Vishal et al. /IJAIR

Vol. 2 Issue 4

ISSN: 2278-7844

A study and comparison of Priority Inheritance

Protocol and Priority Ceiling Protocol

Vishal Prajapati

BVM Engineering College,

Anand, Gujarat, India.
vsprajapati@gmail.com

Abstract - Resource allocation is one of the challenging problems for
real-time operating system. Priority inheritance protocol (PIP) and
Priority ceiling protocol (PCP) are very popular for resource
allocation in real-time operating system. Both algorithms have certain
pros and cons.

In priority inheritance protocol when any higher priority job is
scheduled, it may ask for resource. If that resource is acquired by
lower priority job than lower priority job inherits the priority of
currently scheduled job and it will be executed.

In priority ceiling protocol at starting of the scheduling the resources
are allocated to the highest priority job. When lower priority job
request for resource than it will not be allocated to that job even
though the resource is free.

Therefore, there are advantages and disadvantages of both the

protocols. We have studied and compared both protocols in this

paper.

Keywords—Priority inheritance protocol, Priority Ceiling Protocol,

Resource Allocation, Real-time operating system.

I.INTRODUCTION
Real-time system is required to complete its
work and deliver its services on the basis of
time. The results of real-time systems are
judged based on the time at which the results
are produced in addition to the logical results
of computations [3]. Therefore, real-time
systems have well defined, fixed time
constraints i.e. processing must be done within
the defined constraints otherwise the system
will fail. Real-time systems can be categorized
in two basic types: Hard and Soft. In hard real-

time systems, all jobs must complete execution

© 2013 VAIR. ALL RIGHTS RESERVED

Apurva Shah

G H Patel College of Engineering and Technology,

Anand, Gujarat, India.
apurvashah@gcet.ac.in

prior to their deadline- a missed deadline
constitutes a system failure.[7] Such systems
are used where the consequences of missing a
deadline may be serious or even disastrous. A
soft real-time system is less restrictive. Jobs
may continue execution beyond their deadlines
at some penalty - deadlines are considered as
guidelines, and the system tries to minimize the
penalties associated with missing them. Such
systems are used when the consequences of
missing deadlines are smaller than the cost of
meeting them in all possible circumstances.
Cell phones and multimedia applications would

both use soft real-time systems. [2]

Il. PRIORITY INVERSION AND DEADLOCK
Priority inversion can occur when the execution
of some jobs or portions of jobs s
nonpreemptable.[4] Resource contentions
among jobs can also cause priority inversion.
Because resources are allocated to jobs on a
nonpreemptive basis, a higher-priority job can
be blocked by a lower-priority job if the jobs
conflict, even when the execution of both jobs

is preemptable.

Without good resource access control, the
duration of a priority inversion can be
unbounded. The example in Figure 1 illustrates
this fact. Here, jobs J1 and J3 have the highest

832

Vishal et al. /IJAIR
priority and lowest priority, respectively. At
time 0, J3 becomes ready and executes. It
acquires the resource R shortly afterwards and
continues to execute. After R is allocated to J3,
J1 becomes ready. It preempts J3 and executes
until it requests resource R at time 3. Because
the resource is in use, J1 becomes blocked, and
a priority inversion begins. While J3 is holding
the resource and executes, a job J2 with a
priority higher than J3 but lower than J1 is
released. Moreover, J2 does not require the
resource R. This job preempts J3and executes
to completion. Thus, J2 lengthens the duration
of this priority inversion. In this situation, the
priority inversion is said to be uncontrolled
[6]. There can be an arbitrary number of jobs
with priorities lower than J1 and higher than J3
released in the meantime. They can further
lengthen the duration of the priority inversion.
Indeed, when priority inversion is uncontrolled,

a job can be blocked for an infinitely long

time.
0 4 6 8 10 1 4 16 18
| | | | |
J, [] [|
1 [1
am N (. O

Figure 1 Priority Inversion

Nonpreemptivity of resource allocation can
also lead to deadlocks. The classic example is
one where there are two jobs that both require
resources X and Y. The jobs are in deadlock
when one of them holds X and requests for Y,
while the other holds Y and requests for X. The

conditions that allow this circular wait of jobs

© 2013 VAIR. ALL RIGHTS RESERVED

Vol. 2 Issue 4

ISSN: 2278-7844
for each other (i.e., a deadlock) to occur are

well-known.

