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Abstract--Computational resources are provided by the 

third party cloud providers. The cloud nodes use the 

shared resources. Cloud computing is Internet-based 

computing to share resources, software and 

information. Both transactional and long-running 

analytic computations are comprised into workloads. 

Scientific simulations to multi-tier transactional 

applications are referred as workloads. The workload 

and resource management models are designed 

separately with respect to the workload type. 

Transactional workloads are managed using flow 

control, load balancing and application placement. 

Noninteractive workloads need scheduling and resource 

control. Common virtualization control mechanisms are 

used to manage mix of transactional and batch 

workloads. Relative Performance Functions (RPFs) are 

used to permit trade-offs between different workloads. 

Application placement controller (APC) provides the 

decision-making logic for placement of both web and 

noninteractive workloads. Placement optimizer is tuned 

to provide dynamic placement for web applications. 

Placement algorithm with placement control loop is 

used to place jobs in the server.The autonomic 

workload management model is enhanced to manage 

resources for transactional and batch workloads. 

Placement algorithm with placement control loop is 

improved to manage low level and high level resources. 

Data retrieval rate is integrated with the placement 

process. Workload and web applications are placed 

with estimated and requested computation loads. Data 

distribution factor is integrated with the system. 

1. INTRODUCTION 

 Compute clouds are commonly used by 

many different users that rely on the existing 

computing infrastructure to deploy their workloads. 
As a result, heterogeneous workloads run on the same 

physical nodes and pose extraordinary challenges on 

a cloud management middleware. Integrated 

performance management of mixed workloads is a 

challenging problem. First, performance goals for 

different workloads tend to be of different types. For 

interactive workloads, goals are typically defined in 

terms of average or percentile response time or 

throughput over a short time interval, while goals for 

noninteractive workloads concern the performance of 

individual jobs. Second, due to the nature of their 

goals and the short duration of individual requests, 

interactive workloads lend themselves to 
management at short control cycles, whereas 

noninteractive workloads typically require 

calculation of a schedule for an extended period of 

time. In addition, different types of workload require 

different control mechanisms for management. 

Transactional workloads are managed using flow 

control, load balancing, and application placement. 

Noninteractive workloads need scheduling and 

resource control. Traditionally, these have been 

addressed separately. 

  To illustrate the problems inherent in 

managing these two types of workload together, let 
us consider a simple example. Consider a system 

consisting of four identical machines. At some point 

in time, in the system there is one transactional 

application, TA, which requires the capacity of two 

machines to meet its average response time goal, 

defined as a Service Level Agreement (SLA). The 

system also includes four identical batch jobs, each 

requiring one physical machine for a period of time t 

and having completion time goal of T = 3t. The jobs 

are placed in a queue and are labeled J1, J2, J3, and 

J4, according to their order in the queue. The system 
must decide how many jobs should be running—that 

is, how many machines should be allocated to the 

transactional application and to batch jobs, 

respectively. Let us consider two of the possible 

configurations. In the first configuration, one 

machine is allocated to batch workload and three 

machines are used by TA [1]. Thus, jobs execute in 

sequence and complete after time t, 2t, 3t, and 4t. As 

a result, J4 violates its SLA goal, while TA over 
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achieves its SLA target. In the second configuration, 

two machines are allocated to batch workload, which 

permits the four jobs to complete at times t, t, 2t and 

2t, respectively. Thus, all jobs exceed their SLA goal, 

while TA also meets its SLA target. Clearly, the 

second configuration is a better choice. 
  Our technique relies on common 

virtualization control mechanisms to manage 

workloads. In addition, our system uses Relative 

Performance Functions (RPFs) to permit trade-offs 

between different workloads. The RPFs define 

application performance relative to that application’s 

goal. It can therefore be seen that equalizing the 

achieved relative performance between two 

applications results in “fairness”— the applications 

will be equally satisfied in terms of relative distance 

from their goals. The original contribution of this 

paper is a scheme for modeling the performance of, 
and managing, noninteractive long-running 

workloads.  

II. RELATED WORK 

The explicit management of heterogeneous 

workloads was CPU shares are manually allocated to 

run mixed workloads on a large multiprocessor 

system. This is a static approach, and does not run 

workloads within virtual machines (VM).  The 

relative performance functions we use in our system 

are similar in concept to the utility functions that 

have been used in real-time work schedulers to 
represent the fact that the value produced by such a 

system when a unit of work is completed can be 

represented in more detail than a simple binary value 

indicating whether the work met its or missed its 

goal. Outside of the realm of the real-time systems, 

focus on a utility-guided scheduling mechanism 

driven by data management criteria, since this is the 

main concern for many data-intensive HPC scientific 

applications. In our work, we focus on CPU-bound 

heterogeneous environments, but our technique could 

be extended to observe data management criteria by 

expanding the semantics of our RPFs. Despite the 
similarity between an RPF and a utility function, one 

