
Vishal et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 832

A study and comparison of Priority Inheritance

Protocol and Priority Ceiling Protocol

Vishal Prajapati Apurva Shah

BVM Engineering College,

Anand, Gujarat, India.
vsprajapati@gmail.com

G H Patel College of Engineering and Technology,

Anand, Gujarat, India.
apurvashah@gcet.ac.in

Abstract - Resource allocation is one of the challenging problems for

real-time operating system. Priority inheritance protocol (PIP) and

Priority ceiling protocol (PCP) are very popular for resource

allocation in real-time operating system. Both algorithms have certain

pros and cons.

In priority inheritance protocol when any higher priority job is

scheduled, it may ask for resource. If that resource is acquired by

lower priority job than lower priority job inherits the priority of

currently scheduled job and it will be executed.

In priority ceiling protocol at starting of the scheduling the resources

are allocated to the highest priority job. When lower priority job

request for resource than it will not be allocated to that job even

though the resource is free.

Therefore, there are advantages and disadvantages of both the

protocols. We have studied and compared both protocols in this

paper.

Keywords–Priority inheritance protocol, Priority Ceiling Protocol,

Resource Allocation, Real-time operating system.

I. INTRODUCTION

Real - t ime sys tem is requi red to complete i t s

work and de liver i t s services on the bas is o f

t ime. The resul t s o f real - t ime sys tems are

judged based on the t ime at which the result s

are produced in add it ion to the logical result s

of co mputa tions [3] . Therefore , rea l -t ime

sys tems have well def ined, fixed t ime

constraints i .e . processing must be done wi thin

the def ined const raints otherwise the sys tem

wi l l fa i l . Real - t ime sys tems can be ca tegor ized

in two basic types: Hard and Soft . In hard real -

t ime sys tems, al l jobs must complete execution

pr ior to the ir dead line - a missed dead line

const i tutes a sys tem fa i lure . [7] Such sys tems

are used where the consequences o f missing a

deadl ine may be ser ious or even disastrous. A

soft rea l -t ime sys tem is less restr ict ive. Jobs

may cont inue execut ion beyond their deadl ines

at some penal ty - dead lines ar e considered a s

guidel ines, and the sys t em tr ies to minimize the

penal t ies assoc ia ted wi th missing them. Such

sys tems are used when the consequences o f

miss ing dead lines are smaller than the cost of

meet ing them in al l possib le ci rcumstances.

Cell phones and mul t imedia appl ica t ions would

both use soft rea l -t ime sys tems. [2]

I I . PRIORITY INVERSION AND DEADLOCK

Prior i ty invers ion can occur when the execut ion

of some jobs or port ions o f jobs i s

nonpreemptable. [4] Resource contentions

among jobs can also cause pr ior i ty inversion.

Because resources are al located to jobs on a

nonpreempt ive bas is, a higher -pr ior i ty job can

be blocked by a lo wer -pr ior i ty job i f the jobs

confl ict , even when the execution of both jobs

is p reemptab le.

Without good resource access cont rol , the

dura tion of a pr ior i ty invers ion can be

unbounded . The example in Figure 1 i l lustrates

this fac t . Here, jobs J1 and J3 have the highest

Vishal et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 833

prior i ty and lo west pr ior i ty, respect ively. At

t ime 0, J3 becomes ready and executes. I t

acquires the resource R short ly a fterwards and

continues to execute. After R i s a l located to J3,

J1 becomes ready. I t preempts J3 and executes

unt i l i t requests resource R at t ime 3. Because

the resource i s in use, J1 becomes b loc ked, and

a pr ior i ty inversion begins. While J3 is ho lding

the resource and executes, a job J2 wi th a

pr ior i ty higher than J3 but lower than J1 is

released. Moreover , J2 does not require the

resource R . This job preempts J3and executes

to comple tion. Thus, J2 lengthens the dura tion

of this pr io r i ty invers ion. In this si tua tion, the

pr ior i ty invers ion is said to be uncontro lled

[6] . There can be an arbitrary number o f jobs

wi th pr ior i t ies lo wer than J1 and higher than J3

released in the meant ime. They can fur ther

lengthen the dura tion of the pr ior i ty invers ion.

Indeed, when pr ior i ty invers ion i s uncontro lled ,

a job can be blocked for an inf ini tely long

t ime.

Figure 1 Prior i ty Inversion

Nonpreemptivity o f resource a l locat ion can

also lead to dead locks. The c lass ic example is

one where there a re two jobs tha t both require

resources X and Y . The jobs are in deadlock

when one of them holds X and requests for Y ,

whi le the other holds Y and requests for X . The

condit ions that a l lo w this ci rcular wait o f jobs

for each other (i .e . , a deadlock) to occur are

wel l -known.

