
Poonkodi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 723

OPTIMAL STOCHASTIC LOCATION

UPDATES IN MANET USING DREAM

ALGORITHM
P.Poonkodi, P.Boopathi , Prof.T.Kalaikumaran

PG-Scholar , AP/CSE , Asso. Prof. /CSE

SNS College of Technology , SNS College of Technology, SNS College of Technology

Abstract:

 The location service in a mobile ad-hoc network

(MANET) each node needs to maintain its location

information by 1) frequently updating its location information

within its neighboring region neighborhood update (NU), and

2) occasionally updating its location information to certain

distributed location server in the network, called location

server update (LSU). The operation costs in location updates

and the performance losses due to location inaccuracies. The

location information, where the optimality is in the sense of

minimizing the overall costs. In this paper, we develop a

stochastic sequential decision framework to analyze this

problem. In existing system a Markov Decision Process

(MDP) was used to find a solution for the above problem. First

investigate the monotonicity properties of optimal NU and

LSU operations with respect to location inaccuracies under a

general cost setting. A separable cost structure used to show

that the location update decisions of NU and LSU can be

independently carried out without loss of optimality, i.e., a

separation property. The discovered separation property of the

problem structure and the monotonicity properties of optimal

actions, that 1) there always exists a simple optimal threshold-

based update rule for LSU operations; 2) for NU operations, an

optimal threshold-based update rule exists in a low-mobility

scenario. This paper introduces a practical model-free learning

approach to find a near-optimal solution for the problem.

Keywords—Location update, MANETs, Markov decision

processes, least-squares policy iteration.

I INTRODUCTION

 A mobile ad hoc network (MANET) is a self-

configuring infra structure less network of mobile devices

connected by wireless links. A MANET is an autonomous

collection of mobile users that communicate over relatively

bandwidth constrained wireless links. Since the nodes are

mobile, the network topology may change rapidly and

unpredictably over time. The network is decentralized, where all

network activity including discovering the topology and

delivering messages must be executed by the nodes themselves

i.e., routing functionality will be incorporated into mobile

nodes.With the advance of very large-scale integrated circuits

(VLSI) and the commercial popularity of global positioning

services (GPS), the geographic location information of mobile

devices in a mobile ad hoc network (MANET) is becoming

available for various applications. This location information not

only provides one more degree of freedom in designing network

protocols, but also is critical for the success of many military

and civilian applications, e.g., localization in future battlefield

networks and public safety communications. In a MANET, the

locations of nodes are not fixed; a node needs to frequently

update its location information to some or all other nodes. There

are two basic location update operations at a node to maintain its

up-to-date location information in the network. One operation is

to update its location information within a neighboring region,

where the neighboring region is not necessarily restricted to one-

hop neighboring node, which is called LU. The other operation

is to update the node’s location information at one or multiple

distributed location servers. The positions of the location servers

could be fixed or unfixed. This operation is called LSU. The

operation cost of location updates and performance losses of

application depends on presence of location errors.On one hand,

if the operations of NU and LSU are too frequent, the power and

communication bandwidth of nodes are wasted for those

unnecessary updates. On the other hand, if the frequency of the

operations of NU and/or LSU is not sufficient, the location error

will degrade the performance of the application that relies on the

location information of nodes.

 In this paper, provide a stochastic decision frame-

work to analyze the location update problem in MANETs. We

formulate the location update problem at a node as a Markov

Decision Process (MDP)[1]. First investigate the solution

structure of the model by identifying the monotonicity properties

of optimal NU and LSU operations with respect to location

inaccuracies under a general cost setting. Then, given a

separable cost structure such that the effects of location

inaccuracies induced by insufficient NU operations and LSU

operations are separable. From the discovered separation

property of the model and the monotonicity properties of

optimal actions, we find that 1) there always exists a simple

optimal threshold-based update rule for LSU operations where

the threshold is generally location dependent; 2) for NU

operations, an optimal threshold-based update rule exists in a

heavy-traffic and/or a low-mobility scenario.

 A stochastic decision formulation with a semi-

Markov Decision Process (SMDP) model for the location update

in cellular networks has been proposed in [2]. First, the

separation principle discovered here is unique to the location

Poonkodi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 724

update problem in MANETs since there are two different

location update operations (i.e., NU and LSU); second, the

monotonicity properties of the decision rules, and third, the

value iteration algorithm used.

