
Selvi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 773

XML Data Search with Query Assistance and Semantic Analysis

Selvi.V
*1

,Rajkumar.S
*2

1
PG Scholar of Computer Science, K.S.Rangasamy College of Technology, Tiruchengode, India.

Email: selvipriya.6323@gmail.com, Mobile No: +91 8973015602.
2
Assistant professor (Academic), K S Rangasamy College of Technology, Tiruchengode, India.

Abstract—XML documents are semi-structured

databases that maintain the document and content

description. XPath and XQuery query languages are

used to query XML data. XQuery is fairly complicated

to understand its structure. Query languages require

the knowledge about the document schema. Keyword

based search models does not requires the prior

knowledge about the XML document structure.

Searching XML documents is achieved in different

ways. In keyword query model search query keyword is

passed to the system to fetch the relevant documents.

Fuzzy type-ahead search in XML data scheme is

applied to search XML documents with query keyword.

Auto-complete and auto-correction methods are used to

submit query keywords. Index structures and searching

algorithms are used to improve the quality and ranking

process. Edit distance is used to quantify the similarity

between two words. Minimal cost tree is constructed to

index the keywords. Exact search and fuzzy search

techniques are applied to fetch documents. The top-K

results are fetched from top-K relevance technique.

Semantic analysis based method is integrated with the

fuzzy type-ahead search scheme to improve the query

result accuracy. Index model is improved with keyword

relevancy and weight values. The system is enhanced

with search history based query assistance scheme.

Weight threshold based retrieval is provided in the
system.

Index Terms—XML,Keyword search, Type-ahead

search, Fuzzy search, Semantic Analysis
I.INTRODUCTION

 Traditional methods use query languages

such as XPath and XQuery to query XML data.
These methods are powerful but unfriendly to

nonexpert users. First, these query languages are hard

to comprehend for non database users. For example,

XQuery is fairly complicated to grasp. Second, these

languages require the queries to be posed against the

underlying, sometimes complex, database schemas.

Fortunately, keyword search is proposed as an

alternative means for querying XML data, which is

simple and yet familiar to most Internet users as it

only requires the input of keywords. Keyword search

is a widely accepted search paradigm for querying
document systems and the World Wide Web.

Recently, the database research community has been

studying challenges related to keyword search in

XML data. One important advantage of keyword

search is that it enables users to search information

without knowing a complex query language such as
XPath or XQuery, or having prior knowledge about

the structure of the underlying data.

 In this paper, we propose TASX

(pronounced “task”), a fuzzy type-ahead search

method in XML data [1]. TASX searches the XML

data on the fly as users type in query keywords, even

in the presence of minor errors of their keywords.

TASX provides a friendly interface for users to

explore XML data, and can significantly save users

typing effort. In this paper, we study research

challenges that arise naturally in this computing

paradigm. The main challenge is search efficiency.
Each query with multiple keywords needs to be

answered efficiently. To make search really

interactive, for each keystroke on the client browser,

from the time the user presses the key to the time the

results computed from the server are displayed on the

browser, the delay should be as small as possible. An

interactive speed requires this delay should be within

milliseconds. Notice that this time includes the

network transfer delay, execution time on the server,

and the time for the browser to execute its Java-

Script. This low-running time requirement is
especially challenging when the backend repository

has a large amount of data. To achieve our goal, we

propose effective index structures and algorithms to

answer keyword queries in XML data. We examine

effective ranking functions and early termination

techniques to progressively identify top-k answers.

To the best of our knowledge, this is the first paper to

study fuzzy type-ahead search in XML data.

II. RELATED WORK

 Keyword search in XML data has attracted

great attention recently. Xu and Papakonstantinou

proposed smallest lowest common ancestor (SLCA)
to improve search efficiency. Sun et al. studied multi-

way SLCA-based keyword search to enhance search

performance. Schema free XQuery employed the idea

of meaningful LCA, and proposed a stack-based sort-

merge algorithm by considering XML structures and

Selvi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 774

incorporating a new function mlcas into XQuery.

