
International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

©2017 IJAIR. All Rights Reserved

DESIGN OF HIGH SPEED AND AREA EFFICIENT BCD
MULTIPLIER WITH MODIFIED CONVERTORS

Ruchira Dixit, M. Tech. scholar.GGITS, Jabalpur
Prof. Abhishek Singh, GGITS,Jabalpur

Abstract: Now days we are living in digital world,
where all the operations get performed more
reliably and with highest accuracy by digital signal
processor. MULTIPLIER is the key element of all
these processor like Microprocessor,
Microcontroller, DSP processor etc. In this paper
we present a new method for implementing BCD
multiplication more efficiently than previous
proposals in current FPGA devices with 6-input
LUTs. In particular, a combinational
implementation maps quite well into the slice
structure of the Xilinx Virtex-5/Virtex-6 families
and it is highly pipeline-able. The synthesis results
for a Virtex-6 device indicate that our proposal
outperforms the area and latency figures of
previous implementations in FPGAs.
Keywords: BCD-Binary Coded Decimal, LUT-
Look Up Table, DSP- Digital Signal Processing,
RTL-Register Transfer Level, EDA-Electronic
Design Automation

I-INTRODUCTION
After through study and deep analysis work we
have seen that the existing[1] BCD multiplication
hardware have some limitation in terms of area. To
overcome these limitations a novel approach has
been proposed to design the BCD multiplier with
unique addition structure, which is used to add
partially generated products. To meet our major
concern ‘Speed’ we need particular high speed
MULTIPLIER, the speed of MULTIPLIER greatly
depends upon the speed of multiplication unit used
in it. There are so many multiplication techniques
exist now a days at algorithmic and structural
level. Our proposed MULTIPLIER algorithm is
already efficient in respect of area and speed, all
we need to optimize it further to have it we have
plan to use our proposed BCD Wallace
multiplication technique on proposed
MULTIPLIER module.
Every digital domain based technology depends
upon the operations performed by MULTIPLIER
either partially or whole. Speed is the most
prominent factor of processor and controllers
being used recently. Decimal multiplication is one
of the most frequent operations used by many
financial, business and user-oriented applications
but current implementations in FPGAs are very

inefficient in terms of both area and latency when
compared to binary multipliers.
With growing popularity for decimal computer
arithmetic in scientific, commercial, financial &
Internet-based applications, hardware realization
for decimal arithmetic algorithms is gaining much
importance. Hardware decimal arithmetic units
now serve as an integral part for few recently
commercialized general purpose processors, where
complex decimal arithmetic operations, such as
multiplication, have been realized by rather slow
iterative hardware algorithms. However, with rapid
advances in very large scale integration (VLSI)
technology[14], semi- & fully parallel hardware
decimal multiplication units are expected to evolve
soon. dominant representation to decimal digits is
binary-coded decimal (BCD) encoding. BCD-digit
multiplier may serve as key building block for a
decimal multiplier, irrespective for degree for
parallelism.
To Design BCD MULTIPLIER module using
VHDL, designed module will be
synthesized using Xilinx ISE 9.1i [19] Web pack,
& verification will be done on ISE simulator, &
then to validation be design module will be
implemented on Xilinx FPGA Vertex2.
The test bench-waveforms to various parts for
BCD-MULTIPLIER verification will be on
ISE[20] simulator with standard benchmarks.
To achieve a better speed efficient MULTIPLIER
& to compare our work with base references for
standard journal papers. To optimized area &
speed for our design module as compare to
existing design modules.

II- STRUCTURE FOR DESIGN
Figure 1 shows a flow for proposed work as may
be seen there are three major modules which has
been developed very first a BCE to binary & also a
Binary to BCD convertors requires actual
modification is been proposed in all these
conversion methods also procedure adopted to
multiplication also new digit A & B multiplication
using vertical-cross method.
Step 1: Multiply numbers in one’s place & put
product directly under one’s. (A(LSB half)
*B(LSB half))
Step 2: Cross multiply, we would form fractions
by taking top number’s tens digit multiplied by

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

bottom number’s ones place. Then take top
number's tens place multiplied by bottom number's
tens place. Add both products. {(A(LSB half)
*B(MSB half))+ (A(MSB half) *B(LSB half))}
Step 3: Multiply again, numbers in tens place &
place answer to left for previous step's answer.
(A(MSB half) *B(LSB half))
Step 4: Add all partial products with previous
step’s carry if it is.