difference should be pointed out. While utility 

functions are typically used to model user satisfaction 

or business value resulting from a particular level of 

performance, an RPF is merely a measure of relative 

performance distance from the goal. Hence, we do 

not study the correctness of RPFs with respect to 

modeling user satisfaction. If such a satisfaction 

model exists, it may be used to transform an RPF into 

a utility function. In [5] and [6], the authors leverage 

utility-based systems for making placement decisions 
and provisioning resources: these works do not 

address the problem of managing heterogeneous 

workloads, as they are both focused on transactional 

workloads only. 

  There is also previous work in the area of 

managing workloads in virtual machines. The 

overhead of a dynamic allocation scheme that relies 

on virtualization, covering both CPU-intensive jobs 

and transactional workloads, but does not consider 

mixed environments. Bodı´k et al. [8] uses Machine 
Learning techniques for making management 

decisions. The authors stress the max-min-shares 

approach, focusing on the use of current 

virtualization control knobs. Work presented focuses 

on the cost of VM migration, and mitigate it by 

minimizing migrations over time. In [2], authors 

propose a joint-VM sizing approach in which 

multiple VMs are consolidated and provisioned as an 

aggregate. In [3], authors propose a holistic approach 

to treat performance, power and cooling of IT 

infrastructures. Neither of these techniques provides a 

technology to dynamically adjust allocation based on 
SLA objectives in the face of resource contention. 

The authors of [4] present new scheduling algorithms 

for the cloud, but their effort is focused only on long 

running jobs and VMmigration is not used. The 

authors of [7] focus their work on multitiered 

transactional systems, with special effort on avoiding 

the damaging effects of workload burstiness. The 

authors propose a resource manager that is decoupled 

from the infrastructure provider. In our work, the 

resource manager is part of the computing 

infrastructure.  
  Placement problems in general have also 

been studied in the literature, frequently using 

techniques including bin packing, multiple knapsack 

problems, and multidimensional knapsack problems. 

The optimization problem that we consider presents a 

nonlinear optimization objective in contrast. The 

authors evaluate a similar problem to that addressed 

in our work and use a simulated annealing 

optimization algorithm. Their strategy aims to 

maximize the overall system utility while we focus 

on first maximizing the performance of the least 

performing application in the system, which increases 
fairness and prevents starvation. A fuzzy logic 

controller is implemented to make dynamic resource 

management decisions. This approach is not 

applicationcentric—it focuses on global 

throughput—and considers only transactional 

applications. The algorithm proposed allows 

applications to share physical machines, but does not 

change the number of instances of an application, 

does not minimize placement changes, and considers 

a single bottleneck resource. 

III. SYSTEM ARCHITECTURE 
  The managed system includes a set of 

heterogeneous server machines, referred to 

henceforth as nodes. Web applications, which are 

served by application servers, are replicated across 
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nodes to form application server clusters. Requests to 

these applications arrive at an entry router which may 

be either an L4 or L7 gateway that distributes 

requests to clustered applications according to a load 

balancing mechanism, and implements a flow control 

technique. Long-running jobs are submitted to the 
system via the job scheduler, which, unlike 

traditional schedulers, does not make job execution 

and placement decisions. In our system, the job 

scheduler only manages dependencies among jobs 

and performs resource matchmaking. Once 

dependencies are resolved and a set of eligible nodes 

is determined, jobs are submitted to the application 

placement controller (APC). 

  APC is the most important component of the 

system. It provides the decision-making logic that 

affects placement of both web and noninteractive 

workloads. Its placement optimizer calculates the 
placement that maximizes the minimum satisfaction 

across all applications. We introduced a technique 

that provides such dynamic placement for web 

applications: APC used in this system is an 

augmented version of that controller. We modified 

the algorithm inputs from application CPU demand to 

a per-application RPF of allocated CPU speed. 

Permitting resource requirements to be represented 

by nonlinear RPFs allows us to better deal with 

heterogeneous workloads which may differ in their 

sensitivity to a particular resource allocation. 
  In our work, we leverage the flow controller, 

which comes up with an RPF for each web 

application This RPF gives a measure of application 

satisfaction with a particular allocation of CPU power 

given its current workload intensity and performance 

goal.  Generating RPFs for the long running jobs is 

not studied in previous work, and is the main 

contribution of this work. Each job has an associated 

performance goal, and when a job completes exactly 

on schedule, the value of the RPF is zero. Otherwise, 

the value increases or decreases linearly depending 

on the distance of completion time from the goal. 
Currently, we only support completion time goals, 

but we plan to extend the system to handle other 

performance objectives.  

