
International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

©2017 IJAIR. All Rights Reserved

Buffer Overflow Exploits and Alleviations
Sonu Sureshchandra Gupta

Pune, Maharashtra, India
sonugupta4636@gmail.com

Abstract— Over a decade ago, buffer overflow has caused
immense security vulnerability and still continues. Just using few
tools hackers are able to exploit the software applications and
merge their attack code in applications. In this paper, I will be
discussing buffer overflow exploits and various mitigation
techniques for windows and Linux platforms. Apart from that, I
will be discussing how we can prevent buffer overflow
vulnerabilities by using combinations of different mitigation
techniques while preserving the functionality and performance of
the system.

Keywords— Buffer Overflow, Security, Malicious, Prevention,
Secure Code, Pointers

I. INTRODUCTION

Buffer overflow is one of the most commonly found
security vulnerability that allows attackers to give control of
host machine. It gives the attacker liberty to inject and execute
his attack code in user's application. This malicious code can
now run with the privileges of user's vulnerable program and
allows the attacker to bootstrap whatever functionality is
needed to control the host machine.

Buffer overflow vulnerabilities and attacks come in various
forms, which I will be describing in section II. Along with this,
mitigation techniques against this exploit also comes in a
variety of forms which I will be describing in section III in
detail. Section IV discusses combinations of mitigation
techniques in Windows and Linux platform. Section V
presents the conclusion.

II. BUFFER OVERFLOW VULNERABILITY

A. Code in program’s address space

The main crux of buffer overflow attack is to wreak havoc
on the function of the privileged program. Doing this will give
an attacker the control of that program. If the program is
sufficiently privileged, it can further give access to the host
machine.

Two sub-goals need to be achieved to do this.
 Arrange for suitable code to be available in program’s

address space.
 Get the program to jump to that code, with suitable

parameters loaded into register and memory.
There are two ways to make the presence of attack code in

program’s address space i.e, either Inject it or use what is
already there.

1) To Inject

The attacker provides a string to the program which acts
as an input and which is stored in a buffer.The string contains
native CPU instructions for the platform being attacked. This

buffer can be located anywhere on the stack, on the heap or in
the static data area. The attacker doesn’t have to overflow any
buffer to this; sufficient payload can be injected in perfectly
reasonable buffers.

2) Already there

The malicious code of attacker is already present in the
program address space. All attacker needs to do is
parameterize the code and then cause the program to jump to
it. This can be exemplified by the case when attacker executes
"exec("/bin/sh")". Since there exists code in libc that executes
"exec(arg)" where "arg" is a string pointer. The attacker only
needs to change this pointer to point to "/bin/sh" and jump to
the appropriate instructions in libs library.
The basic method to overflow a buffer that has weak or non-
existent bounds checking. By overflowing the buffer, the
attacker can easily overwrite the adjacent program state with
shellcode/attack code.

 Activation Record:
An activation record is a just data structure having

information about called function and return address. Each
time the function is called, the activation record is placed on
the stack.By corrupting this return address in activation record,
attacker causes the program to jump to attack code.

 Function pointers:
These can be allocated anywhere(stack, heap, static

area). The attacker only needs to find an overflowable buffer
adjacent to a function pointer. Overflowing that buffer results
in changing the function pointer. When sometime later, this
function pointer is called, it will result in jumping to attacker’s
desired location.

 Long jump buffers:

 ‘C’ includes a simple checkpoint/rollback system called
setjmp/longjmp. The idiom is to say “setjmp(buffer)” to the
checkpoint and say “longjmp(buffer)” to go back to the
checkpoint. However, if the attacker can corrupt the state of
the buffer, then “longjmp(buffer)” will jump to the attacker's
code instead. Since function pointers, longjmp buffers can be
allocated anywhere, this gives the attacker liberty to find an
adjacent overflowable buffer.

III. MITIGATING BUFFER OVERFLOW EXPLOITS

There are plenty of techniques that can be put in place by
the developer such as secure coding practices, stack cookies,
SafeSEH, etc. Most compilers and linkers nowadays enable

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

©2017 IJAIR. All Rights Reserved

most of those features by default (except for "secure coding",
which is not a feature of course), and that is a good thing.
Unfortunately, there are still a horrible amount of applications
that are not protected and will rely on other protection
mechanisms. And I think you will agree that there are still a
lot of developers who don’t apply secure coding principles to
all their code. They rely on OS protection mechanisms (see
next), and just don’t even care about secure coding.

Luckily for the zillions, Windows end-users, a number of
protection mechanisms have been built-in into the Windows
Operating systems implicitly such as:

– Stack cookies (/GS Switch cookie)
– SafeSEH (/SafeSEH compiler switch)
– Data Execution Prevention (DEP) (software and hardware

based)
– Address Space Layout Randomization (ASLR)

A. Stack cookies (/GS Switch cookie)

When an application starts, a program-wide master cookie
which is 4 bytes (Dword), unsigned int is calculated. This
cookie can be any pseudo-random number and it is saved in
the ‘.data’ section of the loaded module. In the function prolog,
this program-wide master cookie is copied to the stack, right
before the saved EBP and EIP. (between the local variables
and the return addresses)

During the epilog, this cookie is compared again with the
program-wide master cookie. If it is different, it concludes
that corruption has occurred, and the program is terminated.

