
Krishna et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 621

SOME ATTACKS ON CRYPTOGRAPHIC HASH FUNCTIONS
C. Krishna Kumar 1, Dr. C. Suyambulingom2

1, Sathyabama University, Chennai, India,
2 Professor, Dept. of Mathematics, TAU,

Coimbatore, India
E-Mail: kkumarmalar@yahoo.com

Abstract
Hash functions are used in various applications which require specific properties. Therefore,
these cryptographic tools are designed in order to satisfy the desired properties The methods for
analyzing hash functions, or attacks shortly, can be classified in various types according to the
main parameters used in the attack. For example some attacks depend only on the hash size
while other attacks may also depend on chaining value or compression function. At this point,
one can categorize attacks, in a more general fashion, as generic attacks and specific attacks.
Generic attacks are general attacks that are mostly applicable to numerous hash functions.
Specific attacks, however, are cryptanalysis methods for specific hash functions and applicable
to very limited number of algorithms. Specific attacks are out of the scope of this thesis and
generic attacks will be mentioned in this section.

1. Birthday Attack
Birthday attack is the basic tool to find
collisions for any hash function. The attack
is based on the birthday problem (or
birthday paradox) which is about the
minimum number of people so that the
probability of at least two people having the
same birthday is greater than 1/2. To bind
the problem to hash functions, one can call
the presence of two people having the same
birthday a collision.The key point in
birthday attack is that the attacker, is looking
for any collision rather than a specific
collision. If attacker was looking for a
specific collision among N people, say at
least one person having the same birthday
with her, the probability will be
PCollision(N) = 1 −364/365N

For this probability being greater than 1/2, N
should be greater than 254. Applying this
idea to hash functions, attacker is trying to
find a message which has a hash value with
a specific message by exhaustively
searching all possible messages which
would be a second preimage search.
However, if attacker just tries to find any
collision among the N birthdays the
probability Becomes PCollision(N) = 1
−365/365(364/365)(363/365)….(365-
N+1/365)N

Here solving for N, it can be seen that N =
23 people are enough to have a match in the
birthdays with probability greater than 1/2.

2. Correcting Block Attack
Correcting block attack is the most trivial
second preimage tool which can also be
used to find collisions. The idea is, roughly,
for a given message M1 of t-blocks and
corresponding hash value H(M1), producing
a message M2 of k-blocks which is shorter
than M1 and then trying to find message
blocks Y = m1c, · · · ,mt−kc such that H(M1)
= H(M2||Y). In general, the attack is applied

by correcting the last message block before
padding and called correcting last block
attack. In this case, attacker produces a
message M2 of length t−1 blocks. Let ht and
ht −1 be, respectively, the final chaining
values of messages M1 and M2 before
processing padding blocks. Then the
attacker searches for a message block mc
such that f (h t −1,mc) = ht where f is the

Krishna et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 622

compression function of the hash algorithm.
This way H(M2||mc) will be equal to H(M1)
and she will get a second preimage for M1.
The choice of message block to be corrected
has no restriction and can be any message
block but the first. If attacker chooses ith
message block to correct to find a second
preimage, message blocks of M2 after this
message block should be equal to message
blocks of M1 after ith message blocks. To
find a collision, attacker randomly chooses
two messages of the same length M1 and

M2. Then, he searches for message blocks
mc and m csuch that H(M1||mc) =
H(M2||mc) and gets a collision pair.The
complexity of finding such a correcting
block is equal to exhaustive collision search
for most of the modern hash functions and it
is O(2n). However, some hash functions are
easy to manipulate and this process can be
less complicated. Especially hash functions
based on modular arithmetic are vulnerable
to correcting block attack.

3. Meet in the Middle Attack
The meet in the middle attack (MiMA) is a
variant of birthday attack to find second
preimages. In the birthday attack, attacker is
comparing the hash values while in MiMA,
she compares the internal chaining values.
The advantage of MiMA over birthday
attack is that MiMA enables attacker to
construct a message with a desired hash
value, ie., a second preimage. However,
MiMA is applicable to hash functions with
invertible compression functions where
birthday attack can be applied to any hash
function. In other words, to apply MiMA,
attacker, knowing

hi+1, should be able to find a pair (hi,mi) st
f (hi,mi) = hi + 1. General idea of MiMA is
going backwards from a hash value and
going forwards from IV of the algorithm
using some bogus message blocks, and then
at a predefined meeting point trying to
match them. In [66], Nishimura and Sibuya
defined three models for MiMA. In the first
model, model A, attacker who knows M and
H(M), divides the bogus message M into
two parts. She chooses a chaining value as
meeting point and starting from IV,
generates k variations of the first part up to
the meeting point.

