

NOTE ON TOTALLY REGULAR FUZZY DIGRAPHS

KR.BALASUBRAMANIAN1*, N.ARUL PANDIYAN²

Assistant Professor¹ , Research Scholar²

1,2Department of Mathematics, H. H. Rajah's College, Pudukkottai, Tamil Nadu, India.

Abstract— **In this paper, we discussed totally regular fuzzy digraphs and properties of totally regular fuzzy digraphs. The concepts of the total degree of a vertex in fuzzy digraphs formed by the operation union is terms of the total degree of vertices in the given fuzzy digraphs for some particular cases are obtained some properties of regular fuzzy digraphs are studied and they are examined for totally regular fuzzy digraphs.**

Keywords— **Degree of vertex, regular fuzzy graph, regular fuzzy digraph, total degree, totally regular fuzzy digraph.**

1. Introduction

Fuzzy graph theory was introduced by Azriel Rosenfeld in 1975 [9]. In 1965 Lofti A.Zadeh [3] introduced mathematical frame work to explain the concept of uncertainty in real life through the pratication of a seminal paper. This ranges from traditional mathematical subjects. Bhattacharya [1] propose the concept of some remarks on fuzzy graphs. mordeson J.N and peng.c.s [4] identified the operations on fuzzy graphs and the operations of union, join, cartesian an product and composition of two fuzzy digraphs. First we go through some basic definitions which can be found in [2,5-12]

In this paper, we review concepts involving the degree of a vertex in some fuzzy digraphs and regular property of fuzzy digraph which are obtained from two given fuzzy digraphs using the operation, join, Cartesian product and composition. Fir

2. Preliminaries Definition: 2.1

A fuzzy graph $G = (V, \sigma, \mu)$ where v is the vertices, σ is the fuzzy subset of v and μ is the membership value on σ such that $\mu(u, v) \leq \sigma(u) \wedge \sigma(v)$ for every $u, v \in v$.

Definition: 2.2

A fuzzy digraph $G_D = (\sigma_D \mu_D)$ is a pair of function $\sigma_D : v \rightarrow$ [0,1] and $\mu_D : V X V \rightarrow [0,1]$ where $\mu_D \leq \sigma_D(u) \wedge \sigma_D[V]$ for every $u, v \in V$ and μ_D is a set of fuzzy directed edges called the fuzzy arcs.

Definition: 2.3

Let $G_D = (\sigma_D, \mu_D)$ be a fuzzy digraph on $G_D^* : (V, E)$ The degree of a vertex u is $d_{G_D}(u) = \sum_{u \neq v} \mu$

The minimum degree of G_D is denoted by $\delta(G_D)$

 $\delta(G_D) = \Lambda \{d_{G_D} \}$

The maximum degree of G_D is denoted by $\Delta(G_D)$

 $\Delta(G_D) = V\{d_{G_D}\}\$

Definition: 2.4

The order of a fuzzy digraph G_D are defined by $0(G_D)$ = $\sum\limits_{u \in v}$ σ

and The size of a fuzzy digraph G_p are defined by $s(G_p)$ = $\frac{\Sigma}{u \in E}$ σ

Definition: 2.5

An indegree of a vertex u in a fuzzy digraph is the sum of the $\mu_D(uv)$ vertex of the edges incident. Towards the vertex $\sigma_D(u)$.

The outdegree of a vertex in a fuzzy digraph is the sum of the μ_D values of the edges incident from the vertex to all other vertices.

Here u is any vertex in v . Then the indgree and outdegree in Fuzzy digraph was denote by $d_b^+(u)$ and $d_b^-(u)$.

Definition: 2.6

©2018 IJAIR. All Rights Reserved

Let G_D : $(\sigma_D \mu_D)$ be a fuzzy digraph on G^* : (V, E)) then a digraph is said to be fuzzy regular digraph if every vertex has the same indegree and outdegree as every other vertex.

Definition: 2.7

The union of two fuzzy digraph G_{10} and G_{20} is defined as a fuzzy digraph $G_D = G_{1D} \cup G_{2D} : (\sigma_{1D} \cup \sigma_{2D}, \mu_{1D} \cup \mu_{2D})$ on (V, E) where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$ with.

