

A Study on Triangular Graceful Graphs

 $S.P. RESHMA$ ¹

¹Assistant Professor, Department of Mathematics, Emerald Heights College for women, Ooty, Tamil Nadu,

India

spreshma30@gmail.com

Abstract: A graph G with p vertices and q edges is said to be triangular graceful if there is an injective function φ *:* $V(G) \rightarrow X = \{0,1,2,...T\}$, where T_q is the q^{th} triangular *number. Define the function* $\phi^* : E(G) \rightarrow \{1,2,...T\}$ such that $\varphi^*(u,v) = |\varphi(u) - \varphi(v)|$ for all edges (u,v) . I $\varphi^*(E(G))$ is a sequence of distinct consecutive triangular *numbers say* $\{T}_I, T_2, \ldots, T_g\}$ then the function φ is said to be *triangular. In this paper we prove the following graphs S + (n,m), Generalized Butane graph, n – Centipede union Pn, Fork graph are triangular graceful graphs.*

Keywords: **Star graph, Generalized Butane graph, Ytree, n-centipede union Pⁿ graph.**

Introduction:

In 1967 Rosa [4] introduced the β - valuation of a graph G. Golomb [3] subsequently called such labeling graceful. In 2001 Mr . Suresh Sing and Mr . Devaraj [1] call a graph G with p vertices and q edges **triangular graceful** if there is an injective function $\varphi : V(G) \to X = \{0, 1, 2, \dots T_q\}$, where T_q is the qth triangular number. That is, $T_1 = 1, T_2 = 3$,

 $T_3 = 6, ..., T_n = \frac{n(n+1)}{2}$ $\frac{1}{2}$. Define the function $\varphi^* : E(G) \to \{1, 2, \dots T_q\}$ such that $\varphi^*(u, v) = |\varphi(u)|$ $\varphi(v)$ | for all edges (u,v). If $\varphi^*(E(G))$ is a sequence of distinct consecutive triangular numbers say ${T_1, T_2, ..., T_q}$ then the function φ is said to be triangular graceful and the graph which admit such labeling is called a triangular graceful graph. In this paper we can see some classes of triangular graceful graphs.

Illustration : 1

P³ is triangular graceful C⁴ is triangular graceful

SOME KNOWN RESULTS:

Mr . Suresh Sing and Mr . Devaraj proved the following results:

- 1. The path P_m is triangular graceful for all $m \ge 2$
- 2. The snark $K_{1,n}$ is triangular graceful for all $n \ge 1$
- 3. Olive trees are triangular graceful
- 4. Complete binary trees are triangular graceful
- 5. The star $S_{k,m}$ is triangular graceful
- 6. The double star $S(m,n)$, $m \ge 1$, $n \ge 1$ is triangular graceful
- 7. Caterpillars are triangular graceful
- 8. Cycles C_n are triangular graceful for $n \equiv 0$ (mod4)
- 9. Wheels W_n are not triangular graceful
- 10. The complete bipartite graph $K_{m,n}$ is not triangular graceful, for all m, $n \ge 2$

Theorem:1.1

Let S_n be a star with $n + 1$ vertices. Let G be the disjoint union of m copies of S_n . Then G is triangular graceful.

Proof

Let $\{a_0, a_1, a_2, ..., a_n\}$ be the vertices of the star S_n . Consider m isomorphic copies of S_n . Let G is the disjoint union of m copies of S_n .

Let $V(G) = \{a_{ij} / 1 \le i \le n + 1, 1 \le j \le m\}.$ Note that G has mn edges and $m(n + 1)$ vertices. Define $f: V(G) \rightarrow \{0,1,2,..,T_{mn}\}$ as follows .