II. PROBLEM FORMULATION

A. Network Model

We consider a MANET in a finite region. The whole

region is partitioned into small cells and the location of a node is

identified by the index of the cell it resides in. The size of the

cell is set to be sufficiently small such that the location

difference within a cell has little impact on the performance of

the target application. The distance between any two points in

the region is discredited in units of the minimum distance

between the centers of two cells. Since the area of the region is

finite, the maximum distance between the centers of two cells is

bounded. Nodes in the network are mobile and follow a

Markovian mobility model. We assume that the time is slotted.

In this discrete-time setting, the mobility model can be

represented by the conditional probability P(m’/m).The next

time slot given that the current position is at cell m. Given a

finite maximum speed on nodes’ movement, when the duration

of a time slot is set to be sufficiently small, it is reasonable to

assume that

P(m’ /m)=0, d(m,m’)>0

That is, a node can only move around its nearest neighboring

cells in the duration of a time slot.

 There are two types location inaccuracies about the location

of a node. One is the location error within the node’s

neighboring region, due to the node’s mobility and insufficient

NU operations. We call it local location error of the node.

Another is the inaccurate location information of the node stored

at its LS, due to infrequent LSU operations.The global location

ambiguity of the node have two types of location related costs

in the network. 1) cost of a location update operation, 2)

performance loss of the application induced by location

inaccuracies of nodes. To reduce the overall location related

costs in the network, each node (locally) minimizes the total

costs. The application cost of individual node’s are classified

into:

 Local Application Cost: This cost depends on the

node’s local location error, which occurs when only

the node’s location information within its

neighborhood is used.

 Global Application Cost: This cost depends on both

the node’s local location error and global location

ambiguity, when both (inaccu-rate) location

information of the node within its neighborhood and

that at its LS are used. This usually happens in the

setup phase of a long-distance communication.

At the beginning of a time slot, each node decides if it needs

to carry out an NU and/or an LSU operation.

B. An MDP Model

 A stochastic model is one in which random effects are

incorporated into the model. The battle simulations of the last

lecture were stochastic models.A Markov chain is a particular

type of discrete time stochastic model. A Markov process is a

particular type of continuous time stochastic model.

Fig. 1. location update model in a MANET

We assume that the underlying control problem is a

Markov Decision Process (MDP). An MDP is defined as a 4-

tuple (S,A,P,R) where S: _is a finite set of states;A _is a finite

set of actions; P _ is a Markovian transition model where

(s,a,s’)__represents the probability of going from state s _to

state s’ with action a; and R _is a reward function R: S x A x

S,IR,such thatR(s,a,s’)___ represents the reward obtained when

taking action a in state s and ending up in state s’.Defined the

components as follows.

The State Space

 The local location error and the global location

ambiguity introduce costs, and thus, have impacts on the node’s

decision. As the nearest possible LSU operation is in the last

slot, the value of q observed in current slot is no less than 1. we

further impose an upper bound q on the value of q,

corresponding to the case that the global location ambiguity of

the node is so large that the location information at its LS is

almost useless for the application. As all components in a state s

are finite, the state space S is also finite.

The Action Set

As there are two basic location update operations, i.e.,

NU and LSU, an action of a state as a vector a=|(aNU ,aLSU)€ A

,where aNU € {0,1} and aLSU€ {0,1}, with “0” stands for the

action of “not update” and “1” as the action of “update.” The

action set A={(0,0),(0,1),(1,0),(1,1)} is identical on all states s €

S.

Costs

 A generic cost model for location preserves basic

properties of the costs in practice.

 The NU operation cost is denoted as cNU(aNU),where

cNU(1) > 0 represents the (localized)

Poonkodi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 725

flooding/broadcasting cost and cNU(0)=0 as no NU

operation is carried out.

 The (expected) LSU operation cost cLSU(m,aLSU) is

afunction of the node’s position and the action aLSU.

Since an LSU operation is a multihop unicast

transmission between the node and its LS, this cost is a

nondecreasing function of the distance between the LS

and the node’s current location m if aLSU= 1 and

cLSU(m, 0)= 0.

 The (expected) local application cost is denoted as

cl(m, d, aNU), which is a function of the node’s

position m, the local location error d and the NU action

aNU.

 The (expected) global application cost is denoted as

cg(m,d,q,aNU, aLSU), which is a function of the

node’s current location m, the local location error d, the

“age” of the location information at the LS (i.e., q), the

NU action aNU and the LSU action a LSU.