I I I . RESOURCE CONTROL TECHNIQUES

Many resource control techniques have been

proposed for real - t ime sys tems. These vary

from techniques fo r use wi th pr ior i ty

preempt ive schedul ing algori thms, for example

the co llec t ion of techniques der ived from

prior i ty inheri tance [1] , to those that rely upon

scheduling resources along wi th processes in a

r igid manner pre -runt ime [4,5] . All these

techniques are summarized in fo l lo wing ser ies

of cr i ter ia:

(a) Predictab le or non -predic tab le

(b) Blocking or non -b locking

(c) Runtime non-b locking or pre -runt ime non-

blocking

(d) Preempt ive blocking or non -preempt ive

blocking

A. Priori ty Inheritance Pro tocol

The pr ior i ty inher i tance pro toco l (PIP) [8]

assumes tha t:

(a) S ta t ic pr ior i t ies are assigned to processes

(b) Resources are accessed in a mutua lly

exclusive manner

(c) Resource accesses are properly nested

(d) A preemptive pr ior i ty dr iven scheduler i s

used (where the highest pr io r i ty runnable

process i s given the processor)

(e) The resources tha t a process accesses can be

determined pre -runt ime.

1) Rules o f the Basic Priori ty Inheri tance

Pro tocol

1. Schedul ing Rule : Ready jobs are scheduled

on the processor preemptive ly in a pr ior i ty

Vishal et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 834

driven manner accord ing to the ir current

pr ior i t ies. At i ts release t ime t , the cur rent

pr ior i ty π(t) of every job J is equal to i t s

assigned pr ior i ty. The job remains a t th is

pr ior i ty except under the condi t ion s tated in

rule 3 .

2 . Alloca tion Rule : When a job J requests a

resource R at t ime t ,

(a) I f R i s free, R i s a l loca ted to J unt i l J

releases the resource , and

(b) I f R i s not free, the request i s denied and J

is b locked.

3 . Priori ty-Inheritance Rule : When the

requesting job J beco mes b locked , the job Jl

which blocks J inher i t s the current pr ior i ty π(t)

of J . The job Jl executes a t i t s inher i ted

pr ior i ty π(t) unti l i t r eleases R ; a t that t ime, the

pr ior i ty o f Jl returns to i t s pr ior i ty πl (t’) a t the

t ime t ’ when i t acquires the resource R

B. Priori ty Cei l ing Pro tocol

The pr ior i ty ce i l ing protocol (PCP) i s

one instance of a class of pr ior i ty inheri tance

protocols [6] . The mot iva tion of the PCP is to

address the deadlock and cha ining prob lems of

the pr ior i ty inher i tance pro tocol . This i s

achieved by ensur ing tha t a s tr ict order ing of

cr i t ical region execut ion is mainta ined. The

same assumptions a re made about processes and

resources as in pr ior i ty inher i tance .

1) Rules of the Priori ty Cei l ing Pro tocol

1. Schedul ing Rule :

(a) At i t s re lease t ime t , the current pr ior i ty

π(t) of every job J is equal to i t s ass igned

pr ior i ty. The job remains a t this pr ior i ty excep t

under the condi t ion s ta ted in rule 3 .

(b) Every ready job J is scheduled

preempt ive ly and in a p r ior i ty -dr iven manner a t

i t s current pr ior i ty π(t) .

2. Alloca tion Rule : Whenever a job J requests a

resource R at t ime t , one of the fol lo wing

two condit ions occurs :

(a) R is held by ano ther job. J ’s request fai l s

and J becomes b locked.

(b) R i s free.

(i) I f J’s pr ior i ty π(t) is higher than the

cur rent p r ior i ty cei l ing (t) , R i s a l located

to J .

(i i) I f J ’s pr ior i ty π(t) i s no t higher than

the cei l ing ∏ (t) of the sys tem, R i s a l located to

J only i f J i s the job holding the resource(s)

whose pr ior i ty ce i l ing i s equal to ∏ (t) ;

o therwise, J ’s request i s denied, and J becomes

blocked.

3. Priori ty - Inheri tance Rule : When J becomes

blocked, the job Jl which blocks J inher i t s the

cur rent pr ior i ty π(t) of J . J l executes a t i t s

inheri ted pr ior i ty unt i l the t ime when i t

releases every resource whose pr ior i ty ce i l ing

is equal to or higher than π(t) ; a t tha t t ime, the

pr ior i ty o f Jl returns to i t s pr ior i ty πl (t ’) a t the

t ime t’ when i t was granted the resource(s) .

