOBi toJOBLIST1;12: end if13: end for14: fork = 0→RES LIST.SIZE−	1	do15: if Grouped JOB k is not empty then16: Create a new job with all the Grouped Job assigned to RESk;17: Assigna unique Grouped JOBID to newlycreated Grouped JOB LIST; job and add it to18: Allocate the Grouped JOBk to RESk;19: end if20: end for21: ifJOBLIST1.SIZE != 0 then22: JOBLIST = JOBLIST1;23: Update resource information using algorithm 1 ;24: end if25: end while26: for i = 0→GroupedJOBLIST.SIZE−	1	do27: Receive computed Grouped JOBi fromrespective resources;28: end for

IV. CONCLUSIONS AND FUTURE WORK

We have discussed about the problem of job scheduling in
heterecious computational grid, where user submits jobs with a
large number of lightweight jobs (requires small processing
requirement) and we have tried to find a solution for that problem.
We have proposed an efficient Dynamic Bandwidth-Aware Job-
Grouping Based Scheduling algorithm. We have got some better
performance in terms of processing time and processing cost than
some of the job existing grouping based schemes. In the simulation
results, it is clear that proposed approach reduces the total
processing time and processing cost. However, allocating a large
number of Gridlets to one resource will increase the total
processing time and processing cost. Therefore, to avoid this
situation during job grouping activity, the total number of Gridlet
group should be created such that the processing load among the

Achyut / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 864

selected resources are balanced. The proposed approaches have
been critically analyzed and few limitations have been observed.
These limitations can be studied and refined. Additionally, the
simulation environment is semi-dynamic and it can’t reflects in the
real computational grid environment sufficiently that promotes
further research in the proposed area. In future research some more
factors like current load of the resource, jobs with a deadline,
network delay, [10] QoS (Quality of Service) [11] requirements
will be taken into account. The proposed approaches have been
critically analyzed and few limitations have been observed. These
limitations can be studied and refined. Additionally, the simulation
environment is semi-dynamic and it can’t reflects in the real
computational voice AC respectively. Our proposed technique
attains high delivery ratio and throughput with reduced delay when
compared with the existing technique

REFERENCES[1] Computer, 35:37–46, June 2002.[2] Klaus Krauter, Rajkumar Buyya, and MuthucumaruMaheswaran. A taxonomy and survey of grid resourcemanagement systems for distributed computing.
Softw. Pract. Exper., 32:135–164 , February 2002.[3] Ian Foster and Carl Kesselman. Grid resourcemanagement. chapter The Grid in a nutshell, pages 3–13. Kluwer Academic Publishers, Norwell, MA, USA,2004.[4] Rajkumar Buyya and Srikumar Venugopal. A gentleintroduction to grid computing and technologies. CSI
Communications, 29(1):9–19, July 2005. ComputerSociety of India (CSI).[5] Ann Chervenak, Ian Foster, Carl Kesselman, CharlesSalisbury, and Steven Tuecke. The data grid: Towardsan architecture for the distributed management andanalysis of large scientific datasets. JOURNAL OF
NETWORK AND COMPUTER APPLICATIONS, 23:187–200, 1999.[6] Fatos Xhafa and Ajith Abraham. Computational modelsand heuristic methods for grid scheduling problems.
Future Generation Computer Systems, 26(4):608 – 621,2010.[7] Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz,editors. Grid resource management: state of the art and
future trends. Kluwer Academic Publishers, Norwell,MA, USA, 2004.[8] Nithiapidary Muthuvelu, Junyang Liu, Nay Lin Soe,Srikumar Venugopal, Anthony Sulistio, and RajkumarBuyya. A dynamic job grouping-based scheduling for

deploying applications with fine-grained tasks onglobal grids. In Proceedings of the 2005 Australasian
workshop on Grid computing and e-research - Volume
44, ACSW Frontiers ’05, pages 41–48, Darlinghurst,Australia, Australia, 2005. Australian Computer Society,Inc.[9] Ng Wai Keat, Ang Tan Fong, Ling Teck Chaw, and LiewChee Sun. Scheduling framework for bandwidth-awarejob grouping-based scheduling in grid computing.
Malaysian Journal of Computer Science, 19(2):117–126,2006.[10] Quan Liu and Yeqing Liao. Grouping-based fine-grained job scheduling in grid computing. In
Proceedings of the 2009 First International Workshop
on Education Technology and Computer Science -
Volume 01, pages 556–559, Washington, DC, USA,2009. IEEE Computer Society.[11] GridSim 5.0 Beta Application ProgrammingInterface(API). http://www.buyya.com/gridsim/
doc/api/.

