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Abstract: 

      The location service in a mobile ad-hoc network 

(MANET) each node needs to maintain its location 

information by 1) frequently updating its location information 

within its neighboring region neighborhood update (NU), and 

2) occasionally updating its location information to certain 

distributed location server in the network, called location 

server update (LSU). The operation costs in location updates 

and the performance losses due to location inaccuracies. The 

location information, where the optimality is in the sense of 

minimizing the overall costs. In this paper, we develop a 

stochastic sequential decision framework to analyze this 

problem. In existing system a Markov Decision Process 

(MDP) was used to find a solution for the above problem. First 

investigate the monotonicity properties of optimal NU and 

LSU operations with respect to location inaccuracies under a 

general cost setting. A separable cost structure used to show 

that the location update decisions of NU and LSU can be 

independently carried out without loss of optimality, i.e., a 

separation property. The discovered separation property of the 

problem structure and the monotonicity properties of optimal 

actions, that 1) there always exists a simple optimal threshold-

based update rule for LSU operations; 2) for NU operations, an 

optimal threshold-based update rule exists in a low-mobility 

scenario. This paper introduces a practical model-free learning 

approach to find a near-optimal solution for the problem. 
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I INTRODUCTION 

 

 A mobile ad hoc network (MANET) is a self-

configuring infra structure less network of mobile devices 

connected by wireless links. A MANET is an autonomous 

collection of mobile users that communicate over relatively 

bandwidth constrained wireless links. Since the nodes are 

mobile, the network topology may change rapidly and 

unpredictably over time. The network is decentralized, where all 

network activity including discovering the topology and 

delivering messages must be executed by the nodes themselves 

i.e., routing functionality will be incorporated into mobile 

nodes.With the advance of very large-scale integrated circuits 

(VLSI)  and  the  commercial  popularity  of  global positioning 

services (GPS), the geographic location information  of  mobile 

devices  in  a  mobile  ad  hoc  network (MANET) is becoming 

available for various applications. This location information not 

only provides one more degree of  freedom in designing network 

protocols, but also is critical for the success of many military 

and civilian applications, e.g., localization in future battlefield  

networks and public safety communications. In a MANET, the 

locations of nodes are not fixed; a node needs to frequently 

update its location information to some or all other nodes. There 

are two basic location update operations at a node to maintain its 

up-to-date location information in the network. One operation is 

to update its location information within a neighboring region, 

where the neighboring region is not necessarily restricted to one-

hop neighboring node, which is called LU. The other operation 

is to update the node’s location information at one or multiple 

distributed location servers. The positions of the location servers 

could be fixed or unfixed. This operation is called LSU. The 

operation cost of location updates and performance losses of 

application depends on presence of location errors.On one hand, 

if the operations of NU and LSU are too frequent, the power and 

communication bandwidth of nodes are wasted for those 

unnecessary updates. On the other hand, if the frequency of the 

operations of NU and/or LSU is not sufficient, the location error 

will degrade the performance of the application that relies on the 

location information of nodes. 

 In this paper, provide a stochastic decision frame-

work to analyze the location update problem in MANETs. We 

formulate the location update problem at a node as a Markov 

Decision Process (MDP)[1]. First investigate the solution 

structure of the model by identifying the monotonicity properties 

of optimal NU and LSU operations with respect to location 

inaccuracies under a general cost setting. Then, given a 

separable cost structure such that the effects of location 

inaccuracies induced by insufficient NU operations and LSU 

operations are separable. From the discovered separation  

property of the model and the monotonicity properties of 

optimal actions, we find that 1) there always exists a simple 

optimal threshold-based update rule for LSU operations where 

the threshold is generally location dependent; 2) for NU 

operations, an optimal threshold-based update rule exists in a 

heavy-traffic and/or a low-mobility scenario. 

 A stochastic decision formulation with a semi-

Markov Decision Process (SMDP) model for the location update 

in cellular networks has been proposed in [2]. First, the 

separation principle discovered here is unique to the location 
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update problem in MANETs since there are two different 

location update operations (i.e., NU and LSU); second, the 

monotonicity properties of the decision rules, and third, the 

value iteration algorithm used.  