III. LEAST SQUARES APPROXIMATION OF Q

FUNCTIONS

 Policy iteration relies upon the solution of a

system of linear equations to find the Q values for the

current policy. This is impractical for large state and

action spaces. In such cases we may wish to

approximate Q
π
 with a parametric function

approximator and do some form of approximate policy

iteration. We now address the problem of finding a set

of parameters that maximizes the accuracy of our

approximator. A common class of approximators is the

so called linear architectures, where the value function

is approximated as a linear weighted combination of k

basis functions:

Q
π
(s,a,w) = ,

Where w is a set of weights.

IV LSPI: LEAST SQUARES POLICY ITERATION

The LSQ algorithm provides a means of learning an

approximate state-action value function, Q
π
 (s,a), for any fixed

policy π_. We now integrate LSQ into an approximate policy

iteration algorithm. Clearly, LSQ is a candidate for the value

determination step. The key insight is that we can achieve the

policy improvement step without ever explicitly representing

our policy and without any sort of model. In policy

improvement π
(t+1)

 # will pick the action that maximizes Q
π

(s,a),Since LSQ computesQ functions directly,we do not need a

model to determine our improved policy; all the information we

need is contained implicitly in the weights parameterizing our Q

functions1:

π
(t+1)

 (s,w) = arg max Q (s,a) = arg max (s,a)
T
 w

 The loop simply by requiring that LSQ performs this

maximization for each s’_ when constructing the A ?matrix for a

policy. For very large or continuous action spaces, explicit

maximization over a may be impractical. In such cases, some

sort of global nonlinear optimization may be required to

determine the optimal action. LSPI uses LSQ to compute

approximate Q functions; it can use any data source for samples.

A single set of samples may be used for the entire optimization,

or additional samples may be acquired, either through

trajectories or some other scheme, for each iteration of policy

iteration. Approximate policy iteration algorithm, the

convergence of LSPI is not guaranteed. Approximate policy

iteration variants are typically analyzed in terms of a value

function approximation error and an action selection error [3].

LSPI does not require an approximate policy representation,

e.g., a policy function or “actor” architecture, removing one

source of error. Moreover, the direct computation of linear Q

functions from any data source, including stored data, allows the

use of all available data to evaluate every policy, making the

problem of minimizing value function approximation error more

manageable.

TABLE 1

Least-Squares Policy Iteration (LSPI) Algorithm

and their variants unavailable.
2
 Second, the small cell size in a

fine partition of the network region produces large state spaces

(i.e., S or SNU and SLSU), which makes the ordinary model-free

learning approaches with lookup-table repre-sentations

impractical since a large storage space on a node is required to

store the lookup-table representation of the values of state-action

pairs [4]. LSPI overcomes these difficulties and can find a near-

optimal solution for the location update problem in MANETs.

LSPI algorithm is a model-free learning approach which does

not require the a priori knowledge of the MDP models, and its

linear function approximation structure provides a compact

Poonkodi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 726

representation of the values of states which saves the storage

space [5].

There are two types of location related costs in the network. One

is the cost of location update operation, which could be

physically interpreted as the power and/or bandwidth

consumption in distributing the location messages. Another is

the performance loss of the application induced by location

inaccuracies of the nodes. On one hand, if the operations of NU

and LSU are too frequent, the power and communication

bandwidth of nodes are wasted for those unnecessary updates.

On the other hand, if the frequency of the operations of NU and

LSU is not sufficient, the location error will degrade the

performance of the application that relies on the location

information of nodes. Therefore, to minimize the overall costs,

location update strategies need to be carefully designed. LSPI

overcomes these difficulties and can find a near-optimal solution

for the location update problem in MANETs.

LSPI algorithm is a model-free learning approach which does

not require the a priori knowledge of the MDP models, and its

linear function approximation structure provides a compact

representation of the values of states which saves the storage

space [5].

There are two types of location related costs in the

network. One is the cost of location update operation, which

could be physically interpreted as the power and/or

bandwidth consumption in distributing the location messages.

Another is the performance loss of the application induced by

location inaccuracies of the nodes. On one hand, if the

operations of NU and LSU are too frequent, the power and

communication bandwidth of nodes are wasted for those

unnecessary updates. On the other hand, if the frequency of the

operations of NU and LSU is not sufficient, the location error

will degrade the performance of the application that relies on the

location information of nodes. Therefore, to minimize the

overall costs, location update strategies need to be carefully

designed.