Now label the vertex $f(a_{11})$ as 0 and $f(a_{ij})$, $j = 2,3,...,n+1$ as T_{mn} , $T_{m(n-1)}$, \ldots , $T_{mn-(n-1)}$ respectively so as the edges $f(a_{11} a_{1j})$, $j = 2, 3, ..., n + 1$ must obtain the value as T_{mn} , T_{mn-1} , T_{mn-2} ,, $T_{mn-(n-1)}$.

In the second copy, let a_{22} , .., $a_{2(n+1)}$ be the vertices adjacent to a_{21} . Label these vertices as $f(a_{21}) = 1$ and others as $T_{(mn-(n+1)-i)} + 1$, $1 \le i \le n$. So

as the edges $f(a_{21}a_{2j}), 2 \le j \le n + 1$ obtain the values by $f(a_{2i}) - f(a_{2i}) = T_{(mn-(n+1)-i)}, 1 \le i \le n$.

Next let a_{32} , a_{33} ,... $a_{3(n+1)}$ be the vertices adjacent to a_{31} in the third copy. Label these vertices as $T_{mn - (2n+1-i)} + 2$, $1 \le i \le n$ and $f(a_{3i}) = 2$ from this we obtain the edge labels as $f(a_{3j}) - f(a_{31}) = T_{mn}$ $_{(2n+1-i)}$, $1 \le i \le n$.

Proceeding like this we get in the m^{th} copy of the graph G has the vertex set $a_{m1}, a_{m2}, \ldots, a_{m(n+1)}$. Labels the vertices as $f(a_{ml}) = m$ $\Box 1$ and corresponding other vertices as $T_i + m \square 1$,

 $i = 1, 2, \ldots, n$.

Clearly all the vertex labelings are distinct and edge values are in the form $\{T_1, T_2, ..., T_m\}$. This completes the proof. Hence G is triangular graceful.

Illustration : 2

5 copies of S 4 is triangular graceful.

Definition:1.1

Let S_n be a star with $(n + 1)$ vertices. Consider m copies of S_n . Identify any one vertex of the i^{th} copy other than the central vertex with any one vertex other than the centre of $(i + 1)$ th copy, the graph so obtained is denoted as $S^+(n,m)$.

Theorem:1.2

 $S^{+}(n,m)$ is triangular graceful for all $n \geq 3$ and m.

Proof

Let $\{a_{ij} / 1 \le i \le n + 1, 1 \le j \le m\}$ be the vertex set of m copies of S_n . Then one vertex of the

th copy other than the central vertex with any one vertex other than the centre of $(i + 1)^{th}$ copy.

Here we join the a_{in} th vertex m copies to $a_{(i+1)n}$ $\sum_{k=1}^{\text{th}}$ vertices. The graph has (mn + 1) vertices and mn edges.

Define $f: V(G) \rightarrow \{0,1,2,..,T_{mn}\}$ as follows $f(a_{11}) = 0$ $f(a_{1j}) = T_{mn-(n-(j-1))}, 2 \le j \le n+1$ $f(a_{21}) = T_{mn-(n \square 1)} \square T_{mn-n}$ $f(a_{2j}) = f(a_{21}) + T_{m+2n-(j+2)}, 2 \le j \le n$ $f(a_{2n}) = f(a_{2n}) \square \square T_{(m-2)n}$ $f(a_{3j}) = f(a_{31}) \square \square T_{(m-2)+n-j}, 2 \le j \le n$: : : $f(a_{m1}) = f(a_{m-1)n}) \square T_{n}$ $f(a_{mi}) = f(a_{ml}) + T_{n-(j-1)}, 2 \le j \le n$

Clearly the vertex labels are distinct. Now from the definition, the edge values are

$$
| f(a_{1j}) \Box f(a_{11}) | = T_{mn-i}, 0 \le i \le n \Box 1, j = i + 2
$$

\n
$$
| f(a_{21}) - f(a_{1n}) | = T_{mn-n}
$$

\n
$$
| f(a_{2j}) \Box f(a_{21}) | = T_{m+2n-(j+2)}, 2 \le j \le n
$$

\n
$$
| f(a_{31}) \Box f(a_{2n}) | = T_{(m-2)n}
$$

\n
$$
| f(a_{3j}) \Box \Box f(a_{31}) | = T_{(m-2)+n-j}, 2 \le j \le n
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
| f(a_{m1}) - f(a_{(m-1)n}) | = T_{n}
$$

