
Sutha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 815

Resource Allocation and Load Distribution

for Mixed Workloads under Cloud

Environment

Sutha.K*1,Kaladevi.P*2

1PG Scholar of Computer Science, K.S.Rangasamy College of Technology, Tiruchengode, India.
 Email: suthakrishnannew@gmail.com

2Assistant professor (Academic), K S Rangasamy College of Technology, Tiruchengode, India.
 Email: kaladevi@ksrct.ac.in

Abstract--Computational resources are provided by the

third party cloud providers. The cloud nodes use the

shared resources. Cloud computing is Internet-based

computing to share resources, software and

information. Both transactional and long-running

analytic computations are comprised into workloads.

Scientific simulations to multi-tier transactional

applications are referred as workloads. The workload

and resource management models are designed

separately with respect to the workload type.

Transactional workloads are managed using flow

control, load balancing and application placement.

Noninteractive workloads need scheduling and resource

control. Common virtualization control mechanisms are

used to manage mix of transactional and batch

workloads. Relative Performance Functions (RPFs) are

used to permit trade-offs between different workloads.

Application placement controller (APC) provides the

decision-making logic for placement of both web and

noninteractive workloads. Placement optimizer is tuned

to provide dynamic placement for web applications.

Placement algorithm with placement control loop is

used to place jobs in the server.The autonomic

workload management model is enhanced to manage

resources for transactional and batch workloads.

Placement algorithm with placement control loop is

improved to manage low level and high level resources.

Data retrieval rate is integrated with the placement

process. Workload and web applications are placed

with estimated and requested computation loads. Data

distribution factor is integrated with the system.

1. INTRODUCTION

 Compute clouds are commonly used by

many different users that rely on the existing

computing infrastructure to deploy their workloads.
As a result, heterogeneous workloads run on the same

physical nodes and pose extraordinary challenges on

a cloud management middleware. Integrated

performance management of mixed workloads is a

challenging problem. First, performance goals for

different workloads tend to be of different types. For

interactive workloads, goals are typically defined in

terms of average or percentile response time or

throughput over a short time interval, while goals for

noninteractive workloads concern the performance of

individual jobs. Second, due to the nature of their

goals and the short duration of individual requests,

interactive workloads lend themselves to
management at short control cycles, whereas

noninteractive workloads typically require

calculation of a schedule for an extended period of

time. In addition, different types of workload require

different control mechanisms for management.

Transactional workloads are managed using flow

control, load balancing, and application placement.

Noninteractive workloads need scheduling and

resource control. Traditionally, these have been

addressed separately.

 To illustrate the problems inherent in

managing these two types of workload together, let
us consider a simple example. Consider a system

consisting of four identical machines. At some point

in time, in the system there is one transactional

application, TA, which requires the capacity of two

machines to meet its average response time goal,

defined as a Service Level Agreement (SLA). The

system also includes four identical batch jobs, each

requiring one physical machine for a period of time t

and having completion time goal of T = 3t. The jobs

are placed in a queue and are labeled J1, J2, J3, and

J4, according to their order in the queue. The system
must decide how many jobs should be running—that

is, how many machines should be allocated to the

transactional application and to batch jobs,

respectively. Let us consider two of the possible

configurations. In the first configuration, one

machine is allocated to batch workload and three

machines are used by TA [1]. Thus, jobs execute in

sequence and complete after time t, 2t, 3t, and 4t. As

a result, J4 violates its SLA goal, while TA over

Sutha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 816

achieves its SLA target. In the second configuration,

two machines are allocated to batch workload, which

permits the four jobs to complete at times t, t, 2t and

2t, respectively. Thus, all jobs exceed their SLA goal,

while TA also meets its SLA target. Clearly, the

second configuration is a better choice.
 Our technique relies on common

virtualization control mechanisms to manage

workloads. In addition, our system uses Relative

Performance Functions (RPFs) to permit trade-offs

between different workloads. The RPFs define

application performance relative to that application’s

goal. It can therefore be seen that equalizing the

achieved relative performance between two

applications results in “fairness”— the applications

will be equally satisfied in terms of relative distance

from their goals. The original contribution of this

paper is a scheme for modeling the performance of,
and managing, noninteractive long-running

workloads.