XSEarch focuses on the semantics and the ranking of

the results, and extends keyword search. It employs

the semantics of meaningful relation between XML

nodes to answer keyword queries, and two nodes are

meaningfully related if they are in a same set, which
can be given by administrators or users. Li et al.

proposed valuable LCA (VLCA) to improve the

meaningfulness and completeness of answers and

devised a new efficient algorithm to identify the

answers based on a stack-based algorithm.

XKeyword is proposed to offer keyword proximity

search over XML documents, which models XML

documents as graphs by considering IDREFs

between XML elements. Hristidis et al. proposed

grouped distance minimum connecting tree

(GDMCT) to answer keyword queries, which groups

the relevant subtrees to answer keyword queries. It
first identifies the minimum connected tree, which is

a subtree with minimum number of edges, and then

groups such trees to answer keyword queries. Shao et

al. studied the problem of keyword search on XML

views. XSeek studied how to infer the most relevant

return nodes without elicitation of user preferences.

Liu and Chen proposed to reason and identify the

most relevant answers. Huang et al. discussed how to

generate snippets of XML keyword queries. Bao et

al. [5] proposed to address the ambiguous problem of

XML keyword search through studying search for
and search via nodes. Different from [6], we

extended it to support fuzzy type-ahead search in

XML data.

 In addition, the database research

community has recently studied the problem of

keyword search in relational databases, graph

databases and heterogenous data sources.

DISCOVER-I, DISCOVER-II, BANKS-I, BANKS-

II and DBXplorer are recent systems to answer

keyword queries in relational databases. DISCOVER

and DBXplorer return the trees of tuples connected

by primary-foreign-key relationships that contain all
query keywords. DISCOVER-II extended

DISCOVER to support keyword proximity search in

terms of disjunctive (OR) semantics, different from

DISCOVER which only considers the conjunctive

(AND) semantics. BANKS proposed to use Steiner

trees to answer keyword queries. It first modeled

relational data as a graph where nodes are tuples and

edges are foreign keys, and then found Steiner trees

in the graph as answers using an approximation to the

Steiner tree problem, which is proven to be an NP-

hard problem. BANKS-II improved BANKS-I by
using bidirectional expansion on graphs to find

answers. He et al. proposed a partition based method

to efficiently find Steiner trees using the BLINKS

index. Ding et al. proposed to use dynamic

programming for identifying Steiner trees. Dalvi et

al. studied disk-based algorithms for keyword search

on large graphs, using a new concept of “superrnode

graph.”

 Tao and Yu proposed to find co-occurring

terms of query keywords in addition to the answers,
in order to provide users relevant information to

refine the answers. Koutrika et al. [3] proposed data

clouds over structured data to summarize the results

of keyword searches over structured data and use

them to guide users to refine searches. Zhang et al.

and Felipe et al. studied keyword search on spatial

databases by combining inverted lists and R-tree

indexes. Tran et al. [8] studied top-k keyword search

on RDF data using summarized RDF graph. Qin et al.

[7] studied three different semantics of m-keyword

queries, namely, connect-tree semantics, distinct core

semantics, and distinct root semantics, to answer
keyword queries in relation databases. The search

efficiency is achieved by new tuple reduction

approaches that prune unnecessary tuples in relations

effectively followed by processing the final results

over the reduced relations. Chu et al. [10] proposed to

combine forms and keyword search, and studied

effective summary techniques to design forms. Yu et

al. and Vu et al. studied keyword search over

multiple databases in P2P environment. They

emphasized on how to select relevant database

sources in P2P environments. Chen et al. [9] gave an
excellent tutorial of keyword search in XML data and

relational databases..

