
Ravi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 747

PREVENTION OF UNAUTHORISED

DATA MODIFICATION SYSTEM USING

SECURED MULTI KEY

IMPLEMENTION

RAVI KUMAR, GOPAL PRASAD BEHERA,

R.CHANDARSEKARAN

sinharavi91@yahoo.com

gopalbehera88@gmail.com

STUDENT,STUDENT,ASST.PROFESSOR

COMPUTER SCIENCE DEPARTMENT, BHARATH UNIVERSITY

CHENNAI, INDIA

Abstract- We consider the problem of malicious

modification of data in the server. We presenting a

security mechanism designed to protect against

unauthorized replacement or modification of data while

still allowing authorized visit with nothing hiddenin the

server. The key mechanism requiring any centralized

public key structure. To prove our theory, we apply the

approaches to file-system , implementing a prototype in

Unix which protects operating system and experimental

binaries on the server.

Key words- Protection mechanisms, software release

management and delivery, system interaction and

application, access controls, file management, operating

systems management.

I. Introduction

In this paper, we reexamine the problem of how to

authorize the modification of data . Instead of relying

on the user to properly control updates to a saved data,

we think on accessing the maker of the object to limit

modifications to the object through a well-planned use

of digital signatures and verification public keys[3].

Our approach does not rely on authenticating the end-

user of the system on which the object to be updated

resides, focusing instead on verifying that the creator of

the updated object is authorized by the creator of the

original object[7]. We focus exclusively on the action

of replacing a digital object with a new version of that

object (i.e., whether object Akþi is allowed to replace

object Ak). We do not require a knowledge of who

created the updated digital object, but instead ask was

this individual authorized to create an updated version

of this object? The approach we take is to associate

with each digital object a digital signature of the object.

This signature is checked by the enforcement

mechanism when performing an update to the object.

In essence, the object is self-signed; no centralized (or

other) public key infrastructure is involved[10]. The

core technology is a simple variation of self-signed

executables. We use the term key-locking to refer to

our proposal to avoid confusion with other schemes

designed to limit the installation of digital objects

based on the identity of the signing party. The

mailto:Sinharavi91@yahoo.com
mailto:gopalbehera88@gmail.com

Ravi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 748

proposed system allows objects to be easily upgraded,

under the control of the (trusted) enforcement

mechanism[1].

II. Related work

In EXISTING SYSTEM, we consider the problem of

malicious modification of digital objects.

There is no authentication to view the file in server. So that

the hacker can easily modify the data in the file. There is

no security for the data store in the server. This will cause

more problem to the client who’s data are stored in the

system[11].

In the PROPOSED SYSTEM, every Data Owner can

access the data only after providing the public key. They

change the public key after using the same key for n times.

If the Data Owner wants to change their information,

they’ve to provide their username, password and public

key and private key. Also for security purpose the data will

be save in the server as binary format. Also the Data

Owner can set the access privileges for the users to view

the data.

In the MODIFICATION PROCESS, we’ll send the new

public key to the Data Owner’s mobile number as an SMS.

Also another SMS will be send user’s mobile to view the

data that was send by the data owner.

III. PROPOSED SYSTEM

Paul C. Van Oorschot,Glenn Wuester

This paper presents a Unix kernel module, Digital

Signature, which support administrators control

practicable and Linkable Form (PLF) binary application

and library loading based on the presence of a valid digital

signature[13]. By foreclose attackers from regenerate

libraries and sensitive, privileged system daemons with

modified code, Digtal Signature adds the difficulty

of conceal extracurricular activity such as access to agree

systems. Digtal Signature gives administrators with an

economic drive which mitigates the risk of running

malicious code at run time. This dive adds unnecessary

functionality previous inaccessible for the Linux operating

system: kernel level RSA signature verification with

caching and revocation of signatures.

We argue that application developers, while frequently

seen as associate in the effort to create software with fewer

security vulnerabilities, are not reliable associate[2]. They

have precising skill sets which often do not include

protection. Morely, we represent that it is wasteful and

unrealistic to expect to be able to successfully teach all of

the world’s population of software developers to be

protection experts. We propose more economic and

impressive alternatives, concentrate on those software

develop-ers who produce core functionality used by other

software developers (e.g. those who develop popular APIs

– Application Programming Interfaces)[12]. We handle the

acquire of desig APIs which can be easily used in a secure

fashion to support protection. We also developed two

strang-man proposals which integrate protection into the

work-flow of an software developer. Data tagging and

unsuppressible information provides the basis for further

work where the most natural use (path of least resistance)

results in secure code. We believe there are facilities to co-

opting software developers into programming

properly[14].