II. PROBLEM FORMULATION 

A. Network Model  

We consider a MANET in a finite region. The whole 

region is partitioned into small cells and the location of a node is 

identified by the index of the cell it resides in. The size of the 

cell is set to be sufficiently small such that the location 

difference within a cell has little impact on the performance of 

the target application. The distance between any two points in 

the region is discredited in units of the minimum distance 

between the centers of two cells. Since the area of the region is 

finite, the maximum distance between the centers of two cells is 

bounded. Nodes in the network are mobile and follow a 

Markovian mobility model. We assume that the time is slotted. 

In this discrete-time setting, the mobility model can be 

represented by the conditional probability P(m’/m).The next 

time slot given that the current position is at cell m. Given a 

finite maximum speed on nodes’ movement, when the duration 

of a time slot is set to be sufficiently small, it is reasonable to 

assume that  

P(m’ /m )=0, d(m,m’)>0 

That is, a node can only move around its nearest neighboring 

cells in the duration of a time slot. 

 There are two types location inaccuracies about the location 

of a node. One is the location error within the node’s 

neighboring region, due to the node’s mobility and insufficient 

NU operations. We call it local location error of the node. 

Another is the inaccurate location information of the node stored 

at its LS, due to infrequent LSU operations.The global location 

ambiguity of the node have  two types of location related costs 

in the network. 1) cost of a location update operation,  2) 

performance loss of the application induced by location 

inaccuracies of nodes. To reduce the overall location related 

costs in the network, each node (locally) minimizes the total 

costs. The application cost of individual node’s are classified 

into: 

 Local Application Cost: This cost depends on the 

node’s local location error, which occurs when only 

the node’s location information within its 

neighborhood is used.  

 Global Application Cost: This cost depends on both 

the node’s local location error and global location 

ambiguity, when both (inaccu-rate) location 

information of  the node within its neighborhood and 

that at its LS are used. This usually happens in the 

setup phase of a long-distance communication.  

At the beginning of a time slot, each node decides if it needs 

to carry out an NU and/or an LSU operation.  

 

B.  An MDP Model  
 
 A stochastic model is one in which random effects are 

incorporated into the model. The battle simulations of the last 

lecture were stochastic models.A Markov chain is a particular 

type of discrete time stochastic model. A Markov process is a 

particular type of continuous time stochastic model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. location update model in a MANET 

  

We assume that the underlying control problem is a 

Markov Decision Process (MDP). An MDP is defined as a 4-

tuple ( S,A,P,R)  where S: _is a finite set of states;A _is a finite 

set of actions; P _ is a Markovian transition model where  

(s,a,s’)__represents the probability of going from state  s _to 

state s’  with action a; and R _is a reward function R: S x A x 

S,IR,such thatR(s,a,s’)___ represents the reward obtained when 

taking action a  in state s  and ending up in state s’.Defined the 

components as follows. 

The State Space 

 The local location error and the global location 

ambiguity introduce costs, and thus, have impacts on the node’s 

decision. As the nearest possible LSU operation is in the last 

slot, the value of q observed in current slot is no less than 1. we 

further impose an upper bound q on the value of q, 

corresponding to the case that the global location ambiguity of 

the node is so large that the location information at its LS is 

almost useless for the application. As all components in a state s 

are finite, the state space S is also finite. 

The Action Set 

As there are two basic location update operations, i.e., 

NU and LSU, an action of a state as a vector a=|(aNU ,aLSU)€ A 

,where aNU € {0,1} and aLSU€ {0,1}, with “0” stands for the 

action of “not update” and “1” as the action of “update.” The 

action set A={(0,0),(0,1),(1,0),(1,1)} is identical on all states s € 

S. 

Costs 
 
 A generic cost model for location preserves basic 

properties of the costs in practice. 

 The NU operation cost is denoted as cNU(aNU),where 

cNU(1) > 0 represents the (localized) 
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flooding/broadcasting cost and cNU(0)=0 as no NU 

operation is carried out. 

 The (expected) LSU operation cost cLSU(m,aLSU) is 

afunction of the node’s position and the action aLSU. 

Since an LSU operation is a multihop unicast 

transmission between the node and its LS, this cost is a 

nondecreasing function of the distance between the LS 

and the node’s current location m if aLSU= 1 and 

cLSU(m, 0)= 0. 

 The (expected) local application cost is denoted as 

cl(m, d, aNU), which is a function of the node’s 

position m, the local location error d and the NU action 

aNU. 

 The (expected) global application cost is denoted as 

cg(m,d,q,aNU, aLSU), which is a function of the 

node’s current location m, the local location error d, the 

“age” of the location information at the LS (i.e., q), the 

NU action aNU and the LSU action a LSU. 