\n
$$
| f(a_{m1}) - f(a_{mj}) | = T_{n-(j-1)}, 2 \le j \le n
$$

\nAlso,
$$
| f(a_{-1}) - f(a_{-1}) | = T_{-1}
$$

Also, $| f(a_{m1}) - f(a_{mn}) | = T_1$

Hence the edge values are in the form { T_1 , T_2 , ..., T_{mn} }. Thus $S^+(n,m)$ is a triangular graceful graph. **Illustration : 3**

S + (5,3) is triangular graceful .

Definition: 1.2 [Bull graph]

The bull graph is a planar undirected graph with 5 vertices and 5 edges in the form of a triangle with two disjoint pendant edges .

Theorem:1.3

 Bull graph with one vertex attached with the root vertex is triangular graceful .

Proof

Let G be a bull graph with one vertex attached with the root vertex .

Let $V(G) = \{v_i / 1 \le i \le 6\}$ be the vertex set.

Then G has 6 vertices and 6 edges

Define $f: V(G) \rightarrow \{0,1,2,... T_s\}$ as follows $f(v_0) = 0$ $f(v_1) = 15$ $f(v_2) = 21$ $f(v_3) = 12$

 $f(v_4) = 11$ $f(v_5) = 1$

 Clearly the vertex labels are distinct . Hence f is injective. It remains to show that the edge values are of the form $\{T_1, T_2, ..., T_n\}$ Define the induced edge

function f^{*} : E(G)
$$
\rightarrow
$$
 { 1,2,..., T_n} by
\nf^{*}(e_i) = | f(u_i) - f(v_i) | as
\nf^{*}(e_i) = | f(v_i) - f(v₀) | = 15
\nf^{*}(e₂) = | f(v₂) - f(v₀) | = 21
\nf^{*}(e₃) = | f(v_i) - f(v₃) | = 3
\nf^{*}(e₄) = | f(v₄) - f(v₂) | = 10
\nf^{*}(e₅) = | f(v_i) - f(v₂) | = 6
\nf^{*}(e₆) = | f(v₅) - f(v₀) | = 1

Clearly f^* is 1-1 and all the edges are of the form { $T_2, T_3, ..., T_6$ }. Hence bull graph is triangular graceful.

Illustration: 4

Bull graph is triangular graceful .

Definition: 1.3 [Fork graph]

 The fork graph sometimes also called the chair graph is the 5 vertices tree and it has 4 edges .

Theorem: 1.4

Fork graph is triangular graceful graph .

Proof

Let G be a fork graph with 5 vertices and 4 edges. Let the veretex set be $V(G) = \{ u_i / 1 \le i \le 5 \}.$

Let the edge set be $E(G) = \{ u_i | u_{i+1} / 1 \le i \le 2 \}$ ${u_1u_4}$ $\cup {u_4u_5}$. Define f: $V(G) \rightarrow {0,1,2,...,T_4}$ such that

$$
f(u_1) = 0
$$
; $f(u_2) = 3$; $f(u_3) = 6$
 $f(u_1) = 10$; $f(u_2) = 9$

$$
u_4 = 10; \ f(u_5) = 9
$$

 Clearly the vertex labels are distinct . Hence f is injective and the edge labels are of the form $\{T_{1},$ T_2 ,..., T_4 } is given by

$$
f^*(e_1) = 3 = T_2
$$
 $f^*(e_2) = 6 = T_3$
\n $f^*(e_3) = 10 = T_4$ $f^*(e_4) = 1 = T_1$

Clearly all the vertex labels are distinct and the edge labels are of the form $\{T_1, T_2, T_3, T_4\}$. Hence fork graph is triangular graceful graph. **Illustration: 5**

Fork graph is triangular graceful graph.