$$
\begin{array}{rcl}\n(\sigma_{1D}U\sigma_{2D}) (u) \\
\sigma_{1D} (u) \\
\sigma_{2D} (u) \\
\sigma_{1D} (u)V\sigma_{2D} (u) \\
(\mu_{1D}U\,\mu_{2D}\,(\mathrm{e}) \\
\mu_{1D} (\mathrm{e})V\,\mu_{2D} (\mathrm{e})\n\end{array}\n=\n\left\{\begin{array}{rcl}\nif\; u\in\,\upsilon_{1-}\,\upsilon_{2} \\
if\; u\in\,\upsilon_{2-}\,\upsilon_{1} \\
if\; u\in\,\upsilon_{2-}\,\upsilon_{1} \\
if\; u\in\,\upsilon_{2-}\,\upsilon_{1} \\
if\; e\in\, E_{1-}\,E_{2} \\
if\; e\in\, E_{2-}\,E_{1} \\
if\; e\in\, E_{2\,\upsilon}\cap\, E_{1}\n\end{array}\right.
$$

Definition: 2.8

Let G_D : (σ_D, μ_D) be a fuzzy digraph. The degree of a vertex u in G_D is defined by

$$
d_{G_D}(u) = \frac{\Sigma}{u \neq v} \mu_D(uv) = \frac{\Sigma}{uv \epsilon E} \mu_D(uv).
$$

Definition: 2.9

Let $G_D : (\sigma_D, \mu_D)$ be a fuzzy digraph on G_D^* . The total degree of a vertex $u \in v$ is defined by,

$$
td_{G_D}(u) = \sum_{u \neq v}^{\sum} \mu_D(uv) + \sigma_D(u)
$$

$$
d_{G_D}(u) + \sigma_D(u)
$$

If each vertex G_D has the same total degree k, then G_D is said to be a totally regular fuzzy digraph of total degree k or a k- totally regular fuzzy digraph.

3. Totally regular fuzzy digraph

Definition 3.1

A digraph is said to be fuzzy regular digraph if every vertex has the same indegree and outdegree as every other vertex.

Example:

FIG 1-regular fuzzy digraph.

In figure G_D^* : (V, E) where $V = \{u, v, w\}$ and $E = \{uv, vw, wu\}$ define G_D : $(\sigma_{D1}\mu_D)$, $\sigma_D(u) = 0.6$ $\sigma_D(v) = 0.2$ $\sigma_D(w) = 0.5$ and $\mu_D (uv) = 0.4 \mu_D (vw) = 0.4 \mu_D (wv) = 0.4$. Then every vertex has same indegree and outdegree. So G_D is a regular fuzzy digraph.

Definition 3.2

Let G_D : (σ_D, μ_D) be a fuzzy digraph on G_D^* . The total degree of a Fuzzy digraph is defined by.

$$
td_{G_D}(u) = \sum_{u \neq v}^{\sum} \mu_D(uv) + \sigma_D(u)
$$

$$
= d_{G_D}(u) + \sigma_D(u).
$$

If every vertex of G_D has the same total degree k_1 . Then G_D is said to be totally regular fuzzy digraph of total degree k or a k-totally regular fuzzy digraph.

2

©2018 IJAIR. All Rights Reserved

International Journal of Advanced and Innovative Research (2278-844)/

Volume 7 Issue 9

Example:

FIG 2-regular fuzzy digraph and totally regular fuzzy digraph

In figure G^* : (V, E) where $V = \{v_1, v_2, v_3\}$ and $E = \{v_1v_2, v_2v_3, v_3v_1\}$ Define $G_D: (\sigma_D, \mu_D)$ by $\sigma_D(v_1) = \sigma_D(v_2) = \sigma_D(v_3) = 0.4$ and μ_D (v₁v₂) = μ_D (v₂v₃) = μ_D (v₃v₁) = 0.3. d_{GD} (v₁) = d_{GD} (v₂) $d_{GD}(v_3) = 0.3$ and $td_{G_p}(v_1) = td_{G_p}(v_2) = td_{G_p}(v_3)$.

Hence G_D is a regular fuzzy digraph and G_D is also a totally regular fuzzy digraph.

Theorem 3.3

Let $G_D: (\sigma_D, \mu_D)$ be a fuzzy digraph on G_D^* : (V, E). Then σ_D is a constant function if and only if the following are equivalent.

- 1) G_D is a regular fuzzy digraph
- 2) G_D is a totally regular fuzzy digraph.

Proof:

Suppose that σ_D is a constant function.

Let $\sigma_p(u) = c$, a constant, $\forall u \in v$.

Assume that G_D is a k – regular fuzzy digraph.

Then $d_D(u) = k \forall u \in v$

So
$$
td_{G_D}(u) = d_D(u) + \sigma_D(u) \forall u \in \nu
$$
.
\n $td_{G_D}(u) = K_1 + C \forall u \in \nu$.

Hence G_D is a totally regular fuzzy digraph.