II. RELATED WORK

The explicit management of heterogeneous

workloads was CPU shares are manually allocated to

run mixed workloads on a large multiprocessor

system. This is a static approach, and does not run

workloads within virtual machines (VM). The

relative performance functions we use in our system

are similar in concept to the utility functions that

have been used in real-time work schedulers to
represent the fact that the value produced by such a

system when a unit of work is completed can be

represented in more detail than a simple binary value

indicating whether the work met its or missed its

goal. Outside of the realm of the real-time systems,

focus on a utility-guided scheduling mechanism

driven by data management criteria, since this is the

main concern for many data-intensive HPC scientific

applications. In our work, we focus on CPU-bound

heterogeneous environments, but our technique could

be extended to observe data management criteria by

expanding the semantics of our RPFs. Despite the
similarity between an RPF and a utility function, one

difference should be pointed out. While utility

functions are typically used to model user satisfaction

or business value resulting from a particular level of

performance, an RPF is merely a measure of relative

performance distance from the goal. Hence, we do

not study the correctness of RPFs with respect to

modeling user satisfaction. If such a satisfaction

model exists, it may be used to transform an RPF into

a utility function. In [5] and [6], the authors leverage

utility-based systems for making placement decisions
and provisioning resources: these works do not

address the problem of managing heterogeneous

workloads, as they are both focused on transactional

workloads only.

 There is also previous work in the area of

managing workloads in virtual machines. The

overhead of a dynamic allocation scheme that relies

on virtualization, covering both CPU-intensive jobs

and transactional workloads, but does not consider

mixed environments. Bodı´k et al. [8] uses Machine
Learning techniques for making management

decisions. The authors stress the max-min-shares

approach, focusing on the use of current

virtualization control knobs. Work presented focuses

on the cost of VM migration, and mitigate it by

minimizing migrations over time. In [2], authors

propose a joint-VM sizing approach in which

multiple VMs are consolidated and provisioned as an

aggregate. In [3], authors propose a holistic approach

to treat performance, power and cooling of IT

infrastructures. Neither of these techniques provides a

technology to dynamically adjust allocation based on
SLA objectives in the face of resource contention.

The authors of [4] present new scheduling algorithms

for the cloud, but their effort is focused only on long

running jobs and VMmigration is not used. The

authors of [7] focus their work on multitiered

transactional systems, with special effort on avoiding

the damaging effects of workload burstiness. The

authors propose a resource manager that is decoupled

from the infrastructure provider. In our work, the

resource manager is part of the computing

infrastructure.
 Placement problems in general have also

been studied in the literature, frequently using

techniques including bin packing, multiple knapsack

problems, and multidimensional knapsack problems.

The optimization problem that we consider presents a

nonlinear optimization objective in contrast. The

authors evaluate a similar problem to that addressed

in our work and use a simulated annealing

optimization algorithm. Their strategy aims to

maximize the overall system utility while we focus

on first maximizing the performance of the least

performing application in the system, which increases
fairness and prevents starvation. A fuzzy logic

controller is implemented to make dynamic resource

management decisions. This approach is not

applicationcentric—it focuses on global

throughput—and considers only transactional

applications. The algorithm proposed allows

applications to share physical machines, but does not

change the number of instances of an application,

does not minimize placement changes, and considers

a single bottleneck resource.

III. SYSTEM ARCHITECTURE
 The managed system includes a set of

heterogeneous server machines, referred to

henceforth as nodes. Web applications, which are

served by application servers, are replicated across

Sutha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 817

nodes to form application server clusters. Requests to

these applications arrive at an entry router which may

be either an L4 or L7 gateway that distributes

requests to clustered applications according to a load

balancing mechanism, and implements a flow control

technique. Long-running jobs are submitted to the
system via the job scheduler, which, unlike

traditional schedulers, does not make job execution

and placement decisions. In our system, the job

scheduler only manages dependencies among jobs

and performs resource matchmaking. Once

dependencies are resolved and a set of eligible nodes

is determined, jobs are submitted to the application

placement controller (APC).