Definition:1.4[Ladder rung graph]

Ladder rung graph is the graph union of n copies of the path graph P_2 . It has 2n vertices and n edges.

Theorem: 1.5

Ladder rung graph is triangular graceful .

Proof

 Let G be the ladder rung graph of 2n vertices and n edges .

Let v_{i1} , v_{i2} , ... v_{in} , $i = 1, 2$ be the vertex set and $E(G) = \{v_{1j}v_{2j} / 1 \le j \le n\}$ be the edge set of the graph. Define f: $V(G) \rightarrow \{0,1,2,..,T_n\}$ as follows

 $f(v_{i,j}) = 0$ $f(v_{i,j}) = \sum_{j=1}^{i-1} (n-j)$, $2 \le i \le n$ $f(v_{12}) = T_n$ $f(v_{i2}) = T_n - (i \square 1), 2 \le i \le n$.

Clearly all the vertex labels are distinct. Hence f is injective . It remains to show that the edge values

are of the form $\{T_1, T_2, \ldots, T_n\}$. Define the induced edge function

$$
f^* : E(G) \rightarrow \{1, 2, \ldots T_n\} \text{ as}
$$
\n
$$
f^*(e_i) = | f(v_{i2}) - f(v_{i1}) | = T_n - (i \square 1) - \sum_{j=1}^{i-1} (n-j) = T_n - (i \square 1) - [(n \square 1) + n \cdot 2 + \ldots + n \square (i \square 1)] = T_n - (i \square 1) - [(i \square \square 1)n \square \frac{(i-1)i}{2}] = T_n - (i \square 1) - n(i \square 1) + \frac{i(i-1)}{2} = \frac{n(n+1)}{2} \square (i \square 1) - n(i \square 1) + \frac{i(i-1)}{2} = [n(n+1) \square 2(i \square 1) \square 2n (i \square 1) i (i \square 1)] / 2 = [n^2 + n - (2n + 2) (i \square \square 1) + (i \square \square 1)] / 2 = [n^2 + n \square \square (2ni \square \square 2n + 2i \square \square 2) + i2 = \square i] / 2 = \frac{n^2 + 3n - 2ni - 3i + i^2 - 2}{2} = \frac{(n - i + 1)(n - i + 2)}{2} = \frac{[n - (i - 1)][(n - i) + 1]}{2}
$$
\n
$$
f^*(e_i) = T_n - (i \square 1), i = 2, 3, \ldots n
$$
\n
$$
f^*(e_i) = [f(v_{11}) - f(v_{12})] = T_n
$$

Clearly f^* is 1-1 and all the edges are of the form ${T_1, T_2, ..., T_n}$. Hence ladder rung graph is triangular graceful .

Illustration: 6

Ladder rung graph of 5P² is triangular graceful.

Definition: 1.5 [Generalized Butane graph]

Generalized Butane graph is defined as follows. Let G be a graph with $\frac{1}{i}$ / $1 \le i$ $\leq n$ } $\cup \{v_i / 1 \leq i \leq n\}$ $\cup \{w_i / 0 \leq i \leq n+1\}$ and

 $E(G) = {u_i w_i / 1 \le i \le n} \cup {w_i v_i / 1 \le i \le n} \cup$ $\{w_i w_{i+1} / 0 \le i \le n\}$. Then the graph G has $3n + 2$ vertices and $3n + 1$ edges.

Theorem: 1.6

Generalized Butane graph is triangular graceful.