The integrity of kernel code and data is fundamental to the

integrity of the computer system. Any changing with the

kernel data is an captivating place for rootkits written since

despiteful modifications in the kernel are harder to identify

compared to their user-level counterparts[15]. So far

nevertheless, the simulate followed for changing is few to

hiding captivating objects in user-space. This involves

influence a subset of kernel data structures of linux that are

related to intercepting user requests or affecting the user’s

view of the system. Hence, defense mechanisms are

develop around detecting such conceal nature. The

contribution of this paper is to show a new level of thiefy

Ravi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 749

attacks that only available in kernel space and do not

employ any hiding techniques traditionally used by

rootkits[1]. These attacks are thiefy because the waste

done to the system is not transparent to the user or

intrusion detection systems installed on the system and are

symbolic of a more systemic problem present through the

kernel. Our goal in developing these contend prototypes

was to show that such attacks are not only down-to-earth,

but waste; they cannot be searched by the current

generation of kernel integrity monitors, without more

educated of the attackof the digital signature.

Now a day’s architectures for intrusion shown force the

IDS designer to make a difficult choice. May the IDS

available on the host, it has an good view of what is going

in that host’s software, but is very highly susceptible to

sudden fight[4]. On the other hand, if the IDS available in

the network, it is more resistive to sudden fight, but has a

very poor view of what is going in the host system, making

it most susceptible to evasion. In this paper we present an

structure that is having the visibility of a host-based IDS,

but attractss the IDS outside of the host system for greater

attack resistance[5]. We gain this through using of a virtual

machine monitor. Using this technique allows us to isolate

the IDS from the monitored host but still retain good

visibility into the host’s state of the developer . The VMM

also offers us the special ability to completely mediate

interface between the host software and the underlying

hardware. We are presenting a detailed examination of our

architecture, including Livewire, a prototype application.

We show Livewire by applying a suite of simple intrusion

detection policies and using them to detection of the real

sudden attack.

We develop using digital signatures to secure binaries

available on the system from changes by malware. While

implementing to any file which is not intended to be

changed by an end user, we focus on securinging user

programs and libraries present on the system before

infection will occur[2]. Our savings does not depends on a

central trusted person or PKI, and can be incresingly

deployed. While shown in the context of the Unix

environment, our theory applies to other operating systems

such as Windows like windows[3]..

Paul C. Van Oorschot,Glenn Wuester

In the PROPOSED SYSTEM, every Data Owner can

access the data only after providing the public key. They

change the public key after using the same key for n times.

If the Data Owner wants to change their information,

they’ve to provide their username, password and public

key and private key. Also for security purpose the data will

be save in the server as binary format. Also the Data

Owner can set the access privileges for the users to view

the data.

IV. FLOW CHART DIAGRAM

 N

 Y

 DATA OWNER

Authenticate

Username,

Password, Key

Authenticate ‘N’ Time

Then Public Key

Changes

 Server Public Key Sending

 View data

Stop

 Again New Key

 Generate With SMS

Fig-1

Ravi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 750

V. MODULE DESCRIPTION

Data Owner is the Person who is going to upload the data

in the Server. To upload the data into the server, the Data

Owner have be registered in the Server. Once the Data

Owner registered in server, the space will be allotted to the

Data Owner. So that the Data Owner can fetch the data in

Server. Also the Data Owner can set the Access Privileges

to the user[8].

A server is a computer program running to serve the

requests of other programs, the "clients". Thus, the

"server" performs some computational task on behalf of

"clients". The clients either run on the same computer or

connect through the network[10].

Here the Server acts as the main resource for the User and

the Data Owner. Server is responsible for maintaining the

Users and the Data Owners information. Server will

prevent the unwanted users entering into the network. It

also affirm the access permit of each and every user. The

users have to be in their limits. The Data uploaded by the

Data Owner will be stored in the server in the Binary

format. So that it not possible to hack the data[11].

User is the person is going to see or download the data

from the Server. To access the data from the Server, the

users have to be registered with the Server. So that the user

have to register their details like username, password. This

is information will stored in the database for the future

authentication. Also while registration phase, the access

privileges of the users will be assigned[12].