The PCP can be summar ized as :

 A prior i ty ce i l ing i s assigned to each

resource equal to the highest pr ior i ty o f

al l p rocesses that could lock i t .

 A resource i s al loca ted i f the pr ior i ty o f

the requesting process i s s tr ict ly grea ter

than the ce i l ings o f a l l currently held

resources. I f the resource i s no t

al located, the requesting process

becomes b locked upon tha t resource.

Vishal et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 835

A process executes a t i t s ass igned pr ior i ty

unless i t b locks a higher pr ior i ty process a t

which t ime i t inher i t s the pr ior i ty o f the

blocked process for the dura tion of the current

cr i t ical region (as in pr ior i ty inher i tance

protocol) .

One d isadvantage of the PCP is i t s

pessimism in terms of blockin g t imes. The only

circumstances tha t a high pr ior i ty process can

be blocked for the ent ire durat ion of the

cr i t ical region of a lower pr ior i ty process is

when locks a resource required by(or requi red

by an even higher pr ior i ty process) and

per forms no exec ution before requires a

resource. Effect ive ly, the lo wer pr ior i ty job

must lock the resource momentar i ly before

higher pr ior i ty job becomes runnable. This i s

clear ly pess imist ic . [8]

IV. SCHEDULING UNDER PIP AND PCP

1) Parameters o f Jobs

r i = a rr iva l t ime

e i = execution t ime

Πi = Priority of job

2) Schedule under PIP

3) Schedule under PCP

V. COMPARISON OF PIP AND PCP

Prior i ty

Inheri tance

Prior i ty

Cei l ing

I t i s Greed y. [3] I t i s no t Greed y. [3]

P IP le t s the requ est ing

job have a r esource

wh enever the r esource

i s fr ee . [2]

In PCP , a job may be

den ied i t s r equested

resource even wh en the

resource i s fr ee a t th at

t ime. [2]

Poor wors t case

behavior wh en the re

are nested locks . [1]

Good worst case pr io r i t y

invers ion cont ro l .

Handles n est ed lo cks

wel l . [1]

Ext ra context swi tch es

are avoid ed .

Mediu m Pr ior i t y t ask

are no t p reempted

unnecessar i l y .

Lead s to exce l len t

average

per forman ce. [1]

Pay cost o f ch angin g

pr ior i t y twice r egard l ess

o f whe ther the re i s an y

conten t ion fo r the lock

or no t .

Resu l t in g in h igh er

ove rhead and man y

unnecessary context

swi t ches . [1]

Effect ive

Lo ck i s se ldo m p ar t o f

a n es t ed set and when

average per forman ce

i s re l evant in addi t ion

to wors t case

per forman ce. [1]

Effect ive

Wh en t ask contending

for lock i s kno wn.

- When there may be

nest ed locks &worst case

behavior i s on ly in

concern . [1]

Vishal et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 836

VI. CONCLUSION

Compar ison of PIP and PCP is done in this

paper . PIP is suffer ing from prior i ty invers ion

and dead lock i ssues whi le PCP is solving that

problem at cer ta in level . Number of context

swi tches wi l l be up and down in both protocols

depends upon the input . So here we co mpared

the protoco ls in terms of pr ior i ty invers ion,

deadlock, resource acquir ing techniques e tc .

REFERENCES

[1] Doug Locke, “Priority Inheritance: The Real Story”, July, 2002

[2] Pratibha Zunjare , Bibhudatta Sahoo, “Evaluating Robustness of

Resource Allocation in Uniprocessor Real-time System”, International

Journal of Computer Applications (0975 – 8887) Volume 40– No.3,

February 2012

[3] Prof. Rajib Mall, CSE, IIT Kharagpur, Module -3, “Handling

Resource sharing and dependencies among real-time tasks.”

nptel.iitm.ac.in/courses/Webcourse-contents/IIT Kharagpur/Real time

system/pdf/module3.pdf

[4] Jane W. S. Liu, “Real-Time Systems”, Pearson, 2011

[5] C. L. Liu and J. W. Layland, “Scheduling algorithms for

multiprogramming in a hard real-time environment,” Journal of the

ACM,vol. 20, no. 1, pp. 46-61, Jan. 1973.

[6]Sha, L., R. Rajkumar, and J. P. Lehoczky, ”Priority inheritance

protocols: An approach to real-time synchronization,” IEEE Transactions

on Computers, vol. 39, 1990

[7] A M Shah, “Dynamic Scheduling for Real-Time Operating Systems”,

Ph. D. Thesis, Information Technology Department, Sardar Patel

University, India,2010

 [8] Neil C. Audsley, “Resource control for hard real-time systems: a

review”, University of York, August 1991