Proof

©2018 IJAIR. All Rights Reserved http://ijairjournal.com

Let G be the graph with $V(G) = \{u_i / 1 \le$ $i \le n$ $\} \cup \{v_i / 1 \le i \le n\} \cup \{w_i / 0 \le i \le n + 1\}$ and $E(G) = {u_i w_j / 1 \le i \le n} \cup {w_i v_i / 1 \le i \le n}$ $n\} \cup \{w_i w_{i+1} / 0 \leq i \leq n\}$. Then the graph G has $3n + 2$ vertices and $3n + 1$ edges.

Define $f: V(G) \to \{0,1, 2, 3, \ldots, T_{3n+1}\}\$ as follows.

Now label the vertex $f(w_1)$ as 0 and $f(w_2)$) = T_1 ; f(w₃) = $T_1 + T_2$, and $f(w_i) = T_{i-2} + T_{i-1}$, $4 \le i \le n + 1$. So as the edges w_1w_2 , w_2w_3 , ..., w_nw_{n+1} , must obtain the values as T_1, T_2, \ldots, T_n .

Next let u_1 , u_2 , u_3 , \ldots , u_n be the vertices adjacent to w_1 , w_2 , w_3 , ..., w_n in left. Label the vertices $f(u_i)$ as $T_{n+i} + f(w_i)$, $1 \le i \le n$ and so as the edges u_1w_1 , u_2w_2 , ..., u_nw_n must obtain the values as T_{n+i} , $1 \le i \le n$.

Also let $v_1, v_2, v_3, \ldots, v_n$ be the vertices adjacent to $w_1, w_2, w_3, \ldots, w_n$ in right . Label the vertices $f(v_1)$ as T_{3n} , and v_2, v_3, \ldots, v_n as $T_{3n \square \square i}$ + f(W_{i+1}), $1 \le i \le n \square 1$. And the corresponding edges v_1w_1 , v_2w_2 , v_3w_3 , ..., v_nw_n must obtain the values as $T_{3n \square \square i}$ for $0 \le i \le n$ 1.

Also the vertex $f(w_0)$ has $3n + 1$ and the corresponding edge $f(w_0w_1) = 3n + 1$, Clearly all the vertex labelings are district and edge values are in the form $\{T_1, T_2, \ldots, T_{3n+1}\}$. This completes the proof. Hence Generalised Butane graph is triangular graceful.

Illustration: 7

Generalized Butane graph of n = 6 is triangular graceful.

Theorem: 1.7

n-centipede union P_n is triangular graceful.

Proof

The n-centipede is the tree on 2n nodes obtained by joining the bottoms of n copies of the path graph P_2 laid in a row with edges. It has 2n vertices and $2n - 1$ edges. The path graph P_n is of n vertices and n – 1 edges.

Let G₁ be the n-centipede u_i and v_i , $1 \le i \le n$ and G_2 be the path P_n of $w_1, w_2, ..., w_n$.

Then
$$
V(G) = V(G_1) \cup V(G_2)
$$
 and $E(G)$
= $E(G_1) \cup E(G_2)$. Now the graph G has 3n

vertices and $3n - 2$ edges. Define $f: V(G) \to \{0, 1, 2, 3, \ldots, T_{3n-2}\}\$ as

follows.Now label the vertex as follows **Case (i)** Suppose n is odd

$$
f(u_1) = 0 \t f(u_2) = T_{3n-3}
$$

\n
$$
f(u_{2i+1}) = f(u_{2i}) - T_{3n-2(i+1)}
$$
 for $1 \le I \le \left\lceil \frac{n}{2} \right\rceil$
\n
$$
f(u_{2i}) = f(u_{2i-1}) + T_{3n-(2i+1)}
$$
 for $2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \square$

From this we get the edges u_1u_2 , u_2u_3 , u_3u_4 , ..., u_{n-1} u_n must obtain the values T_{3n-3}, T_{3n-4},, T_{2n-1} . Also the vertex label of v_i are $f(v_1) = T_{3n-2}$

$$
f(v_{2i+1}) = f(u_{2i+1}) + T_{2n - (2i+1)}
$$
 for $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$

$$
f(v_{2i}) = f(u_{2i}) \square T_{2n-2i} \text{ for } 1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil
$$