 Type-ahead search is a new topic to query

relational databases. Li et al. studied type-ahead

search in relational databases, which allows searching

on the underlying relational databases on the fly as

users type in query keywords. Ji et al. [2] studied

fuzzy type-ahead search on a set of tuples/documents,

which can on the fly find relevant answers by

allowing minor errors between input keywords and

the underlying data. A straightforward method for

type ahead search in XML data is to first find all
predicted words, and then use existing search

semantics, e.g., LCA and ELCA, to compute relevant

answers based on the predicted words. However, this

method is very time consuming for finding top-k

answers. To address this problem, we propose to

progressively find the most relevant answers. For

exact search, we propose to incrementally compute

predicted words. For fuzzy search, we use existing

techniques to compute predicted words of query

keywords. We extend the ranking functions in [4] to

support fuzzy search, and propose new index
structures and efficient algorithms to progressively

find the most relevant answers.This paper extended

the poster paper [11] by adding efficient algorithms

and ranking techniques to support fuzzy search.

Selvi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 775

III.FUZZY TYPE-AHEAD SEARCH IN XML

DATA

 In this section, we introduce the overview of

fuzzy type-ahead search in XML data and formalize

the problem. We first introduce how TASX works for

queries with multiple keywords in XML data, by
allowing minor errors of query keywords and

inconsistencies in the data itself. Assume there is an

underlying XML document that resides on a server.

A user accesses and searches the data through a web

browser. Each keystroke that the user types invokes a

query, which includes the current string the user has

typed in. The browser sends the query to the server,

which computes and returns to the user the best

answers ranked by their relevancy to the query.

 The server first tokenizes the query string into

several keywords using delimiters such as the space

character. The keywords are assumed as partial
keywords, as the user may have not finished typing

the complete keywords. For the partial keywords, we

would like to know the possible words the user

intends to type. However, given the limited

information, we can only identify a set of complete

words in the data set which have similar prefixes with

the partial keywords. This set of complete words are

called the predicted words. We use edit distance to

quantify the similarity between two words. The edit

distance between two words s1 and s2, denoted by

ed(s1; s2), is the minimum number of edit operations
of single characters needed to transform the first one

to the second. For example, ed(mics, mices) = 1 and

ed(mics, mich) = 1. For instance, given a partial

keyword “mics,” its predicted words could be

“mices,” “mich,” “michal,” etc.

 Then, the server identifies the relevant

subtrees in XML data that contain the predicted

words for every input keyword. We can use any

existing semantics to identify the answer based on the

predicted words, such as ELCA. We call these

relevant subtrees the predicted answers of the query.

For example, consider the XML document in Fig. 1.
Assume a user types in a keyword query “db mics.”

The predicted word of “db” is “db.” The predicted

words of “mics” are “mices” and “mich.” The subtree

rooted at node 12 is the predicted answer of “db

mices.” The subtree rooted at node 15 is the predicted

answer of “db mich.” Thus, TASX can save users

time and efforts, since they can find the answers even

if they have not finished typing all the complete

keywords or typing keywords with minor errors.

IV.LCA-BASED FUZZY TYPE-AHEAD SEARCH

 This section proposes an LCA-based fuzzy
type-ahead search method. We use the semantics of

ELCA to identify relevant answers on top of

predicted words.

A. Index Structures

 We use a trie structure to index the words in

the underlying XML data. Each word w corresponds

to a unique path from the root of the trie to a leaf

node. Each node on the path has a label of a character

in w. For each leaf node, we store an inverted list of

IDs of XML elements that contain the word of the
leaf node. For instance, consider the XML document

in Fig. 1. The trie structure for the tokenized words

“mich” has a node ID of 10. Its inverted list includes

XML elements 18 and 26.

B.Answering Queries with a Single Keyword

 We first study how to answer a query with a

single keyword using the trie structure. Each

keystroke that a user types invokes a query of the

current string, and the client browser sends the query

string to the server.

1). Exact Search

 We first consider the case of exact search.
One naive way to process such a query on the server

is to answer the query from scratch as follows: we

first find the trie node corresponding to this keyword

by traversing the trie from the root. Then, we locate

the leaf descendants of this node, and retrieve the

corresponding predicted words and the predicted

XML elements on the inverted lists.