Thus $(1) \Rightarrow (2)$ is proved.

Now, suppose that G_D is a K_2 totally regular fuzzy digraph

Then $td_{G_n}(u) = K$

$$
d_D(u) + \sigma_D(u) = K_2 \ \forall \, u \in \nu
$$

$$
d_D(u) + c = K_2 \,\forall \, u \in v
$$

 $d_D(u) = K_2 - c \ \forall u \in v$

So G_D is a regular fuzzy digraph.

Thus (2) \Rightarrow (1) is proved.

Hence (1) and (2) are equivalent.

Conversely,

Assume that (1) $\&$ (2) are equivalent.

(i.e) G_D is regular iff G is totally regular.

Suppose σ _D is not a constant function.

Then $\sigma_p(u) \neq \sigma_p(\omega)$ for at least one pair of vertices u, $w \in v$.

Let G_D be K- regular fuzzy digraph.

Then
$$
d_D(u) = d_D(w) = K
$$

So
$$
td_D(u)
$$
 = $d_D(u) + \sigma_D(u)$

$$
= \mathrm{K} + \sigma_D(u)
$$

and
$$
td_D(w) = d_D(w) = \sigma_D(w)
$$

= $K + \sigma_D(w)$

Since $\sigma_p(u) \neq \sigma_p(w)$, we have $td_p(u) \neq td_p(w)$

So G_D is not totally regular which is a contradiction to our assumption.

Now Let G_D be a totally regular fuzzy digraph

Then
$$
td_D(u) = td_D(w)
$$

\n $d_D(u) + \sigma_D(u) = d_D(w) + \sigma_D(w)$
\n $d_D(u) - \sigma_D(w) = \sigma(w) - \sigma(u)$
\n $d_D(u) \neq d_D(w)$.

So G_D is not regular which is a contradiction to our assumption.

©2018 IJAIR. All Rights Reserved

International Journal of Advanced and Innovative Research (2278-844)/

Volume 7 Issue 9

Hence σ_D is a constant function.

Theorem 3.4

If a fuzzy digraph G_D : (σ_D, μ_D) is both regular and totally regular then σ _{*n*} is a constant function.

Proof:

Let G_D : (σ_D, μ_D) be a K-regular and K_2 totally regular fuzzy digraph.

So
$$
d_D(u) = K_1 \forall u \in v
$$

\nand $td_D(u) = K \forall u \in v$
\nnow, $td_D(u) = K_2 \forall u \in v$
\n $d_D(u) + \sigma_D(u) = K_2 \forall u \in v$
\n $K_1 + \sigma_D(u) = K_2 \forall u \in v$
\n $\sigma_D(u) = K_2 - K_1 \forall u \in v$

Hence σ_D is a constant function.

Example:

FIG – 3 not totally regular fuzzy digraph.

Consider G_D^* :(V, E) where $v = \{v_1, v_2, v_3, v_4\}$ and

 $E = \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}.$

Define $G_D: (\sigma_D, \mu_D)$ by $\sigma_D(v_1)=0.5$, $\sigma_D(v_2)=0.4$, $\sigma_D(v_3)=0.7$, $\sigma_D(v_4)$ =0.5, and $\mu_D(v_1, v_2)$ =0.3, $\mu_D(v_2, v_3)$ =0.2, $\mu_D(v_3, v_4)$ =0.3, $\mu_D(v_4, v_1) = 0.2$.

Then G_D is a regular fuzzy digraph, if every vertex has same indegree and outdegree.

$$
d_{G_D}(v_1) = 0.3 + 0.2 = 0.5, d_{G_D}(v_2) = 0.3 + 0.2 = 0.5
$$

$$
d_{G_D}(v_3) = 0.3 + 0.2 = 0.5, d_{G_D}(v_4) = 0.3 + 0.2 = 0.5
$$

 \therefore G_D is regular fuzzy digraph.

 $td_D(v_1) = 1.0$ $td_D(v_2) = 1.9$ $td_D(v_3) = 1.2$ $td_D(v_4) = 1.0$

So G_D is not totally regular fuzzy digraph.

Example:

Consider G_D^* :(V,E) where $v = \{v_1, v_2, v_3, v_4\}$ and

 $E = \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}.$

Define $G_D: (\sigma_D, \mu_D)$ by $\sigma_D(v_1)=0.5$, $\sigma_D(v_2)=0.6$, $\sigma_D(v_3)=0.7$, $\sigma_D(v_4)$ =0.6, and $\mu_D(v_1, v_2)$ =0.4, $\mu_D(v_2, v_3)$ =0.2, $\mu_D(v_3, v_4)$ =0.3, $\mu_D(v_4, v_1) = 0.3$.