  APC relies on the knowledge of resource 

consumption by individual requests and jobs. The 

web workload profiler, obtains profiles for web 

requests in the form of the average number of CPU 

cycles consumed by requests of a given flow. The job 

workload profiler obtains profiles for jobs in the form 

of the number of CPU cycles required to complete 

the job, the number of threads used by the job, and 
the maximum CPU speed at which the job may 

progress. 

IV. INTEGRATED MANAGEMENT OF 

HETEROGENEOUS WORKLOADS 

  The goal of the technique introduced in this 

paper is to make placement decisions that involve 

applications of different nature, more specifically 

transactional applications and long-running 

workloads. Given the different characteristics of each 

workload, that make their performance hardly 
comparable, we leverage RPF to produce a 

normalized representation of their performance. RPFs 

are leveraged by the placement algorithm to make 

placement decisions, with 

the goal of maximizing the relative performance 

delivered by all the applications in the system. 

  The placement algorithm and RPFs for 

transactional workloads are not a novel contribution 

of this work. The main contribution of this work is 

the introduction of a model that allows the creation of 

RPFs for long running workloads. The placement 

algorithm is extended to leverage such a model and is 
therefore able to deal with heterogeneous workloads. 

In the following sections, we present a formal 

description of the problem addressed in this work. 

 The application placement problem is 

known to be NP-hard and heuristics must be used to 

solve it. In this paper, we leverage an algorithm 

proposed and adapted to a nonlinear optimization 

objective. The basic algorithm, as described above, is 

surrounded by the Placement control loop, which is 

designed to have the Application Placement 

Controller periodically inspect the system to 
determine if placement changes are now required to 

better satisfy the changing extant load. The period of 

this loop is configurable and can be interrupted when 

the configuration of the system is changed. 

  The placement change phase is executed 

several times, each time being referred to as a round. 

Each round invokes the placement change method, 

which makes a single new placement suggestion 

starting from the placement suggestion provided by 

the previous round’s execution. The placement 

change method first iterates over nodes. For each 

node, it iterates over all instances placed on this node 
and attempts to remove them one by one, thus 

generating a set of configurations whose cardinality 

is linear in the number of instances placed on the 

node. For each such configuration it iterates over all 

applications with some unsatisfied CPU demand, 

attempting to place new instances on the node as 

permitted by the constraints. The key to the accuracy 

and performance of the algorithm is the order in 

which nodes, instances, and applications are visited 

in the three nested loops. The order must be driven by 

the values of um. In the outer loop, nodes are 
processed according to the highest utility of stopping, 

which is calculated for a node by calculating the 

highest RPF among all applications placed on that 

node after an instance of an application is stopped. In 
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the intermediate loop, instances are processed in 

decreasing RPF order calculated against the current 

placement. Finally, in the inner loop, applications are 

considered in the increasing order of RPF. In 

addition, numerous carefully tuned shortcuts are used 

to reduce the computational complexity of the 
algorithm. 

  The computational complexity of the 

technique is O(NMk), where k is the maximum 

number of instances on a node. The complexity may 

further increased by the RPF calculation. For 

transactional workloads, we can evaluate RPFs in 

O(1), but for long running workloads that bound is 

nonconstant. In practice, the computation time 

remains below 10 s for up to 700 applications, 

reaching 23 s for 1,000 applications. Recall that the 

average size for enterprise datacenter ranges from 

tenths of nodes to a few hundreds typically. These 
values are perfectly acceptable for the purpose of 

these systems. 

V. PERFORMANCE MODEL FOR 

NONINTERACTIVE WORKLOADS 

  In this section, we focus on applying our 

placement technique to manage long-running jobs. 

We start by observing that a performance 

management system cannot treat batch jobs as 

individual management entities, as their completion 

times are not independent. For example, if jobs that 

are currently running complete sooner, this permits 
jobs currently in the queue to complete sooner as 

well. Thus, performance predictions for long-running 

jobs must be done in relation to other long-running 

jobs.  

  Another challenge is to provide performance 

predictions with respect to job completion time on a 

control cycle which may be much lower than job 

execution time. Typically, such a prediction would 

require the calculation of an optimal schedule for the 

jobs. To trade off resources among transactional and 

long-running workloads, we would have to evaluate a 

number of such schedules calculated over a number 
of possible divisions of resources among the two 

kinds of workloads. The number of combinations 

would be exponential in the number of nodes in the 

cluster. We therefore propose an approximate 

technique, which is presented here. 