2). Fuzzy Search

 Obviously, for exact search, given a partial

keyword, there exists at most one trie node for the

keyword. We retrieve the leaf descendants of this trie
node as the predicted words. However, for fuzzy

search, there could be multiple trie nodes that are

similar to the partial keyword within a given edit-

distance threshold, called active nodes.

C.Answering Queries with Multiple Keywords

Now, we consider how to do fuzzy type-ahead search

in the case of a query with multiple keywords. For a

keystroke that invokes a query, we first tokenize the

query string into keywords, k1, k2, . . . , k‘. For each

keyword ki (1  i  ), we compute its

corresponding active nodes, and for each such active

node, we retrieve its leaf descendants and

corresponding inverted lists. Then, we compute union

list U ki for every ki as discussed in Section 4.2.

Finally, we compute the predicted answers on top of

lists U k1 ,U k2 , . . . ,U k ‘ .

V. PROGRESSIVE AND EFFECTIVE TOP-K

FUZZY TYPE-AHEAD SEARCH

 The LCA-based fuzzy type-ahead search

algorithm in XML data has two main limitations.

First, they use the “AND” semantics between input
keywords of a query, and ignore the answers that

contain some of the query keywords. For example,

suppose a user types in a keyword query “DB IR

Tom” on the XML document. The ELCAs to the

Selvi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 776

query are nodes 15 and 5. Although node 12 does not

have leaf nodes corresponding to all the three

keywords, it might still be more relevant than node 5

that contains many irrelevant papers. Second, in order

to compute the best results to a query, existing

methods need find candidates first before ranking
them, and this approach is not efficient for computing

the best answers. A more efficient algorithm might be

able to find the best answers without generating all

candidates.

 To address these limitations, we develop

novel ranking techniques and efficient search

algorithms. In our approach, each node on the XML

tree could be potentially relevant to a keyword query,

and we use a ranking function to decide the best

answers to the query. For each leaf node in the trie,

we index not only the content nodes for the keyword

of the leaf node, but also those quasi-content nodes
whose descendants contain the keyword. For

instance, consider the XML document in Fig. 1. For

the keyword “DB,” we index nodes 13, 16, 12, 15, 9,

2, 8, 1, and 5 for this keyword. For the keyword “IR,”

we index nodes 6, 16, 24, 5, 15, 23, 2, 20, and 1. For

the keyword “Tom,” we index nodes 14, 17, 12, 15,

9, 2, 8, 1, and 5. The nodes are sorted by their

relevance to the keyword.

 For instance, assume a user types in a

keyword query “DB IR Tom.” We use the extended

trie structure to find nodes 15 and 12 as the top-2
relevant nodes. We propose minimal-cost trees

(MCTs) to construct the answers rooted at nodes 15

and 12. We develop effective ranking techniques to

rank XML elements on the inverted lists in the

extended trie structure. We can employ threshold-

based algorithms to progressively and efficiently

identify the top-k relevant answers. Moreover, our

approach automatically supports the “OR” semantics.

VI. SEMANTIC ANALYSIS FOR XML DATA

SEARCH

 The XML document search system is

enhanced with a set of features. They are semantic
analysis, indexing model, query assistance with

historical data and weight threshold models. The

semantic analysis is used to identify the semantic

relations. The index model is used to improve the

document indexing process. The history based query

assistance is also provided in the system. The top-K

query model and weight threshold models are used in

the document search process.

A. Semantic Analysis

 The semantic analysis model is used to

assess term relationship. The Ontology is used for the
semantic relationship analysis. The concept and term

relationships are verified from the semantic analysis

model. The fuzzy type-ahead search scheme is

improved with semantic analysis method. XML data

query is parsed and its concept is identified from the

Ontology support. The concept and term details are

also verified from the semantic analysis modules.

B. Indexing Model

 The index model is used to rearrange the

data values. The tree based index model is used in the
system. The minimum cost based index structure is

used in the system. Index model is improved with

keyword relevancy and weight values. Tree based

cost effective model is used for the data indexing and

retrieval process.