4. Length Extension Attack
Length extension attack can be applied to
the iterated hash functions by appending
message blocks to the original or padded
message. The aim of this attack is producing
a hash value which is related to or contains a
part of a message M without fully knowing
it. The length extension attacks can be
categorized in two as Type A and Type B
attacks. In Type A attack, the hash function
is assumed to use no MD-strengthening. For
this type of attack consider two messages,
M1 = m0,m1, . . . ,mt−1 and M2 = m0,m1, .
. . ,mt−1,mt which are identical in the first t
blocks. Then, when calculating the hash
value of M2, H(M1) appears as the chaining
value which is input to the final iteration.
Therefore H(M2) = f (H(M1),mt) where f is

the compression function of H. This enables
the attacker, without full knowledge of M1,
to produce the hash value of a message M2
which is related with M1. One example of
the attack is given in [69]. In an
authentication protocol, which uses an
iterated hash function without output
transformation, two parties A and B share a
secret X and the authentication protocol is as
follows:
• A, generates some message M and sends
M, H(X||M) to B
• B, knowing X, compares H(X||M) with the
received data and authenticates A
Figure 4.4: The Authentication Protocol
Here an attacker who knows M and H(X||M)
can impersonate A to B with extension

Krishna et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 623

attack. The attacker generates arbitrary
message blocks m0,m1, . . . ,mk−1 and
iterates hi = f (hi−1,mi−1) for i = 1, 2, .., k
with h0 = H(X||M). The result, hk, is the
hash value of M = X||M||m0,m1, . . . ,mk−1.
Then the attacker sends M and hk to B.
Party B, verifying the hash value,
authenticates attacker as A.
Fixed Point Attack A fixed point for the
hash function H is a pair (h,m) such that f
(h,m) = h, ie, the chaining value h remains
the same after iteration with message block

m. Fixed points are not just the chaining
values or the message blocks: h which is a
fixed point for the message block m will not
form a fixed point pair with another message
block, or vice versa. Fixed points are used to
attack iterated hash functions. Let the pair
(hi,mi) be a fixed point pair for the
compression function f of H. Consider the
message M = m0,m1, . . . ,mi, . . . ,mt−1
with chaining values IV = h0, h1, . . . , hi, . .
. , ht appear when hashing M.

Figure1.11: Hashing Process of M
Attacker can construct another message M1

= m0,m1, . . . ,mi−1,mi,mi, . . . ,mt−1. which
produces

the chaining values IV = h0, h1, . . . , hi−1hi,
hi, hi+1, . . . , ht.

Figure 1.12: Hashing Process of M1

Since (hi,mi) forms a fixed point pair,
insertion of mi to the iterations where hi is
the input, will not change the final chaining
value. So the attacker can insert as many mi
message blocks as she needed without
changing the hash value to find a second
preimage. However, the problem with this
attack is the length padding. As she inserts
message blocks to produce a second
preimage, the message M1 will be longer
than the original message M. Therefore the
length paddings of two messages will be

different and the hash values will not be the
same.
5. Long Message Attack
The long message attack is a second
preimage attack using long messages for
iterative hash functions. Attack is applicable
to messages of any length but it is more
efficient when the original message is very
long. Assume the attacker is trying to find a
second preimage for the message M =
m0m1m2 . . .ml−1 which produces the
chaining values h0 = IV, h1, . . . , hl − 1, hl

Krishna et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 624

= H(M) when hashing. 42 Attacker produces
a prefix M = m0m1 . . .mk−1 with final
chaining value f (hk−1,mk−1) = hk. If hk is
equal to one of the chaining values h1, h2, . .
. , ht−1, the attacker can bind the message
blocks of the original message after the
matching chaining value to M. Let hk = ha,
then M will be M = m0m1 . . .mk−1mama+1
. . .ml−1 and will have the same hash value
with M. If hk is not equal to any of the
chaining values, then attacker tries to find a
linking message mlink to produce another
chaining value hk+1 which is equal to one
of the chaining values. Since there are l − 1
chaining values appearing in hashing
process of M, assumed to be all distinct, hk,
or hk+1, can be equal to one of these
chaining values with probability l−1 2n .
Letting l = 2b, the cost of a match will be
2n−b hash function computations. The final
chaining values of M and M are the same.

However, since length padding is processed
at all modern hash functions , hash values of
these messages can be different depending
of their lengths. Let the matching chaining
values of these messages be ha = hk. Then
there are three situations:
• If k < a, then M is shorter then M. Then the
attacker can use the methods used in the
fixed point attack, in Section 4.6, proposed
by Dean [53] to extend the message M.
• If k = a, then the lengths of the messages
will be equal. Therefore the hash values
H(M) and H(M) will be equal.
• If k > a, then M is longer than the original
message M. This time attacker should use
the tricks in the fixed point attack to shrink
the message to the same length with M.
Moreover, Kelsey and Schneier developed
an attack, that will be explained in the next
section, which can be applied using the long
message attack.