A. Job Characteristics 

  We are given a set of jobs. With each job m 

we associate the following information: 

 Resource usage profile. A resource usage 

profile describes the resource requirements 

of a job and is given at job submission 
time—in the real system, this profile comes 

from the job workload profiler. The profile 

is estimated based on historical data. Each 

job m consists of a sequence of Nm stages, 

s1,. . . , sNm, where each stage sk is described 

by the following parameters: 

- The amount of CPU cycles consumed in 

this stage, αk,m.  

- The maximum speed with which the stage 

may runs,     
   .  

- The minimum speed with which the stage 

must run, whenever it runs,     
   . - The 

memory requirement γk,m. 

 Performance objectives. The SLA objective 

for a job is expressed in terms of its desired 

completion time, זm, which is the time by 

which the job must complete. Clearly, זm 

should be greater than the job’s desired start 

time,  
     , which itself is greater than or 

equal to the time when the job was 

submitted. The difference between the 

completion time goal and the desired start 

time, זm -   
     , is called the relative goal, 

and can be understood as the maximum 

acceptable job runtime. Notice that job 

runtime will depend on allocated resources 

to the Virtual Machine in which the job 

runs. 

  We are also given an RPF that maps actual 

job completion time tm to a measure of satisfaction 

from achieving it, um(tm). If job m completes at time 

tm, then the relative distance of its completion time 

from the goal is the job’s actual runtime normalized 

to its relative goal, which is expressed by the RPF of 
the following form: 

       
     

      
        (1) 

 Runtime state. At runtime, we monitor and 

estimate the following properties for each 

job: current status, which may be either 

running, not started, suspended, or paused; 
and CPU time consumed thus far,  

  
 . 

 Relative goal factor. For the purpose of 

easily controlling the tightness of SLA goals 

in our experiments, we introduce a relative 

goal factor which is defined as the ratio of 

the relative goal of the job to its execution 

time at the maximum speed, 
     

     

  
    . 

B. Hypothetical Relative Performance 

  To calculate job placement, we need to 

define an RPF which APC can use to evaluate its 
placement decisions. While the actual relative 

performance achieved by a job can only be calculated 

at completion time, the algorithm needs a mechanism 

to predict the relative performance that each job in 

the system will achieve given a particular allocation. 

This is also the case for jobs that are not yet started, 

for which the expected completion time is still 
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undefined. To help answer questions that APC is 

asking of the RPF for each application, we introduce 

the concept of hypothetical relative performance. 

VI. LOAD DISTRIBUTION BASED RESOURCE 

ALLOCATION MODEL 

  The system is designed to manage the 
resources and workloads under clouds. The web 

applications and transactional applications are 

managed by the system. Data and computational 

resources are allocated by the system. The system is 

divided into five major modules. They are resource 

monitoring, data sources, workload manager, 

Application Placement Controller (APC) and load 

distribution. Resource monitoring module is designed 

to monitor the computational resources. Data sources 

module is designed to manage the data sources. 

Workload manager module handles the workload 

submission process. Application Placement 
Controller (APC) module is designed to handle 

resource allocation for the applications. Load 

distribution module is designed to distribute the 

workloads to the providers.  

A. Resource Monitoring 

  The computational resources are provided 

by a set of cloud nodes. Processor and memory 

resources are provided by the nodes. Total resources 

and available resource levels are monitored and 

updated to the server. Resource levels are updated 

with workload execution process. 
B. Data Sources 

  Data sources are used to provide databases 

and data files. Data sources are placed in different 

machines. Workloads are scheduled with data source 

requirements. Data source distribution is also 

managed by the system. 

C. Workload Manager 

  Transactional applications and batch jobs 

are submitted as workloads. Transactional web 

workloads are submitted to the web server. 

Interactive and non-interactive workloads are 

assigned with data and resources. The workloads are 
collected from the clients.  

D. Application Placement Controller (APC) 

  Application placement controller handles the 

service placement process. Placement optimizer is 

used to verify the performance levels. Services and 

resource levels are analyzed under the APC. Relative 

performance functions are used to estimate the 

performance levels. 

E. Load Distribution 

  The transactional and batch workloads are 

assigned to the resources. The transactional web 
applications are assigned with high priority. The 

batch workloads are also assigned with data source 

levels. Performance prediction is estimated for load 

distribution process. 

VII. CONCLUSION 

  Enterprise datacenters consolidate 

workloads on the same physical hardware to reduce 

the cost of infrastructure and electrical energy. 

Heterogeneous workloads have different nature. A 

heterogeneous set of applications is running a web 
application and a batch job on the same physical 

server. The system manages the mixed workloads 

with long running jobs and transactional applications. 

The system allocates workload types on the same 

physical hardware with virtualization control 

mechanism. The system manages resources with load 

distribution. Data source allocation is also carried out 

under the system. The system reduces the 

computational time. Efficient resource monitoring 

process is provided in the cloud environment. 
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