I1l. RESOURCE CONTROL TECHNIQUES
Many resource control techniques have been
proposed for real-time systems. These vary
from techniques for use with priority
preemptive scheduling algorithms, for example
the collection of techniques derived from
priority inheritance [1], to those that rely upon
scheduling resources along with processes in a
rigid manner pre-runtime [4,5]. AIl these
techniques are summarized in following series
of criteria:

(a) Predictable or non-predictable

(b) Blocking or non-blocking

(c) Runtime non-blocking or pre-runtime non-
blocking

(d) Preemptive blocking or non-preemptive

blocking

A. Priority Inheritance Protocol

The priority inheritance protocol (PIP) [8]
assumes that:

(a) Static priorities are assigned to processes
(b) Resources are accessed in a mutually
exclusive manner

(c) Resource accesses are properly nested

(d) A preemptive priority driven scheduler is
used (where the highest priority runnable
process is given the processor)

(e) The resources that a process accesses can be

determined pre-runtime.

1) Rules of the Basic Priority Inheritance
Protocol
1. Scheduling Rule: Ready jobs are scheduled

on the processor preemptively in a priority

833

Vishal et al. /IJAIR
driven manner according to their current
priorities. At its release time t, the current
priority =z(t) of every job J is equal to its
assigned priority. The job remains at this
priority except under the condition stated in
rule 3.

2. Allocation Rule: When a job J requests a
resource R at time t,

(a) If R is free, R is allocated to J until J
releases the resource, and

(b) If R is not free, the request is denied and J
is blocked.

3. Priority-Inheritance Rule: When the
requesting job J becomes blocked, the job Jl
which blocks J inherits the current priority =(t)
of J . The job JI executes at its inherited
priority z(z) until it releases R; at that time, the
priority of JI returns to its priority =/ (¢’) at the

time ¢” when it acquires the resource R

B. Priority Ceiling Protocol

The priority ceiling protocol (PCP) is
one instance of a class of priority inheritance
protocols [6]. The motivation of the PCP is to
address the deadlock and chaining problems of
the priority inheritance protocol. This is
achieved by ensuring that a strict ordering of
critical region execution is maintained. The
same assumptions are made about processes and

resources as in priority inheritance.

1) Rules of the Priority Ceiling Protocol
1. Scheduling Rule:
(a) At its release time t, the current priority
w(t) of every job J is equal to its assigned
priority. The job remains at this priority except

under the condition stated in rule 3.

© 2013 VAIR. ALL RIGHTS RESERVED

Vol. 2 Issue 4

ISSN: 2278-7844

(b) Every ready job J is scheduled
preemptively and in a priority-driven manner at
its current priority z(z).

2. Allocation Rule: Whenever a job J requests a
resource R at time t, one of the following

two conditions occurs:

(a) R is held by another job. J ’s request fails
and J becomes blocked.

(b) R is free.

(i) If J’s priority =(z) is higher than the
current priority ceiling (t), R is allocated
toJ .

(ii) 1f J’s priority =(¢) is not higher than

the ceiling J](t) of the system, R is allocated to
J only if J is the job holding the resource(s)
whose priority ceiling is equal to J][(t);
otherwise, J’s request is denied, and J becomes
blocked.
3. Priority-Inheritance Rule: When J becomes
blocked, the job JI which blocks J inherits the
current priority =(t) of J. JlI executes at its
inherited priority until the time when it
releases every resource whose priority ceiling
is equal to or higher than z(z); at that time, the
priority of JI returns to its priority =/ (¢’) at the
time t’ when it was granted the resource(s).

The PCP can be summarized as:

e A priority ceiling is assigned to each
resource equal to the highest priority of
all processes that could lock it.

e A resource is allocated if the priority of
the requesting process is strictly greater
than the ceilings of all currently held
resources. If the resource is not
allocated, the requesting process

becomes blocked upon that resource.