III.  LEAST SQUARES APPROXIMATION OF Q 

FUNCTIONS 

 Policy iteration relies upon the solution of a 

system of linear equations to find the Q values for the 

current policy. This is impractical for large state and 

action spaces. In such cases we may wish to 

approximate Q
π
 with a parametric function  

approximator and do some form of approximate policy 

iteration. We now address the problem of finding a set 

of parameters that maximizes the accuracy of our  

approximator. A common class of approximators is the 

so called linear architectures, where the value function 

is approximated as a linear weighted combination of k 

basis functions: 

Q
π 
(s,a,w) =  , 

Where w is a set of weights. 

IV LSPI: LEAST SQUARES POLICY ITERATION 

The LSQ algorithm provides a means of learning an 

approximate state-action value function, Q
π
 (s,a), for any fixed 

policy π_. We now integrate LSQ into an approximate policy 

iteration algorithm. Clearly, LSQ is a candidate for the value 

determination step. The key insight is that we can achieve the 

policy improvement step without ever explicitly representing 

our policy and without any sort of model. In policy 

improvement π
(t+1)

 # will pick the action  that maximizes Q
π
 

(s,a),Since LSQ computesQ functions  directly,we do not need a 

model to determine our improved  policy; all the information we 

need is contained implicitly in the weights parameterizing our Q 

functions1: 

π
(t+1)

 (s,w) = arg max Q (s,a) = arg max (s,a)
T
 w 

 The loop simply by requiring that LSQ performs this 

maximization for each s’_ when constructing the A ?matrix for a 

policy. For very large or continuous action spaces, explicit 

maximization over a  may be impractical. In such cases, some 

sort of global nonlinear optimization may be required to 

determine the optimal action. LSPI uses LSQ to compute 

approximate Q functions; it can use any data source for samples. 

A single set of samples may be used for the entire optimization, 

or additional samples may be acquired, either through 

trajectories or some other scheme, for each iteration of policy 

iteration. Approximate policy iteration algorithm, the 

convergence of LSPI is not guaranteed. Approximate policy 

iteration variants are typically analyzed in terms of a value 

function approximation error and an action selection error [3]. 

LSPI does not require an approximate policy representation, 

e.g., a policy function or “actor” architecture, removing one 

source of error. Moreover, the direct computation of linear Q 

functions from any data source, including stored data, allows the 

use of all available data to evaluate every policy, making the 

problem of minimizing value function approximation error more 

manageable. 

TABLE 1 

Least-Squares Policy Iteration (LSPI) Algorithm 

 

 

 

 

 

 

 

 

 

 

and their variants unavailable.
2
 Second, the small cell size in a 

fine partition of the network region produces large state spaces 

(i.e., S or SNU and SLSU ), which makes the ordinary model-free 

learning approaches with lookup-table repre-sentations 

impractical since a large storage space on a node is required to 

store the lookup-table representation of the values of state-action 

pairs [4]. LSPI overcomes these difficulties and can find a near-

optimal solution for the location update problem in MANETs. 

 

LSPI algorithm is a model-free learning approach which does 

not require the a priori knowledge of the MDP models, and its 

linear function approximation structure provides a compact 
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representation of the values of states which saves the storage 

space [5].  

There are two types of location related costs in the network. One 

is the cost of location update operation, which could be 

physically interpreted as the power and/or bandwidth 

consumption in distributing the location messages. Another is 

the performance loss of the application induced by location 

inaccuracies of the nodes. On one hand, if the operations of NU 

and LSU are too frequent, the power and communication 

bandwidth of nodes are wasted for those unnecessary updates. 

On the other hand, if the frequency of the operations of NU and 

LSU is not sufficient, the location error will degrade the 

performance of the application that relies on the location 

information of nodes. Therefore, to minimize the overall costs, 

location update strategies need to be carefully designed. LSPI 

overcomes these difficulties and can find a near-optimal solution 

for the location update problem in MANETs. 

LSPI algorithm is a model-free learning approach which does 

not require the a priori knowledge of the MDP models, and its 

linear function approximation structure provides a compact 

representation of the values of states which saves the storage 

space [5].  

There are two types of location related costs in the 

network. One is the cost of location update operation, which  

could be physically interpreted as the power and/or 

bandwidth consumption in distributing the location messages. 