 APC is the most important component of the

system. It provides the decision-making logic that

affects placement of both web and noninteractive

workloads. Its placement optimizer calculates the
placement that maximizes the minimum satisfaction

across all applications. We introduced a technique

that provides such dynamic placement for web

applications: APC used in this system is an

augmented version of that controller. We modified

the algorithm inputs from application CPU demand to

a per-application RPF of allocated CPU speed.

Permitting resource requirements to be represented

by nonlinear RPFs allows us to better deal with

heterogeneous workloads which may differ in their

sensitivity to a particular resource allocation.
 In our work, we leverage the flow controller,

which comes up with an RPF for each web

application This RPF gives a measure of application

satisfaction with a particular allocation of CPU power

given its current workload intensity and performance

goal. Generating RPFs for the long running jobs is

not studied in previous work, and is the main

contribution of this work. Each job has an associated

performance goal, and when a job completes exactly

on schedule, the value of the RPF is zero. Otherwise,

the value increases or decreases linearly depending

on the distance of completion time from the goal.
Currently, we only support completion time goals,

but we plan to extend the system to handle other

performance objectives.

 APC relies on the knowledge of resource

consumption by individual requests and jobs. The

web workload profiler, obtains profiles for web

requests in the form of the average number of CPU

cycles consumed by requests of a given flow. The job

workload profiler obtains profiles for jobs in the form

of the number of CPU cycles required to complete

the job, the number of threads used by the job, and
the maximum CPU speed at which the job may

progress.

IV. INTEGRATED MANAGEMENT OF

HETEROGENEOUS WORKLOADS

 The goal of the technique introduced in this

paper is to make placement decisions that involve

applications of different nature, more specifically

transactional applications and long-running

workloads. Given the different characteristics of each

workload, that make their performance hardly
comparable, we leverage RPF to produce a

normalized representation of their performance. RPFs

are leveraged by the placement algorithm to make

placement decisions, with

the goal of maximizing the relative performance

delivered by all the applications in the system.

 The placement algorithm and RPFs for

transactional workloads are not a novel contribution

of this work. The main contribution of this work is

the introduction of a model that allows the creation of

RPFs for long running workloads. The placement

algorithm is extended to leverage such a model and is
therefore able to deal with heterogeneous workloads.

In the following sections, we present a formal

description of the problem addressed in this work.

 The application placement problem is

known to be NP-hard and heuristics must be used to

solve it. In this paper, we leverage an algorithm

proposed and adapted to a nonlinear optimization

objective. The basic algorithm, as described above, is

surrounded by the Placement control loop, which is

designed to have the Application Placement

Controller periodically inspect the system to
determine if placement changes are now required to

better satisfy the changing extant load. The period of

this loop is configurable and can be interrupted when

the configuration of the system is changed.

 The placement change phase is executed

several times, each time being referred to as a round.

Each round invokes the placement change method,

which makes a single new placement suggestion

starting from the placement suggestion provided by

the previous round’s execution. The placement

change method first iterates over nodes. For each

node, it iterates over all instances placed on this node
and attempts to remove them one by one, thus

generating a set of configurations whose cardinality

is linear in the number of instances placed on the

node. For each such configuration it iterates over all

applications with some unsatisfied CPU demand,

attempting to place new instances on the node as

permitted by the constraints. The key to the accuracy

and performance of the algorithm is the order in

which nodes, instances, and applications are visited

in the three nested loops. The order must be driven by

the values of um. In the outer loop, nodes are
processed according to the highest utility of stopping,

which is calculated for a node by calculating the

highest RPF among all applications placed on that

node after an instance of an application is stopped. In

Sutha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 818

the intermediate loop, instances are processed in

decreasing RPF order calculated against the current

placement. Finally, in the inner loop, applications are

considered in the increasing order of RPF. In

addition, numerous carefully tuned shortcuts are used

to reduce the computational complexity of the
algorithm.