834

Vishal et al. /IJAIR
A process executes at its assigned priority
unless it blocks a higher priority process at
which time it inherits the priority of the
blocked process for the duration of the current
critical region inheritance

(as in priority

protocol).

One disadvantage of the PCP is its
pessimism in terms of blocking times. The only
circumstances that a high priority process can
be blocked for

critical region of a lower priority process is

the entire duration of the

when locks a resource required by(or required

by an even higher priority process) and

performs no execution before requires a

resource. Effectively, the lower

lock the

priority job
must resource momentarily before
higher priority job becomes runnable. This is

clearly pessimistic.[8]

IV. SCHEDULING UNDER PIP AND PCP

1) Parameters of Jobs

Vol. 2 Issue 4

ISSN: 2278-7844

3) Schedule under PCP

8 10 12 14 16 18
|

i 0 B

B []

V. COMPARISON OF PIP AND PCP

Priority Priority
Inheritance Ceiling
It is Greedy.[3] It is not Greedy.[3]

PIP lets the requesting

In PCP, a job may be

Job ¢; ; Critical Sections

Ji 7 3 1 [Shaded; 1]

Js 5 3 2 [Black; 1]

J; 4 2 3

7 2 6 4 [Shaded: 4 [Black: 1.5]]
Js 0 6 5 [Black; 4]

ri = arrival time

e; = execution time

I1; = Priority of job

2) Schedule under PIP

0 2 4 6 8 10 12 14 16 18 20

job have a resource | denied its requested

whenever the resource | resource even when the

is free.[2] resource is free at that
time.[2]

Poor worst case | Good worst case priority

behavior when there | inversion control.

are nested locks.[1] Handles nested locks
well.[1]

Extra context switches | Pay cost of changing

are avoided.

Medium Priority task

priority twice regardless

of whether there is any

are not preempted | contention for the lock

unnecessarily. or not.

Leads to excellent | Resulting in higher

average overhead and many

performance.[1] unnecessary context
switches.[1]

Effective Effective

Lock is seldom part of | When task contending

a nested set and when | for lock is known.

average performance | - When there may be

is relevant in addition
to worst case

performance.[1]

nested locks &worst case
behavior is only in

concern.[1]

© 2013 VAIR. ALL RIGHTS RESERVED

835

Vishal et al. /IJAIR Vol. 2 Issue 4

VI. CONCLUSION
Comparison of PIP and PCP is done in this
paper. PIP is suffering from priority inversion
and dead lock issues while PCP is solving that
problem at certain level. Number of context
switches will be up and down in both protocols
depends upon the input. So here we compared
the protocols in terms of priority inversion,

deadlock, resource acquiring techniques etc.

REFERENCES
[1] Doug Locke, “Priority Inheritance: The Real Story”, July, 2002

[2] Pratibha Zunjare , Bibhudatta Sahoo, “Evaluating Robustness of
Resource Allocation in Uniprocessor Real-time System”, International
Journal of Computer Applications (0975 — 8887) Volume 40- No.3,
February 2012

[3] Prof. Rajib Mall, CSE, IIT Kharagpur, Module -3, “Handling
Resource sharing and dependencies among real-time tasks.”
nptel.iitm.ac.in/courses/Webcourse-contents/IIT ~ Kharagpur/Real time
system/pdf/module3.pdf

[4] Jane W. S. Liu, “Real-Time Systems”, Pearson, 2011

[5(] C. L Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment,” Journal of the
ACM,vol. 20, no. 1, pp. 46-61, Jan. 1973.

[6]Sha, L., R. Rajkumar, and J. P. Lehoczky, ”Priority inheritance
protocols: An approach to real-time synchronization,” IEEE Transactions
on Computers, vol. 39, 1990

[7] A M Shah, “Dynamic Scheduling for Real-Time Operating Systems”,
Ph. D. Thesis, Information Technology Department, Sardar Patel
University, India,2010

[8] Neil C. Audsley, “Resource control for hard real-time systems: a
review”, University of York, August 1991

© 2013 VAIR. ALL RIGHTS RESERVED

ISSN: 2278-7844

836