C. Query Assistance Features

 The query assistance is the main function of

the system. The fuzzy type head model is used with

the system. The system is enhanced with search

history based query assistance scheme. Single word

and multiple word based query assistance model is

used in the system. User personal and global search
history based models are used to improve the query

assistance process.

D. Weight Threshold Model

 The XML data search method supports top-

K model for the data query submission under the

query assistance environment. The documents are

assigned with semantic weight values. The weight

based ranking is used in the system. Weight threshold

based retrieval is provided in the system. The weight

threshold value is collected from the user to filter the

documents with weight boundaries.
VII.CONCLUSION

 XML documents are constructed to maintain

and distribute data values. Fuzzy type-ahead search

method in XML data (TASX) is applied to fetch

XML documents using query keywords. TASX

scheme is enhanced with semantic analysis and

weight based index structure. Search history and

weight threshold based models are used to improve

retrieval quality. Effective index structures, efficient

algorithms and novel optimization techniques are

used to progressively and efficiently identify the top-

k answers. A minimal-cost-tree-based search method
is developed to efficiently and progressively identify

the most relevant answers. The system also supports

semantic analysis and search history based query

assistance mechanism for the XML document search

process. Retrieved documents are ranked with

relevant levels. Ranking functions and early

termination techniques are used to progressively

identify top-k answers and weight threshold query

results. The system reduces the user typing efforts on

query keywords. User friendly interface supports

query preparation process.
REFERENCES
[1] Jianhua Feng and Guoliang Li, “Efficient Fuzzy Type-Ahead

Search in XML Data” IEEE Transactions On Knowledge And

Data Engineering, Vol. 24, No. 5, May 2012

Selvi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 777

[2] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive Fuzzy

Keyword Search,” Proc. Int’l Conf. World Wide Web (WWW),

pp. 371-380, 2009.

[3] G. Koutrika, Z.M. Zadeh, and H. Garcia-Molina, “Data Clouds:

Summarizing Keyword Search Results over Structured Data,”

Proc. Int’l Conf. Extending Database Technology: Advances in

Database Technology (EDBT), pp. 391-402, 2009.

[4] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead Search

on Relational Data: A Tastier Approach,” Proc. ACM SIGMOD

Int’l Conf. Management of Data, pp. 695-706, 2009.

[5] Z. Bao, T.W. Ling, B. Chen, and J. Lu, “Effective XML

Keyword Search with Relevance Oriented Ranking,” Proc. Int’l

Conf. Data Eng. (ICDE), 2009.

[6] G. Li, C. Li, J. Feng, and L. Zhou, “Sail: Structure-Aware

Indexing for Effective and Progressive Top-k Keyword Search

over XML Documents,” Information Sciences, vol. 179, no. 21,

pp. 3745-3762, 2009.

[7] L. Qin, J.X. Yu, and L. Chang, “Keyword Search in Databases:

The Power of Rdbms,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 681-694, 2009.

[8] T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k

Exploration of Query Candidates for Efficient Keyword Search on

Graph-Shaped (RDF) Data,” Proc. Int’l Conf. Data Eng. (ICDE),

pp. 405-416, 2009.

[9] Y. Chen, W. Wang, Z. Liu, and X. Lin, “Keyword Search on

Structured and Semi-Structured Data,” Proc. ACM SIGMOD Int’l

Conf. Management of Data, pp. 1005-1010, 2009.

[10] E. Chu, A. Baid, X. Chai, A. Doan, and J.F. Naughton,

“Combining Keyword Search and Forms for Ad Hoc Querying of

Databases,” Proc. ACM SIGMOD Int’l Conf. Management of

Data, pp. 349-360, 2009.

[11] G. Li, J. Feng, and L. Zhou, “Interactive Search in Xml Data,”

Proc. Int’l Conf. World Wide Web (WWW), pp. 1063-1064, 2009.