The Data Owner will access the uploaded data using their

public key[2]. While accessing the data the Server will

request the Data Owner to enter the public Key. Once the

public Key is valid then the Server allows the Data Owner

to access the data. This will increase the level of security.

After accessing the data for ‘n’ of times, the server will

dynamically generate the new public key. So that the Data

Owner have to enter that new Public Key while is

accessing the data. By using the concept we can avoid the

hacker from hacking the data[13].

If the data owner wants to update their public key, they

have to provide their public key and private key. If these

are valid the server will send the new key as an SMS alert

to the Data Owner’s mobile number. The mobile number

will be get from the Data Owner during the registration

phase itself. Once the Key are valid the server will

generate the SMS. A GSM modem(Nokia PC Suite Mobile

with the data cable) will be connected with the server. That

GSM Modem will send the sms alert to the Concerned

Data Owner[14].

This module is implemented to show how the user is going

to retrieve the data from the server. Once the user

requested the data, the request will hit the server and the

server will respond to the request. The data will be viewed

in the user’s end. The is only able to view or download the

data and not allowed to modify the data while viewing the

in the server itself. So that we can prevent the user

accessing beyond their limits[15].

VI. RESULTS

Fig-2(Command prompt)

fig-3(User Login)

Ravi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 751

Fig-4(User Registration)

Fig-5(User Login2)

Fig-6(Main Window2)

Fig-7(Full List)

Fig-8(User Registration)

Ravi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 752

Fig-9(Main Window)

Fig-10(Input)

Fig-11(Output)

Fig-12(Received Frame)

Fig-13(SMS Sending)

VII. CONCLUSION

Key-locking allows fine-grained control over entities

allowed to replace a particular object. Key-locking can be

used to protect against arbitrary modification of

application binaries (as discussed in Section 3), and restrict

package updates (as discussed in Section 5.1). Key-locking

can also be used instead of usernames and passwords when

pushing new versions of binary objects to a central server

hosting digital objects created by users (as discussed in

Section 2.7). Our application of key-locking to application

binaries addresses a widespread problem: When binaries

are being installed, the current (almost universal) situation

is that the installer has write access to essentially the entire

file-system —far too coarse a granularity from a security

perspective. While bin-locking is not designed to protect

all files or address all malware-related problems (indeed, a

single solution to all such problems is unlikely to ever be

found), we believe the prototype implementation validates

the general approach and provides an important

mechanism to help limit the abilities of malware. One

aspect not widely addressed in the literature (to our

knowledge) is the ability to transparently handle software

application upgrades.

With many applications now receiving regular patches,

dealing with upgrades in a smooth and nonintrusive

manner is important. Key-locking provides a mechanism

Ravi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 753

to enforce a separation between binary files belonging to

different applications; even with privileges sufficient to

install an application, binary files belonging to one

application cannot be modified by an application

originating from a different source.

 VIII. REFERENCES

[1]http://git.kernel.org/?p=linux/kernel/git/stable/linux2.6s

tabl ;a=commit;h=ae531c26c5c2a28ca1b35a75b39b3b256

850f2c8, Apr. 2008.

[2] http://www.gnu.org/software/grub/, Dec. 2008.

[3] http://www.bitsum.com/aboutwfp.asp, May 2007.

 [4] Linux Operating System,” FREENIX ’01:

Proc. USENIX

[5]Enforcement (DTE),” Proc. Sixth USENIX Security

Symp.,

July 1996.

 [6]http://people.csail.mit.edu/rivest/sdsi11.html,

Oct. 1996.

[7] http://www.isi.edu/in-notes/rfc2692.txt, Sept. 1999.

[8] Digital signature principle-wikipedia.com

[9]DigSig-run time authentication at kernel level

[10]ww.usenix.org/event/lisa04/tech/full_papers/apvrille/a

pvrille.pdf

[11]key locking mechanism

www.newmantools.com/key.htm

[12]www.usenix.org/event/hotsec07/tech/full_papers/.../w

urster.pdf

[13]systematic threat

www.cs.rutgers.edu/~iftode/SystemicThreats07.pdf

[14] G Marsaglia - See

http://stat.fsu.edu/pub/diehard, 1996.

[15] International Conference on Dependable Systems and

Networks(DSN’05)..

[16] Paul C. Van Oorschot,Glenn Wuester- Reducing

unauthorised modification of digital objects

http://www.newmantools.com/key.htm
http://www.cs.rutgers.edu/~iftode/SystemicThreats07.pdf