Figure 1: proposed BCD multiplication module
The design has three major modules
16 bit BCD to binary convertor
16 bit binary multiplication
32 bit Binary to BCD convertor
BCD to binary convertor: Proposed new
architecture of 16 bit BCD to binary convertor is
shown below in figure 2. RS s right shift, WA is
Wallace adder, WS is Wallace subtraction

Figure 2 Proposed BCD to binary convertor

The process of proposed design can be explained
as
Let 16 bit input BCD is as below
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4
B3 B2 B1 B0
The proposed concept is to perform multiplication
using shifting as know left shift by ‘n’ multiplies a
number with 2n
And for getting 16 bit binary of 16 bit BCD we
must do

S15S14S13S12S11S10S9S8S7S6S5S4S3S2S1S0

= (B15B14B13B12) x 1000 + (B11B10B9B8) x
100 + (B7B6B5B4) x 10 + (B3B2B1B0)

= (B15B14B13B12) x (1024-16-8) +
(B11B10B9B8) x (64+32+4) + (B7B6B5B4) x
(8+2) + (B3B2B1B0)

= (B15B14B13B12)x(1024) -
(B15B14B13B12)x(16) - (B15B14B13B12)x(8) +
(B11B10B9B8)x(64+32+4) + (B7B6B5B4)x(8+2)
+ (B3B2B1B0)

As we can perform addition instead of subtraction
if we change the sign using 2’S complement we
perform upper nibble compliment with ‘0’ padding
at its MSB first, and 2’S complement is 1’S
complement plus ‘1’, proposed work added ‘1’ in
its tree adder architecture.

= { (B15B14B13B12)x(1024) } + {
(1A15A14A13A12)x(16) + ‘1’ } + {
(1A15A14A13A12)x(8) + ‘1’ } + {
(B11B10B9B8)x(64+32+4) } + {
(B7B6B5B4)x(8+2)} +{ (B3B2B1B0) }

Multiplication by 1024 will be performed by left
shifting by 10 bit, Multiplication by 16 will be
performed by left shifting by 4 bit, Multiplication
by 8 will be performed by left shifting by 3 bit,
Multiplication by 64 will be performed by left
shifting by 6 bit, Multiplication by 32 will be
performed by left shifting by 5 bit, Multiplication
by 4 will be performed by left shifting by 2 bit,
Multiplication by 2 will be performed by left
shifting by 1 bit

BCD to binary
conversion

BCD to binary
conversion

Binary FSM based vertical crosswise multiplication

Binary to BCD multiplication conversion

A B

A*B

0 B15 B14
B13 B12

 1’S

complem

1 A15 A14
A13 A12

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

©2017 IJAIR. All Rights Reserved

Figure 3 Proposed new addition structure

Figure 3 above is the proposed addition structure
as it has shifting as was requires and also using
addition of ‘1’ for 2’S compliment. Total 25 full
adder and 11 half adder requires for addition with
proposed addition structure and it is very less as
compare with the available design of conversion.

The 16 bit Multiplication: Figure 4 shown below is
the design of our proposed 4 bit
Multiplier and with the help of 4 bit multiplier a 8
bit multiplier is been developed and with the help
of 8 bit multiplier a 16 bit multiplier developed.
Let In1 & In2 are the 4 bit numbers, below is the
explanation of 4 bit multiplier. IN1 and IN2 are
two different inputs.
Proposed 4 bit multiplication: figure 4 and figure 5
shows the proposed work of 4 bit multiplication.

The outputs T1, T2, T3, T4, T5, T6, T7, T8, T9,
T10, T11, T12, T13, T14, T15 and T16 are the
outputs after logical AND operation. We required
adding this as shown below

Figure 5 above shows the our way of performing
addition in this way one can have minimum
hardware required as compare with Wallace
addition or carry save addition we requires only 8
full adder and 4 half adder through Wallace
addition in this scenario requires total 7 full adders
and 8 half adders and carry save adder requires 8

full adders and 7 half adders. It shows that
proposed method needs minimum area.

Figure 4: The 4 bit cross multiplication

Figure 5: the proposed addition structure for 4 bit

multiplication

8-bit Multiplication: Now for 8 bit multiplication,
proposed work have 8 bit inputs x & y and answer
will be produce in z which will be of 16 bit.
Proposed work performs “4 bit multiplication “on
each arrow as shown in figure below.