6. Kelsey & Schneier’s Long Message Attack

In 2005, Kelsey and Schneier proposed a
new second preimage attack which is
essentially similar to Joux multi-collision
attack and integrated with the long message
attack [55]. The attack can be combined
with Dean’s fixed point idea for hash
functions that are easy to find fixed points.
Attack is basically, as Joux’s attack, depends
on finding successive collisions. The main
43 difference of this attack from the Joux
multi-collision is, instead of finding
colliding pairs of one block messages,
attacker searches for pairs of collisions of
different lengths. This way she can construct
a message having a fixed hash value but that
can vary in length. Consider this message as
a single elastic message. This elastic
message is called an expandable message

and an expandable message that can take
any length between a and b blocks is called
an (a, b) − expandable message. Finding
collisions for different length messages can
be achieved in two ways. First method is
using the fixed points. In this method,
attacker generates 2n/2 fixed point pairs (hf i
,mf i) and 2n/2 chaining values h1i that can
be reached from IV using message block
m0i . With a high probability there will be a
match between hf ’s and h1’s. Let h1i = hfj ,
then the messages m0i and m0i ||mfj will
produce the same final chaining values.
Attacker can also append as many mfj
blocks to the second message as she wants.
This method is only applicable to hash
functions which are easy to find fixed
points.

7. Herding Attack
Kelsey and Kohno developed an attack on
Merkle-Damgard hash functions in [74],

where the attacker first reveals the hash
value and then produces a message which

Krishna et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 625

has the revealed hash value. Since the
attacker produces the message after finding
its hash value, she can prove prior
knowledge of any information. Therefore,
the attack is also called Nostradamus attack.
An example to clarify the attack can be as
follows: Attacker claims that she knows the
result of a match which will be played soon
and provides a hash value which she

declares as the hash value of the result of the
match. After the match, she publishes a
message containing the result of the match
which has the previously declared hash
value. This attack has two phases: first the
attacker constructs a diamond structure
which contains colliding chaining values.
These chaining values reduce to a single
chaining value ht and attacker releases ht.

Figure 1.13: Diamond Structure
In Figure 1.13 a diamond structure is
depicted where each arrow denotes a
message block which are not necessarily
distinct. After learning the result of the
match, which will be called the prefix P, she
finds a linking message mlink that links the
final chaining value of the prefix to the first
column of the diamond structure. The
diamond structure is consisting of colliding
messages. To construct a diamond structure
of width k one should find 2k multi-
collisions. The idea of diamond structure is

similar to Joux multi-collision however
there are two main differences:
1. The diamond structure allows 2k choices
for the first message block and the rest of
the messages are determined by the first
block while Joux attack provides two
message block choices for each iteration.
2. Diamond structure contains 2k+1 − 2
chaining values. Joux 2k−multi-collision has
k chaining values. The first difference
makes finding a linking message more
efficient and the second enables the attacker
to apply herding attack to short suffixes.

8. Slide Attack
Slide attack is a cryptanalysis tool for block
ciphers with weak key schedule, which was
introduced by Wagner and Biryakov in [76].
However, in [77] Gorski, Lucks and Peyrin
showed that the attack is also a threat for
stream based and sponge hash functions. By
applying slide attack to hash functions one

can distinguish the algorithm from a random
oracle and mount an extension attack similar
to the length extension attack for MD hash
functions in Section 4.4.Slide attack is
applicable to block ciphers which have a
weak or periodic key schedule. These block
ciphers can be divided into equivalent

Krishna et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 626

permutations according to the round keys.
For example, let the key size of a 16 round
block cipher E is 128 bits and ith round key
kiisproduced by rotating the main key left
by i 32. Then the round keys will repeat
after 4 rounds and will be equal at each four
rounds. Let F be the permutation equal to
the first four rounds of E. Then, one can
consider E as E(P) = F ◦ F ◦ F ◦ F(P). If the
corresponding ciphertexts C1 and C2 of
plaintexts P1 and P2, with P2 = F(P1),
satisfies C2 = F(C1) then (P1, P2) is called a
slid pair. Using the slid pairs attacker can
retrieve information about the key and
distinguish the cipher from a random oracle.
In hash function case, one can consider the
blank rounds at the end of stream and
sponge based hash functions as identical
permutations which does not take any input
apart from the chaining value and applies a
fixed permutation on it. So, parallel to these
consideration, the definition of a slid pair
will change. Two messages M1 and M2 are
called a slid pair if S 2 = B(S 1) where B(·)
denotes a blank round and S 1 and S 2 are
the final states appear before the output
transformation, when hashing these
messages. There is no constraints on the
messages as in block cipher case. If the state
after processing the first blank round of M1
is equal to the state before the blank rounds
of M2, (M1, M2) will be a slid pair. Assume
that the attacker is trying to attack the