 The computational complexity of the

technique is O(NMk), where k is the maximum

number of instances on a node. The complexity may

further increased by the RPF calculation. For

transactional workloads, we can evaluate RPFs in

O(1), but for long running workloads that bound is

nonconstant. In practice, the computation time

remains below 10 s for up to 700 applications,

reaching 23 s for 1,000 applications. Recall that the

average size for enterprise datacenter ranges from

tenths of nodes to a few hundreds typically. These
values are perfectly acceptable for the purpose of

these systems.

V. PERFORMANCE MODEL FOR

NONINTERACTIVE WORKLOADS

 In this section, we focus on applying our

placement technique to manage long-running jobs.

We start by observing that a performance

management system cannot treat batch jobs as

individual management entities, as their completion

times are not independent. For example, if jobs that

are currently running complete sooner, this permits
jobs currently in the queue to complete sooner as

well. Thus, performance predictions for long-running

jobs must be done in relation to other long-running

jobs.

 Another challenge is to provide performance

predictions with respect to job completion time on a

control cycle which may be much lower than job

execution time. Typically, such a prediction would

require the calculation of an optimal schedule for the

jobs. To trade off resources among transactional and

long-running workloads, we would have to evaluate a

number of such schedules calculated over a number
of possible divisions of resources among the two

kinds of workloads. The number of combinations

would be exponential in the number of nodes in the

cluster. We therefore propose an approximate

technique, which is presented here.

A. Job Characteristics

 We are given a set of jobs. With each job m

we associate the following information:

 Resource usage profile. A resource usage

profile describes the resource requirements

of a job and is given at job submission
time—in the real system, this profile comes

from the job workload profiler. The profile

is estimated based on historical data. Each

job m consists of a sequence of Nm stages,

s1,. . . , sNm, where each stage sk is described

by the following parameters:

- The amount of CPU cycles consumed in

this stage, αk,m.

- The maximum speed with which the stage

may runs,
 .

- The minimum speed with which the stage

must run, whenever it runs,
 . - The

memory requirement γk,m.

 Performance objectives. The SLA objective

for a job is expressed in terms of its desired

completion time, זm, which is the time by

which the job must complete. Clearly, זm

should be greater than the job’s desired start

time,
 , which itself is greater than or

equal to the time when the job was

submitted. The difference between the

completion time goal and the desired start

time, זm -
 , is called the relative goal,

and can be understood as the maximum

acceptable job runtime. Notice that job

runtime will depend on allocated resources

to the Virtual Machine in which the job

runs.

 We are also given an RPF that maps actual

job completion time tm to a measure of satisfaction

from achieving it, um(tm). If job m completes at time

tm, then the relative distance of its completion time

from the goal is the job’s actual runtime normalized

to its relative goal, which is expressed by the RPF of
the following form:

 (1)

 Runtime state. At runtime, we monitor and

estimate the following properties for each

job: current status, which may be either

running, not started, suspended, or paused;
and CPU time consumed thus far,

 .

 Relative goal factor. For the purpose of

easily controlling the tightness of SLA goals

in our experiments, we introduce a relative

goal factor which is defined as the ratio of

the relative goal of the job to its execution

time at the maximum speed,

 .

B. Hypothetical Relative Performance

 To calculate job placement, we need to

define an RPF which APC can use to evaluate its
placement decisions. While the actual relative

performance achieved by a job can only be calculated

at completion time, the algorithm needs a mechanism

to predict the relative performance that each job in

the system will achieve given a particular allocation.

This is also the case for jobs that are not yet started,

for which the expected completion time is still

Sutha et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 819

undefined. To help answer questions that APC is

asking of the RPF for each application, we introduce

the concept of hypothetical relative performance.

VI. LOAD DISTRIBUTION BASED RESOURCE

ALLOCATION MODEL

 The system is designed to manage the
resources and workloads under clouds. The web

applications and transactional applications are

managed by the system. Data and computational

resources are allocated by the system. The system is

divided into five major modules. They are resource

monitoring, data sources, workload manager,

Application Placement Controller (APC) and load

distribution. Resource monitoring module is designed

to monitor the computational resources. Data sources

module is designed to manage the data sources.