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

©2017 IJAIR. All Rights Reserved

Figure 6: 8 bit cross Multiplication using 4 bit
cross multiplication

Red arrow multiplication produces 8 bit ans. P7-
P0
Yellow arrow multiplication produces 8 bit ans.
R7-R0 & Q7-Q0
Blue arrow multiplication produces 8 bit ans. T7-
T0

Figure 7 Addition structure for 8 bit multiplication

Figure 7 shown above shows the new addition
structure design that we have adopted for the
proposed 8 bit multiplication, it requires 8 full
adders and one 11 bit adder, instead of old
conventional way which requires total three 16 bit
adder.
16-bit Multiplication: Now for 16 bit
multiplication, thesis work have 16 bit inputs a
and b and answer will be produce in z which will
be of 32 bit. Thesis work perform “8 bit
multiplication “on each arrow as shown in figure
below.

Figure 8: 16 bit cross Multiplication using 8 bit
cross multiplication

Red arrow multiplication produces 16 bit ans.
P15-P0
Yellow arrow multiplication produces 16 bit ans.
R15-R0 & Q15-Q0
Blue arrow multiplication produces 16 bit ans.
T15-T0

Figure 9 Addition structure for 16 bit
multiplication

Figure shown above shows the new addition
structure design that we have adopted for the
proposed 16 bit multiplication, it requires 16 full
adders and one 11 bit adder, instead of old
conventional way which requires total three 32 bit
adder.
Binary to BCD convertor: Figure 11 below is
showing the method of converting a binary number
into BCD it shows an example of conversion of 8
binary bit number, it use the concept of left shift
and if any number in Units, or Tens or Hundreds
become greater than four add ‘3 (0011)’ before the
next shifting, the shifting must be done until LSB
of binary number not shifted into units.

Figure 10 Binary to BCD conversion

International Journal of Advanced and Innovative Research (2278

Figure 11 below shows the proposed block
diagram for the binary to BCD conversion here
proposed method is using the concept of Leading
One Detector (LOD) for checking the size of the
binary umber and use subtraction by multiple of 10
(i.e 1000, 100 and 10) and count total subtractions
this way it find the digits.

Figure 11 Proposed Binary to BCD conversion

Let’s take an example consider our binary number
is (3485d)=(D82h)=(110110000010b)
LOD is at 12 hence

 LOD D3 D2
110110000010-1111101000 12 1
100110011010-1111101000 12 2
10110110010-1111101000 11 3
111001010-1100100 9 1
101100110-1100100 9 2
100000010-1100100 9 3
1100100-1100100 7 4
111010-1010 6
110000-1010 6
100110-1010 6
11100-1010 5
10010-1010 5
1000 4
 3 4

Figure 12 Proposed Binary to BCD conversion

Example

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

below shows the proposed block
diagram for the binary to BCD conversion here
proposed method is using the concept of Leading
One Detector (LOD) for checking the size of the
binary umber and use subtraction by multiple of 10

nt total subtractions

Proposed Binary to BCD conversion

our binary number

D1 D0

1
2
3
4
5
 8
5 8

Proposed Binary to BCD conversion

Figure 13 below shows synthesis results of the
proposed 16 bit BCD multiplier
shows the Top view of the proposed 16 bit BCD
multiplier and figure 4.8 shows the RTL internal
view which shows the modules bcd2binary
convertor used two time a 16 bit multiplier used
one time and a 32 bit binary2bcd convertor.

Figure 13 synthesis results of proposed BCD

multiplier

Figure 14 Internal modules used in 16 bit BCD

multiplication

1/ Volume 6 issue 9

below shows synthesis results of the
proposed 16 bit BCD multiplier and figure 4.7
shows the Top view of the proposed 16 bit BCD

and figure 4.8 shows the RTL internal
view which shows the modules bcd2binary
convertor used two time a 16 bit multiplier used
one time and a 32 bit binary2bcd convertor.

synthesis results of proposed BCD

Internal modules used in 16 bit BCD
multiplication

International Journal of Advanced and Innovative Research (2278

Figure 15 Simulation Results of Proposed design

Figure 15 above shows the result obtain from the
simulation of the design, the simulation analysis
can be understand as from the table below:

In1 In2 Bin

1
Bi
n2

Bin
Mult

BCD
out

14
56

16
45

5B
0

66
D

24BF
0

23951
20

Table 1 the simulation observations

Device utilization summary:

Selected Device : xc4vlx25-11ff668 Vertex 4

Parameters Used

Number for Slices: 482

Number for Slice Flip
Flops:

105

Number for 4 input
LUTs:

863

Number for bonded IOBs: 66

Time Delay 3.863ns

Max Freq. 267.251MHz

Number for GCLKs: 1

Table 2 Synthesis results Observed to proposed
multiplier

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

Simulation Results of Proposed design

above shows the result obtain from the
simulation of the design, the simulation analysis
can be understand as from the table below:-

BCD

23951 OK

simulation observations

11ff668 Vertex 4

267.251MHz

Synthesis results Observed to proposed

Table 1 above is the simulation results observed
for the multiplication of two numbers and found
correct.
Table 2 above is the synthesis
the proposed design it is also found correct.
COMPARATIVE RESULTS

Comparative Results observed to FPGA
family FPGA

Parameters Proposed Xiaoping
Cui et al
[1]

Number for
Slices:

482
(combinat
ional
logic)

536
(combina
tional
logic)

Number for
Slice Flip
Flops:

105

Number for
4 input
LUTs:

863

Number for
bonded
IOBs:

66

Time Delay 3.863 ns 4.18 ns

Max Freq. 267.251
Mhz

Number for
GCLKs:

Table 3 Comparative Results

Figure 16 Number of slice used comparison

0
100
200
300
400
500
600
700

Proposed Xiaoping
Cui et al

[1]

Sonam
Negi et al

482
536

Number for Slices:

1/ Volume 6 issue 9

above is the simulation results observed
for the multiplication of two numbers and found

 results observe for
the proposed design it is also found correct.

Comparative Results observed to FPGA Platform Vertex

Xiaoping
Cui et al

Sonam
Negi et
al [2]

Saeid
Gorgin et al
[3]

combina
539
(combina
tional
logic)

668
(combinati
onal logic)

4.42 6 ns

Comparative Results

comparison

Sonam
Negi et al

[2]

Saeid
Gorgin et

al [3]

539

668

Number for Slices:

International Journal of Advanced and Innovative Research (2278

Figure 17 Time delay requires comparison

From table 3 it is clearly observed that observed
results to 16x16 BCD multiplication are best
among base works in terms for area &
although base work [3] is a combination logic
design which we may say is better or not better
than our work, however rest for two base works
also use clock based sequential logic to produce
BCD multiplication result.

IV-CONCLUSION
In this thesis work we have proposed two various
algorithms one to BCD adder & another to NxN
vertical & crosswise BCD multiplica
synthesized results for 16+16 BCD adder depicts
it’s efficiency in terms for slices & time for delay.
This thesis has reassessed several implementations
for NxM-digit multiplications on Xilinx FPGAs.
This work presents design for several BCD
multipliers & their implementations on Virtex
FPGA.

In this work a decimal fully parallel & with FSM
based multiplier is presented. Several
enhancements are used to improve latency such as
use for a new FSM control unit & new BCD adder
design multiplier & use for a fast decimal carry
propagation adder. multiplier is synthesized in 45
nm technology & simulated at Xilinx ISE.
multiplier shows very good performance with
respect to delay & area.

REFERENCES
[1] Xiaoping Cui, Weiqiang Liu and Dong
Wenwen Fabrizio Lombardi, A Parallel Decimal
Multiplier Using Hybrid Binary Coded Decimal
(BCD) Codes, 2016 IEEE 23nd Symposium on

0
1
2
3
4
5
6

Proposed Xiaoping
Cui et al

[1]

Sonam
Negi et al

[2]

Saeid
Gorgin et

al [3]

3.863 4.18 4.42

6

Time Delay ns

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 9

Time delay requires comparison

erved that observed
BCD multiplication are best

 speed both,
although base work [3] is a combination logic
design which we may say is better or not better
than our work, however rest for two base works
also use clock based sequential logic to produce

thesis work we have proposed two various
algorithms one to BCD adder & another to NxN
vertical & crosswise BCD multiplication &

BCD adder depicts
it’s efficiency in terms for slices & time for delay.

several implementations
digit multiplications on Xilinx FPGAs.