Case (ii) suppose n is even
\n
$$
f(u_1) = 0
$$
 $f(u_2) = T_{3n-3}$
\n $f(u_{2i+1}) = f(u_{2i}) - T_{3n-2(i+1)}$ for $1 \le i \le \frac{n}{2}$
\n $f(u_{2i}) = f(u_{2i-1}) + T_{3n-(2i+1)}$ for $2 \le i \le \frac{n}{2} \square 1$

From this we get the edges u_1u_2 , u_2u_3 , u_3u_4 , ..., u_{n-1} u_n must obtain the values T_{3n-3}, T_{3n-4},, T_{2n-1} . Also the vertex label of v_i are $f(v_1) = T_{3n-2}$ $f(v_{2i+1}) = f(u_{2i+1}) + T_{2n-(2i+1)}$ for $1 \le i \le \frac{n}{2}$ 2

$$
f(v_{2i}) = f(u_{2i}) \square T_{2n-2i}
$$
 for $1 \le i \le \frac{n}{2}$

So as from above results the edge u_1v_1 must obtain the value T_{3n-2} and the remaining edges $u_2v_2, u_3v_3, u_n v_n$ must obtain the values T_{2n} $-2, T_{2n-3}, T_n$

Also the vertex label of w_i , $1 \le i \le n$ by

 $f(w_n) = 1$

 $f(w_{n}^{\prime}) = 2$ $f(w_{n \square i}) = f(w_{n \square (i-1)}) + T_i$, $2 \le i \le n \square 1$ and so the edges $w_i w_{i+1}$, $1 \le i \le n - 1$ must obtain the value T_{n-1} , T_{n-2} , T_{n-3} , T_1 .

Clearly all the vertex labels are distinct and the edge values are in the form $\{T_1, T_2, \ldots, T_n\}$ T_{3n-2} . This complete the proof. Hence G is triangular graceful.

Illustration: 8

4-centipede union P⁴ is triangular graceful.

Theorem: 1.8

$$
K_{1,n} \cup K_2
$$
 is triangular graceful.

Proof

International Journal of Advanced and Innovative Research (2278-844)/

Volume 7 Issue 9

Let $K_{1,n}$ of u_0 , u_1 , ..., u_n vertices and v_1 , v_2 be the vertices of K_2 .

Note that the graph $K_{1,n} \cup K_2$ has $n + 3$ vertices and $n + 1$ edges.

Define $f: V(G) \to \{0, 1, 2, ..., T_{n+1}\}\)$ as follows $f(u_0) = 0$ $f(u_i) = T_i$, $2 \le i \le n + 1$

 $f(v_1) = 4$ $f(v_2) = 5$

Clearly all the vertex labels are distinct. Hence f is injective the edge labels are of the form $\{T_1, T_2, T_3, \ldots, T_{n+1}\}$ by

$$
f^*(e_i) = | f(u_0) - f(u_i) | = T_i, 2 \le i \le n + 1
$$

$$
f^*(e_1) = | f(v_1) - f(v_2) | = T_1
$$

Thus all the edge labels are of the form $\{T_1, T_2, \}$ T_3, \ldots, T_{n+1} . This completes the proof. Hence $K_{1,n} \cup K_2$ is triangular graceful.

Illustration:9

Definition:1.6

Y- tree is the tree obtained by taking three paths of same length and identifying one point of each path . **Theorem: 1.9**

Y-tree is triangular graceful for all n.