Then, $d_{G_n}(v_1) = 0.7 d_{G_n}(v_2) = 0.6 d_{G_n}(v_3)$

 $d_{G_p}(v_4)$ = So G_p is not regular digraph.

$$
td_{G_p}(v_1) = 0.2
$$
 $td_{G_p}(v_2) = 1.2$ $td_{G_p}(v_3) = 1.2$ $td_{G_p}(v_4) = 1.2$

$$
\therefore
$$
 $td_{G_D}(v_1) = td_{G_D}(v_2) = td_{G_D}(v_3) = td_{G_D}(v_4) = 1.2.$

 G_D is totally regular digraph.

The fuzzy digraph in example is totally regular fuzzy digraph But it is not a regular fuzzy digraph.

4. Properties of totally regular fuzzy digraphs

Theorem 4.1:

©2018 IJAIR. All Rights Reserved http://ijairjournal.com

The size of a K-regular fuzzy digraph $G_D: (\sigma_D, \mu_D)$ on $G_D^*: (V, E)$ is P $\frac{N}{2}$ where P= |V|.

Proof:

The size of fuzzy digraph $G_D: (\sigma_D, \mu_D)$ is $S(G_D) = \sum_{uv \in E} \mu$

Since G is K-regular.

 $d_{G_D}(v) = k \ \forall Vu \in v$

We have $\sum_{v \in V} d_{G_D}(v) = 2 \sum_{uv \in E} \mu$

$$
=2\,\mathcal{S}(G_D).
$$

So
$$
2 S(G_D) = \sum_{v \in V} d_{G_D}(v)
$$

= $\sum_{v \in V} K$

 $= P k$

Hence $S(G_D) = \frac{P}{q}$ 2

Theorem 4.2

In any fuzzy digraph G_D : (σ_D, μ_D) if σ_D (v) > 0 for every $v \in v$, Then $td_p(v) > 0$ for every $v \in v$.

Proof

$$
\sigma _{D}\left(\nu \right) >0\quad \forall \,u\,\in \nu
$$

 $td_p(v) > 0 \ \forall u \in v.$

Theorem 4.3

 The maximum total degree of any vertex in a fuzzy digraph with P vertices is P.

Proof

For any vertex v_1

$$
td_{G_D}(v) = \sum_{uv \in E}^{\sum} \mu_D(uv) + s_D(v)
$$

$$
= \sum_{uv \in E} 1 + 1
$$

$$
= d^*_{G_D}(v) + 1
$$

$$
= (p-1) + 1
$$

 $td_n(v) = P$.

Hence the proof

Theorem 4.4

The total degree of a vertex v is $\sigma_p(v)$ is and only is the degree of v is 0.

Proof

The total degree of a vertex v is

$$
td_D(v) = S_D(v)
$$

$$
\sum_{uv \in E} \mu_D(uv) + S_D(v) = S_D(v)
$$

$$
\sum_{uv \in E} \mu_D(uv) = 0.
$$

$$
d_{G_D}(v) = 0.
$$

Definition 4.5

For any fuzzy subset γ_D of V such that $\gamma_D \subseteq \sigma_D$. The fuzzy sub digraph of G_D : (σ_D, μ_D) induced by γ_D is the maximal fuzzy sub digraph of G_D : (σ_D, μ_D) that has fuzzy vertex set γ_D and it is the fuzzy sub digraph H_D : (γ_D, τ_D) where $\tau_D(u, v) = \tau_D(u) \wedge \tau_D(v) \wedge \tau_D(v)$ $\mu_D(u, v)$ $\forall u, v \in v$.

Theorem 4.6

Every fuzzy digraph is an induced fuzzy sub digraph of a totally regular fuzzy digraph.

Proof

Let G_D :(V,E) be any fuzzy digraph with P vertices and q edges.

If G_D is totally regular, there is nothing to prove. Suppose that G_D is not totally regular.

Let Δ^*_{D} = max {*td_D* (*v*)/*v* \in *V*} let us prove that G_D is an induced fuzzy sub digraph of a $\Delta^*{}_D$ totally regular fuzzy digraph.

Take a copy G_D^1 of G_D . Take any vertex v with total degree less than Δ^*_{D} join it to its copy V^1 in G_D^1 .