This work presents design for several BCD
multipliers & their implementations on Virtex-6

ully parallel & with FSM
multiplier is presented. Several

enhancements are used to improve latency such as
use for a new FSM control unit & new BCD adder
design multiplier & use for a fast decimal carry
propagation adder. multiplier is synthesized in 45

d at Xilinx ISE.
multiplier shows very good performance with

[1] Xiaoping Cui, Weiqiang Liu and Dong
Wenwen Fabrizio Lombardi, A Parallel Decimal
Multiplier Using Hybrid Binary Coded Decimal

Symposium on

Computer Arithmetic, 1063-6889/16 $31.00 ©
2016 IEEE, DOI 10.1109/ARITH.2016.8
[2] Sonam Negi, Pitchaiah Madduri,
Implementation of High Speed Radix
Multiplier using Verilog, 978
3/15/$31.00 ©2015 IEEE
[3] Gorgin, Saeid; Jaberipur, Ghassem; Hashemi
Asl, Reza, Efficient ASIC & FPGA
Implementation for Binary-Coded Decimal Digit
Multipliers, Circuits, Academic Journal, Springer
link, Systems & Signal Processing;Dec2014, Vol.
33 problem 12, p3883
[4] Arvind Kumar Mehta, Muk
Jain, 2Sudhir kumar, High Performance Vedic
BCD Multiplier & Modified Binary to BCD
Converter, 2013 Annual IEEE India Conference
(INDICON), 978-1-4799-2275-8/13/ ©2015 IEEE
[5] Carlos Eduardo Minchola Guardia,
IMPLEMENTATION for A FULLY PIPELINED
BCD MULTIPLIER IN FPGA, 978
2/14/©2014 IEEE
[6] H. C. Neto & M. P. Vestias. Decimal multiplier
on FPGA using embedded binary multipliers. In
Proc. Int. Conf. Field Programm
Applications FPL 2008, pages 197
[7] E. M. Schwarz, J. S. Kapernick, & M. F.
Cowlishaw. Decimal floating-
IBM System z10 processor, 2009. IBM Journal for
Research & Development.
[8] G. Sutter, E. Todorovich, G. Bioul
Vazquez, & J.-P. Deschamps. FPGA
Implementations for BCD Multipliers. In
Conf. Reconfigurable Computing & FPGAs
ReConFig ’09, pages 36–41, 2009.
[9] C. Tsen, S. Gonzalez-Navarro, & M. Schulte.
Hardware design for a Binary Integer Decimal
based floating-point adder, 2007. Computer
Design, 2007. ICCD 2007. 25th International
Conference on.
[10] Liu Han & Seok-Bum, “High
Decimal Multiplication with Redundant Internal
Encodings,” IEEE Trans. Computers,
5, pp. 956 – 968, May 2013.
[11] G. Jaberipur & A. Kaivani, “Binary
decimal digit multipliers,” IET J. Computers &
Digital Techniques, Vol. 1 , no. 4, pp. 377
July 2007.

Saeid
Gorgin et

al [3]

6

1/ Volume 6 issue 9

6889/16 $31.00 ©
2016 IEEE, DOI 10.1109/ARITH.2016.8
[2] Sonam Negi, Pitchaiah Madduri,
Implementation of High Speed Radix-10 Parallel
Multiplier using Verilog, 978-1-4799-1743-

d; Jaberipur, Ghassem; Hashemi
Efficient ASIC & FPGA

Coded Decimal Digit
Circuits, Academic Journal, Springer

link, Systems & Signal Processing;Dec2014, Vol.

[4] Arvind Kumar Mehta, Mukesh Gupta, 1Vipin
High Performance Vedic

BCD Multiplier & Modified Binary to BCD
2013 Annual IEEE India Conference

8/13/ ©2015 IEEE
] Carlos Eduardo Minchola Guardia,

IMPLEMENTATION for A FULLY PIPELINED
FPGA, 978-1-4673-0186-

] H. C. Neto & M. P. Vestias. Decimal multiplier
on FPGA using embedded binary multipliers. In
Proc. Int. Conf. Field Programmable Logic &

, pages 197–202, 2008.
] E. M. Schwarz, J. S. Kapernick, & M. F.

-point support on
IBM System z10 processor, 2009. IBM Journal for

] G. Sutter, E. Todorovich, G. Bioul, M.
P. Deschamps. FPGA

Implementations for BCD Multipliers. In Proc. Int.
Conf. Reconfigurable Computing & FPGAs

41, 2009.
Navarro, & M. Schulte.

Hardware design for a Binary Integer Decimal-
point adder, 2007. Computer

Design, 2007. ICCD 2007. 25th International

Bum, “High-Speed Parallel
Decimal Multiplication with Redundant Internal

IEEE Trans. Computers, Vol. 62, no.

] G. Jaberipur & A. Kaivani, “Binary-coded
IET J. Computers &

Vol. 1 , no. 4, pp. 377 – 381,