Proof

Let $V(G) = {u_1, u_2, ..., u_n} \cup {v_1, v_2, ...}$.., V_n \cup { W_1, W_2, \ldots, W_n } where $u_1 = v_1 = w_1$ and $E(G) = {u_i u_{i+1} / 1 \le i \le n-1} \cup {v_i v_{i+1} / 1 \le i}$ $\leq n-1$ } \cup { $w_i w_{i+1} / 1 \leq i \leq n-1$ }. Note that the graph Y- tree has $3n - 2$ vertices and $3(n-1)$ edges. Define $f: V(G) \rightarrow \{0, 1, 2, \ldots\}$., $T_{3(n-1)}$ as follows **Case (a)** Suppose n is odd $f(u_1 = v_1 = w_1) = 0$ $f(u_2) = T_{n-1}$ $f(u_{2i + 1}) = f(u_{2i})$ \Box $T_{n \Box 2i}$, for $1 \le i \le$ n $\left\lfloor \frac{1}{2} \right\rfloor$ $|n|$

$$
f(u_{2i}) = f(u_{2i-1}) + T_{n-(2i-1)}, \text{ for } 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

\n
$$
f(u_n) = f(u_{n-1}) + T_1; f(v_2) = T_{2n-2}
$$

\n
$$
f(v_{2i}) = f(v_{2i-1}) + T_{2n-2i}, \text{ for } 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

\n
$$
f(v_{2i+1}) = f(v_{2i}) - T_{2n-(2i+1)}, \text{ for } 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

\n
$$
f(w_2) = T_{3(n-1)}
$$

\n
$$
f(w_{2i+1}) = f(w_{2i}) - T_{3n-(2i+2)}, \text{ } 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

\n
$$
f(w_{2i}) = f(w_{2i-1}) + T_{3n-(2i+1)}, \text{ } 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor
$$

Case (b) Suppose n is even
\n
$$
f(u_1 = v_1 = w_1) = 0
$$

\n $f(u_2) = T_{n-1}$
\n $f(u_{2i+1}) = f(u_{2i}) \square T_{n-2i}$, for $1 \le i \le \frac{n}{2} \square 1$
\n $f(u_{2i}) = f(u_{2i-1}) + T_{n-(2i-1)}$, for $2 \le i \le \frac{n}{2}$
\n $f(v_2) = T_{2n-2}$
\n $f(v_{2i}) = f(v_{2i-1}) + T_{2n-2i}$, for $2 \le i \le \frac{n}{2}$
\n $f(v_{2i+1}) = f(v_{2i}) - T_{2n-(2i+1)}$, for $1 \le i \le \frac{n}{2} \square 1$
\n $f(w_2) = T_{3(n-1)}$
\n $f(w_{2i+1}) = f(w_{2i}) - T_{3n-(2i+2)}$, $1 \le i \le \frac{n}{2} \square 1$
\n $f(w_{2i}) = f(w_{2i-1}) + T_{3n-(2i+1)}$, $2 \le i \le \frac{n}{2}$

Clearly all the vertex labels are district. Hence f is injective. It remains to show that the edge values are of the form $\{T_1, T_2, T_3, \ldots, T_{3(n)}\}$ $\begin{pmatrix} 1 & 1 \end{pmatrix}$. Define the induced edge function $f^{-}: E(G) \to \{1, 2, ..., T_{3(n-1)}\}$ by $f^{(i)}(u(e_i)) = f(u_i u_{i+1}) = T_{n-i}$, $1 \le i \le n$ 11 $f^{(i)}(v(e_i)) = f(v_i v_{i+1}) = T_{2n - (i+1)}, 1 \le i \le n \square 1$ $f^{(0)}(w(e_i)) = f(w_i w_{i+1}) = T_{3n - (i + 2)}, 1 \le i \le n$ 1

Clearly f^* is 1 -1 and $f^*(E(G))$ $=[T_1, T_2, \ldots, T_{3(n)}].$ This completes the proof. Hence Y-tree is triangular graceful.