Workload manager module handles the workload

submission process. Application Placement
Controller (APC) module is designed to handle

resource allocation for the applications. Load

distribution module is designed to distribute the

workloads to the providers.

A. Resource Monitoring

 The computational resources are provided

by a set of cloud nodes. Processor and memory

resources are provided by the nodes. Total resources

and available resource levels are monitored and

updated to the server. Resource levels are updated

with workload execution process.
B. Data Sources

 Data sources are used to provide databases

and data files. Data sources are placed in different

machines. Workloads are scheduled with data source

requirements. Data source distribution is also

managed by the system.

C. Workload Manager

 Transactional applications and batch jobs

are submitted as workloads. Transactional web

workloads are submitted to the web server.

Interactive and non-interactive workloads are

assigned with data and resources. The workloads are
collected from the clients.

D. Application Placement Controller (APC)

 Application placement controller handles the

service placement process. Placement optimizer is

used to verify the performance levels. Services and

resource levels are analyzed under the APC. Relative

performance functions are used to estimate the

performance levels.

E. Load Distribution

 The transactional and batch workloads are

assigned to the resources. The transactional web
applications are assigned with high priority. The

batch workloads are also assigned with data source

levels. Performance prediction is estimated for load

distribution process.

VII. CONCLUSION

 Enterprise datacenters consolidate

workloads on the same physical hardware to reduce

the cost of infrastructure and electrical energy.

Heterogeneous workloads have different nature. A

heterogeneous set of applications is running a web
application and a batch job on the same physical

server. The system manages the mixed workloads

with long running jobs and transactional applications.

The system allocates workload types on the same

physical hardware with virtualization control

mechanism. The system manages resources with load

distribution. Data source allocation is also carried out

under the system. The system reduces the

computational time. Efficient resource monitoring

process is provided in the cloud environment.

REFERENCES
[1] David Carrera, Malgorzata Steinder, Ian Whalley, Jordi Torres,

and Eduard Ayguade, “Autonomic Placement of Mixed Batch and

Transactional Workloads”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 23, No. 2, February 2012.

[2] S. Meng, L. Liu, and V. Soundararajan, “Tide: Achieving Self-

Scaling in Virtualized Datacenter Management Middleware,” Proc.

11th Int’l Middleware Conf. Industrial Track, pp. 17-22, 2010.

[3] Y. Chen, D. Gmach, C. Bash, C. Hoover, and S. Singhal,

“Integrated Management of Application Performance, Power and

Cooling in Data Centers,” Proc. IEEE Network Operations and

Management Symp. (NOMS), pp. 615-622, Apr. 2010.

[4] Z. Zhang, L.T.X. Phan, G. Tan, S. Jain, H. Duong, B.T. Loo,

and I. Lee, “On the Feasibility of Dynamic Rescheduling on the

Intel Distributed Computing Platform,” Proc. 11th Int’l

Middleware Conf. Industrial Track, pp. 4-10, 2010.

[5] R. Urgaonkar, U. Kozat and M. Neely, “Dynamic Resource

Allocation and Power Management in Virtualized Data Centers,”

Proc. IEEE Network Operations and Management Symp. (NOMS),

pp. 479-486, Apr. 2010.

[6] J. Hanson, I. Whalley, M. Steinder, and J. Kephart, “Multi-

Aspect Hardware Management in Enterprise Server

Consolidation,”Proc.IEEE Network Operations and Management

Symp. (NOMS), pp. 543-550, Apr. 2010.

[7] A. Caniff, L. Lu, N. Mi, L. Cherkasova, and E. Smirni,

“Efficient Resource Allocation and Power Saving in Multi-Tiered

Systems,” Proc. 19th Int’l Conf. World Wide Web (WWW ’10),

pp. 1069-1070, 2010.

[8] P. Bodı´k, R. Griffith, A. Fox, M.I. Jordan, and D.A. Patterson,

“Statistical Machine Learning Makes Automatic Control Practical

for Internet Datacenters,” Proc. Conf. Hot Topics in Cloud

Computing (HotCloud ’09), 2009.