Another is the performance loss of the application induced by 

location inaccuracies of the nodes. On one hand, if the 

operations of NU and LSU are too frequent, the power and 

communication bandwidth of nodes are wasted for those 

unnecessary updates. On the other hand, if the frequency of the 

operations of NU and LSU is not sufficient, the location error 

will degrade the performance of the application that relies on the 

location information of nodes. Therefore, to minimize the 

overall costs, location update strategies need to be carefully 

designed. 

V.  RESULTS 
 

A. MDP model with Euclidean Distance 

 
Figure 5.1.1 shows the MDP model with Euclidean Separation 

route search packets, LSU packets and Total packets. The total 

number of control packets per slot verses the nodes that are 

updated are probabalised. Here the comparison of  Search 

packets, LSU packets and total packets consumed are shown 

clearly. This distance function is now compared with the 

Mahalanobis distanced separation. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 5.1.1 MDP model with Euclidean Separation 

 

 

 

 

B.  MDP model with Mahalanobis Distance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2.2 MDP model with Mahalanobis Separation 

Figure 5.2.2 shows the MDP model with Mohalanobis 

Separation for route search packets, LSU packets and the total 

packets. The total number of control packets per slot verses the 

nodes that are updated are probabalised. The consumed packets 

for location updation is minimized than the existing Euclidean 

separation function. This shows how better the proposed idea 

executes in the system. 

VI. APPLICATIONS 

 
 TrellisWare’s MANET products serve a number of 

applications encountered by commercial and military customers. 

In addition to both Comms and Sensor network applications in 

the military, customers in industries such as emergency/disaster 

response, homeland security, mining, and industrial monitoring 

can utilize our MANET products. These applications are marked 

by wide variation in the number, density, and deployment range 

of the units. A few representative application scenarios are 

described below. 

Scenario1 (Sparse Urban) 



Poonkodi et al.  / IJAIR      Vol. 2 Issue 4    ISSN: 2278-7844 

© 2013 IJAIR. ALL RIGHTS RESERVED   727 
 

 Using three parked cars and a unit in a mobile car, the 

TrellisWare radios were able to cover  downtown San Diego. 

Along with using a minimal number of units, video was 

transmitted from a dash cam in the mobile car and all units were 

able to utilize the PTT feature to communicate.  

Scenario2 (Dense Urban) 

Covering a large urban center is difficult. Add to that 

the ability to utilize PPT and transmit video while on the move. 

With three units transmitting video and  using PTT while 

mobile, the urban area gets covered. The video was remote 

controlled using a satellite backhaul. 

 

 

Scenario3 (Hilly Terrain) 

  With one unit placed down at Torrey Pines state park 

taking a video of the ocean and beach below, one unit on the top 

of a local hilltop and a third on another hilltop we were able to 

transmit video 12 miles back to our headquarters. There was 

also a unit traveling at highway speeds with a dash cam sending 

video data back to our headquarters. The video was sent in 

conjunction with the use of voice to communicate between units. 

All units were tracked to show position locations at any given 

time. 

Scenario4 (Heavily Foliated Terrain) 

  Units were carried by dismounted marines, who used 

the networked PTT voice, were tracked utilizing Position 

Location Information form the units and used IP data traffic with 

no failures. These units were operated over a five day period 

across heavy vegetation. 

Scenario5 (In-Ship) 

  Using four units on the interior of the ship and two to 

provide exterior coverage, an entire ship could be covered with 

PTT voice and streaming video with no loss and no leaky 

feeders. The crew was able to cover bow to aft and port to 

starboard sides as well as the engine room of the vessel. 

VII. CONCLUSIONS 
 

We have developed a stochastic sequential decision 

frame-work to analyze the location update problem in MANETs. 

The existence of the monotonicity properties of optimal NU and 

LSU operations w.r.t. location inaccuracies have been 

investigated under a general cost setting. If a separable cost 

structure exists, one important insight from the proposed MDP 

model is that the location update decisions on NU and LSU can 

be independently carried out without loss of optimality, which 

motives the simple separate consideration of NU and LSU 

decisions in practice. From this separation principle and the 

monotonicity properties of optimal actions, we have further 

showed that 1) for the LSU decision subproblem, there always 

exists an optimal threshold-based update decision rule; and 2) 

for the NU decision subproblem, an optimal threshold-based 

update decision rule exists in a low-mobility scenario. To make 

the solution of the location update problem to be practically 

implementable, a model-free low-complexity learning algorithm 

(LSPI) has been introduced, which can achieve a near-optimal 

solution. 
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