Also, /GS is responsible for variable reordering. This
variable reordering will prevent attackers from overwriting
local variables or arguments used by the function, the
compiler will rearrange the layout of the stack frame and will
put string buffers at a higher address than all other variables.
Thus, when a string buffer overflow occurs, it cannot
overwrite any other local variables.

B. SafeSEH

Instead of protecting the stack (by putting a cookie before
the return address), modules compiled with this flag will
include a list of all known addresses that can be used as
exception handler functions. If an exception occurs, the
application will check if the address in the SEH chain records
belongs to the list of "known" functions, if the address
belongs to a module that was compiled with SafeSEH.
Otherwise, the application will be terminated without jumping
to the corrupted handler.

C. Data Execution Prevention (DEP)

Attack code is placed somewhere on the stack and then
attempted to force the application to jump to attack code and
execute it. Hardware DEP (or Data Execution Prevention)
aims are preventing just that. It imposes non-executable pages
(basically marks the stack/part of the stack as non-executable),
thus preventing the execution of arbitrary shellcode.

Wikipedia cites “DEP runs in two modes: hardware-
enforced DEP for CPUs that can mark memory pages as
nonexecutable (NX bit), and software-enforced DEP with a
limited prevention for CPUs that do not have hardware
support. Software-enforced DEP does not protect from the
execution of code in data pages, but instead from another type
of attack (SEH overwrite). “[2]

In other words: Software DEP = SafeSEH Software DEP
has nothing to do with the NX bit at all!

The concept of NX protection is pretty simple. If the
hardware supports NX, the BIOS is configured to enable NX,
and if the OS supports it, at least the system services will be
protected. Depending on the DEP settings, apps could be
protected too. Compilers such as Visual Studio C++ offer a
link flag (/NXCOMPAT) that will enable applications for
DEP protection.

D. Address Space Layout Randomization (ASLR)

Windows Vista, 2008 server, and Windows 7 offer yet
another built-in security technique (not new, but new for the
Windows OS), which randomizes the base addresses of
executables, DLL's, stack and heap in a process’s address
space (in fact, it will load the system images into 1 out of 256
random slots, it will randomize the stack for each thread, and
it will randomize the heap as well). This technique is known
as ASLR (Address Space Layout Randomization).
The addresses changes on each boot. ASLR is by default
enabled for system images (excluding IE7), and for non-
system images if they were linked with the /DYNAMICBASE
link option.

IV. EFFECTIVE COMBINATIONS

When /DYNAMICBASE is enabled, a module's load
address is randomized, which means that it cannot easily be
used in Return Oriented Programming (ROP) attacks. When it
comes to Windows applications, we recommend that all
vendors use both DEP and ASLR, as well as the other
mitigations outlined in the Windows ISV Software Security
Defenses document.

On the Linux platform, ASLR does have a performance
penalty. This penalty is greatest on the x86 architecture, and it
is most noticeable in benchmarks. For an executable to be
compatible with ASLR on Linux platform, it must be
compiled with the Position Independent Executable (PIE)
option.

The main goal of ASLR is to have executable code at an
unpredictable address. But, there is a difference between the
Windows and Linux implementations. It's important to note
that ASLR compatibility on Windows is a link-time option,
while on Linux it's a compile-time option.[4]

With Windows, the code is patched at runtime for
relocation purposes. In the Linux and Unix worlds, this
technique is known as text relocation. With Linux, ASLR is
achieved in a different way. Rather than patching the code at
runtime, the code is compiled in a way that makes it position

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

©2017 IJAIR. All Rights Reserved

independent i.e, it can be loaded at any memory address and
still function properly.

At least on the x86 platform, this position-independent
capability is accomplished through the use of a general-
purpose CPU register. But, even with one less register
available to use by a program, it doesn't operate as efficiently.
This limitation is most noticeable on architectures with a
small number of registers, such as x86.

Why did the Linux developers choose this technique for
implementing ASLR? Because text relocations involve
patching. Thus, loading such a module would trigger copy-on-
write, which subsequently increases the memory footprint of a
system. But, the position-independent code does not require
patching and therefore does not trigger copy-on-write.

Compiling your application with compiler flags which
enables Stack cookies, safeSEH, DEP and ASLR will
definitely make your application less vulnerable and difficult
for a hacker to exploit and inject his attack code. Though these
flags are here, the best practice of secure coding will
definitely make the application more secure and less
vulnerable to other exploits too.

V. CONCLUSIONS

I have presented a detailed categorization and analysis of
buffer overflow vulnerabilities, attacks, and defenses. Buffer
overflows are worthy of this degree of analysis because they
constitute a majority of security vulnerability issues.

REFERENCES
[1] Rafel Wojtczuk. Defeating Solar Designer Non-Executable Stack

Patch. Bugtraq mailing list, http://geek-girl.com/bugtraq/, January 30, 1998.
[2] https://wiki2.org/en/Data_Execution_Prevention
[3] Buffer Overflows: Attacks and Defenses for the Vulnerability of the

Decade. http://www.cse.ogi.edu/DISC/projects/immunix.
[4] https://insights.sei.cmu.edu/cert/2014/02/differences-between-aslr-on-

windows-and-linux.html