V. RESULTS

A. MDP model with Euclidean Distance

Figure 5.1.1 shows the MDP model with Euclidean Separation

route search packets, LSU packets and Total packets. The total

number of control packets per slot verses the nodes that are

updated are probabalised. Here the comparison of Search

packets, LSU packets and total packets consumed are shown

clearly. This distance function is now compared with the

Mahalanobis distanced separation.

Figure 5.1.1 MDP model with Euclidean Separation

B. MDP model with Mahalanobis Distance

Figure 5.2.2 MDP model with Mahalanobis Separation

Figure 5.2.2 shows the MDP model with Mohalanobis

Separation for route search packets, LSU packets and the total

packets. The total number of control packets per slot verses the

nodes that are updated are probabalised. The consumed packets

for location updation is minimized than the existing Euclidean

separation function. This shows how better the proposed idea

executes in the system.

VI. APPLICATIONS

 TrellisWare’s MANET products serve a number of

applications encountered by commercial and military customers.

In addition to both Comms and Sensor network applications in

the military, customers in industries such as emergency/disaster

response, homeland security, mining, and industrial monitoring

can utilize our MANET products. These applications are marked

by wide variation in the number, density, and deployment range

of the units. A few representative application scenarios are

described below.

Scenario1 (Sparse Urban)

Poonkodi et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 727

 Using three parked cars and a unit in a mobile car, the

TrellisWare radios were able to cover downtown San Diego.

Along with using a minimal number of units, video was

transmitted from a dash cam in the mobile car and all units were

able to utilize the PTT feature to communicate.

Scenario2 (Dense Urban)

Covering a large urban center is difficult. Add to that

the ability to utilize PPT and transmit video while on the move.

With three units transmitting video and using PTT while

mobile, the urban area gets covered. The video was remote

controlled using a satellite backhaul.

Scenario3 (Hilly Terrain)

 With one unit placed down at Torrey Pines state park

taking a video of the ocean and beach below, one unit on the top

of a local hilltop and a third on another hilltop we were able to

transmit video 12 miles back to our headquarters. There was

also a unit traveling at highway speeds with a dash cam sending

video data back to our headquarters. The video was sent in

conjunction with the use of voice to communicate between units.

All units were tracked to show position locations at any given

time.

Scenario4 (Heavily Foliated Terrain)

 Units were carried by dismounted marines, who used

the networked PTT voice, were tracked utilizing Position

Location Information form the units and used IP data traffic with

no failures. These units were operated over a five day period

across heavy vegetation.

Scenario5 (In-Ship)

 Using four units on the interior of the ship and two to

provide exterior coverage, an entire ship could be covered with

PTT voice and streaming video with no loss and no leaky

feeders. The crew was able to cover bow to aft and port to

starboard sides as well as the engine room of the vessel.

VII. CONCLUSIONS

We have developed a stochastic sequential decision

frame-work to analyze the location update problem in MANETs.

The existence of the monotonicity properties of optimal NU and

LSU operations w.r.t. location inaccuracies have been

investigated under a general cost setting. If a separable cost

structure exists, one important insight from the proposed MDP

model is that the location update decisions on NU and LSU can

be independently carried out without loss of optimality, which

motives the simple separate consideration of NU and LSU

decisions in practice. From this separation principle and the

monotonicity properties of optimal actions, we have further

showed that 1) for the LSU decision subproblem, there always

exists an optimal threshold-based update decision rule; and 2)

for the NU decision subproblem, an optimal threshold-based

update decision rule exists in a low-mobility scenario. To make

the solution of the location update problem to be practically

implementable, a model-free low-complexity learning algorithm

(LSPI) has been introduced, which can achieve a near-optimal

solution.

REFERENCES

[1] M.L. Puterman, “Markov Decision Processes: Discrete

Stochastic Dynamic Programming” Wiley, 1994.

[2] V.W.S. Wong and V.C.M. Leung, “An Adaptive Distance-

Based Location Update Algorithm for Next-Generation PCS

Networks,” IEEE J. Selected Areas on Comm., vol. 19, no.

10, pp. 1942-1952, Oct. 2001.

[3] D. Bertsekas and J. Tsitsiklis. “Neuro-Dynamic

Programming” Athena Scientific, Belmont,Massachusetts,

1996.

[4] D.P. Bertsekas and J.N. Tsitsiklis, “Nero-Dynamic

Programming” Athena Scientific, 1996.

[5] M.G. Lagoudakis and R. Parr, “Least-Squares Policy

Iteration,” J. Machine Learning Research (JMLR ’03), vol.

4, pp. 1107-1149, Dec. 2003.