protocol as in Figure 4.4 of Section 4.4.
Stream and sponge hash functions apply an
output transformation to the state (or states)
after blank rounds. Therefore, in such a
protocol, attacker who knows H(K||M) and
M cannot recover the final state and append
new message blocks directly. For example,
in Grindahl [78], the final state is truncated
according to the hash size. So, in order to
extend the message attacker needs to find
the full final state. Slide attack enables the
attacker to find the final state with lower
complexity. In this section the attack is
applied on Grindahl2 hash function. The
specifications of Grindahl- 512 can be
summarized as follows
• Message M is padded and divided into 64-
bit blocks m0m1
• An initial state is constructed as a 8x13
matrix whose entries are all zero.
• ith message block is replaced with the first
column of the ith state. Then some
permutations are applied to the overwritten
state.
• 8 blank rounds, which are consisting of
permutations only, are applied to the state
after all the message blocks are input. In
these blank rounds state is neither inserted
any message nor truncated.
• The first 8 columns of the state after blank
rounds are taken as the output. In other
words the final 5 columns are truncated.

9. Rebound Attack
Rebound attack [79] is a differential
collision method for block cipher based hash
functions. The aim of the attack is, given
two messages M1 and M2 such that M1 M2
= Δ, to cancel the difference Δ after some
number of iterations or some rounds of
encryption in the compression function.
Attack divides the block cipher of the
compression function into three subciphers
as Efw ◦ Ein ◦ Ebw and proceeds in two
phases: the inbound phase and the outbound
phase. In the inbound phase attacker tries to

find a match in the middle using the degrees
of freedom in Ein subcipher. Then going
backwards and forwards through the
matching pairs, tries to get a zero difference
at the end, which is produced by the Δ
difference. This phase is called the outbound
phase and processed through Efw and Ebw.
The inbound phase produces tarting
points(states) for outbound phase, therefore,
inbound phase should be repeated as many
times as needed according to the probability
of the outbound phase. Despite the attack

Krishna et al. / IJAIR Vol. 2 Issue 4 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 627

can be applied to any block cipher based
hash function, it has been applied to, only,
hash functions, like Whirlpool[80],
Maelstrom [81], and Grostl [82], which use

Rijndael [83] building blocks. In the rest of
this section, rebound attack will be
described on Whirlpool hash function.

References

1.William Stallings, “Cryptography and
Network Security”, Prentice Hall, 4th

Edition, 2005.
2 Andreeva E (2010) Domain Extenders for
Cryptographic Hash Functions. Ph.D. thesis,
Katholieke Universiteit Leuven.
3. Barkan E, Biham E & Shamir A (2006)
Rigorous bounds on cryptanalytic time
/memory tradeoffs. Proc. 26th Annual
International Cryptology Conference –
CRYPTO 2006, 1–21.
4. Bellare M & Ristov T (2008) Hash
functions from sigma protocols and
improvements to VSH. Proc. 14th
International Conference on the Theory and
Application of Cryptology and Information
Security – ASIACRYPT 2008, 125–142.
5. Blake IF & Shparlinski IE (2007)
Statistical distribution and collisions of the
VSH. Journal of Mathematical Cryptology
1(4): 329–349.
6 Gauravaram P & Kelsey J (2007)
Cryptanalysis of a class of cryptographic
hash functions. Cryptology ePrint Archive,
Report 2007/277. URL:
http://eprint.iacr.org/. Cited 2012/08/24.
7. Klima V (2005) Finding MD5 collisions
on a notebook PC using multi-message
modifications. Cryptology ePrint Archive,
Report 2005/102. URL:
http://eprint.iacr.org/. Cited 2012/08/24.
8. Th. Berson, “Differential cryptanalysis
mod 232 with applications to MD5,”
Advances in Cryptology, Proc.
Eurocrypt’92, LNCS 658, R.A. Rueppel,
Ed., Springer-Verlag, 1993, pp.1–80.
9. C. Besnard and J. Martin, “DABO:
proposed additional message authentication
algorithms for ISO 8731,” preprint, 1992.

10. E. Biham and A. Shamir, “Differential
cryptanalysis of DES-like cryptosystems,”
Journal of Cryptology, Vol. 4, No. 1, 1991,
pp. 3–72.
11. E. Biham and A. Shamir, “Differential
cryptanalysis of Feal and N-hash,”
Advances in Cryptology, Proc.
Eurocrypt’91, LNCS 547, D.W. Davies, Ed.,
Springer-Verlag, 1991, pp. 1–16.