Illustration: 10

6

Let us verify the algorithm for $n = 8$. Then G is as follows

$$
f(u_1 = v_1 = w_1) = 0
$$

\n
$$
f(u_2) = T_{n-1} = T_7 = 28
$$

\n
$$
f(u_{2i+1}) = f(u_{2i}) \square T_{n-2i}, \text{ for } 1 \le i \le \frac{n}{2} \square 1
$$

\n
$$
f(u_{2i}) = f(u_{2i-1}) + T_{n-(2i-1)}, \text{ for } 2 \le i \le \frac{n}{2}
$$

\n
$$
f(u_3) = f(u_2) \square T_{8-2} = f(u_2) \square T_6 = 28 \square 21 = 7
$$

\n
$$
f(u_4) = f(u_3) \square T_5 = 7 + 15 = 22
$$

\n
$$
f(u_5) \square f(u_4) \square T_4 = 22 - 10 = 12
$$

\n
$$
f(u_6) = f(u_5) \square T_3 = 12 + 6 = 18
$$

\n
$$
f(u_7) = f(u_6) \square T_2 = 18 \square 3 = 15
$$

\n
$$
f(u_8) = f(u_7) \square T_1 = 15 + 1 = 16
$$

\n
$$
f(v_2) = T_{2n-2} = T_{16-2} = T_{14} = 105
$$

\n
$$
f(v_{2i}) = f(v_{2i-1}) + T_{2n-2i}, \text{ for } 2 \le i \le \frac{n}{2}
$$

\n
$$
f(v_{2i+1}) = f(v_{2i}) - T_{2n-(2i+1)}, \text{ for } 1 \le i \le \frac{n}{2}
$$

$$
f(v_3)=f(v_2)-T_{16-(2+1)}=f(v_2)-T_{13}=105-91=14
$$

\n
$$
f(v_4) = f(v_3) + T_{16-4} = 14 + T_{12} = 14+78 = 92
$$

\n
$$
f(v_5) = f(v_4) \square T_{11} = 92 \square 66 = 26
$$

\n
$$
f(v_6) = f(v_5) \square T_{10} = 26+55 = 81
$$

\n
$$
f(v_7) = f(v_6) \square T_9 = 81 \square 45 = 36
$$

\n
$$
f(v_8) = f(v_7) \square T_8 = 36+36 = 72
$$

\n
$$
f(w_2) = T_{3(n-1)} = T_{3(8-1)}
$$

\n
$$
f(w_2) = T_{21} = 231
$$

\n
$$
f(w_{2i+1}) = f(w_{2i}) - T_{3n-(2i+2)}, 1 \le i \le \frac{n}{2} \square 1
$$

\n
$$
f(w_{2i}) = f(w_{2i-1}) + T_{3n-(2i+1)}, 2 \le i \le \frac{n}{2}
$$

\n
$$
f(w_3) = f(w_2) - T_{24-4} = 231 - T_{20} = 231 - 210 = 21
$$

\n
$$
f(w_4) = f(w_3) + T_{24-5} = 21 + T_{19} = 21+190 = 211
$$

\n
$$
f(w_5) = f(w_4) \square T_{18} = 211 \square 171 = 40
$$

\n
$$
f(w_6) = f(w_5) + T_{17} = 40 + 153 = 193
$$

\n
$$
f(w_7) = f(w_6) - T_{16} = 193 - 136 = 57
$$

\n
$$
f(w_8) = f(w_7) + T_{15} = 57 + 120 = 177
$$

Y-tree is triangular graceful when n = 8.

References:

- [1] **Devaraj .J.,** A Study on Different Classes of Graphs and their Labeling, Ph.D Thesis, Kerala University (2002).
- [2] **Devaraj.J**, Graph theory Notes of NewYork, GTNXL VII:2, 14-18. .(2004)
- [3] **Golomb S.W.,** How To Number a Graph in Graph Theory and Computing, R.C. Read, ed.,Academic Press, New York (1972) 23 – 37.
- [4] **Rosa .A.,** On Certain Valuations of the Vertices of a Graph Theory of Graphs Gorden and Breach, N.Y. and Dunod Paris (1967) 349- 355.