Assign min { σ_D (V), $\Delta^*_{D} - td_{G_p}$ (V)} as the membership

Value of the edge VV^1

 $td_{G_D}(v) < \Delta^*_{D}$

Let the resultant fuzzy graph be G_{1D} for any vertex V with $td_D(v)$ < Δ_D^*

If μ (VV') = min { σ_D (V), Δ^* _D – td_{Gp} (

5

©2018 IJAIR. All Rights Reserved

International Journal of Advanced and Innovative Research (2278-844)/

Volume 7 Issue 9

$$
=\Delta^*_{D}-td_{GD}(V)
$$

Then,

$$
= td_{G_{1D}}(V) = td_{GD}(V) + \mu_D (VV^1)
$$

$$
td_{GD} + \Delta^*{}_D - td_{GD} \; (V)
$$

 $=\Delta^*_{D}.$

And all the vertices, which have total degree Δ^*_{D} in G_D and their copies in G'_{D} will have the same total degree Δ^*_{D} in G_{1D} .

Also,
$$
td_{GD}(V) = td_{GD}(V^1) + M_D (VV')
$$

$$
= td_{GD}(V) + M_D (VV')
$$

$$
= \Delta^*_{D}.
$$

For every vertices with total degree less than Δ^*_{D} in G_D and their copies in G'_{D}

If for some vertex V with $td_{GD}(V) < \Delta^*_{D}$

$$
= \min \{ \sigma_{G_D} (V) \Delta^*_{D} - t d_{G_D} (V) \}
$$

$$
= \sigma_{G_D} (v)
$$

Then $td_{G1D} (V) < \Delta^*_{D}$

 G_{1D} and td_{G1D} $(V) < \Delta^*_{D}$

The vertices have total degree Δ^* in the resultant fuzzy digraph

Let =
$$
\left[\max \frac{\Delta^*_{D} - td_{GD}(V)}{\sigma_D(v)} / td_{GD} (V) < \Delta^*_{D}\right]
$$

Then the procedure stops after n steps with Δ^*_{D} totally regular fuzzy digraph G_{nD} .

Also G is an induced fuzzy sub digraph of G_{nD}

Here the number of vertices in

$$
G_{nD} = P + P + 2P + 2^{2}P + \dots + 2^{n-1}P
$$

= $P + \left(\frac{2^{n-1}}{2-1}\right)P$
= $P + (2^{n-1})P$
= $2^{n}P$.

Then the number of edges in G_{nD} = $nq + \sum_{V \in V} \left\{ \frac{\Delta^* p - td_{GD}(V)}{\sigma_{GD}(v)} \right\}$

Theorem: 4.7

Let G_D : (σ_D, μ_D) be a fuzzy digraph such that both σ_D and μ_D are constant partially regular fuzzy digraph. Then G_D is a totally regular fuzzy digraph if and only if G is a partially regular fuzzy digraph.

Proof:

Assume that G_D is a k - totally regular fuzzy digraph

Let $\mu_D(uv) = C \forall uv \in V$ and $\sigma_D(u) = C_1 \forall u \in V$

Where C and C_1 are constants

Then,
$$
td_{GD}(u) = d_{GD}(u) + \sigma_D(u)
$$

 $\frac{c}{c}$ \forall

$$
= \sum_{u \in E} \mu_D(uv) + \sigma_D(u)
$$

$$
K = C d^*_{G_D}(u) + C_1
$$

$$
K_{G_D}(u) = \frac{k - c_1}{c} \forall u \in V
$$

So G_{D}^{*} is regular and hence G_{D} is a partially regular fuzzy digraph

Conversely assume that G is a partially regular fuzzy digraph.

Let G^*_{D} be a r- regular graph then

$$
td_{GD}(u) = d_{GD}(u) + \sigma_D(u)
$$

$$
td_{GD}(u) = cd^*_{GD}(u) + c_1
$$

$$
= cr + C_1 \forall \in V
$$

So G is totally regular fuzzy digraph.

Theorem 4:8

Let G_{1D} : $(\sigma_{1D} \mu_{1D})$ and G_{2D} : $(\sigma_{2D} \mu_{2D})$ be two fuzzy digraph such that $\sigma_{1D} = \mu_{2D}$ Then $\sigma_{1D} = \sigma_{2D}$.

Proof:

The definition of fuzzy digraph $\mu_{2D} \leq \sigma_{2D}(u) \wedge \sigma_{2D}(V) \forall uv \in V_2$

We have min
$$
\mu_{2D} \leq \sigma_{2D}
$$

\n $\sigma_{1D} \leq \mu_{2D}$
\n $\sigma_{1D} \leq \min \mu_{2D}$
\n $\sigma_{1D} \leq \min \mu_{2D} \leq \sigma_{2D}$
\n $M_{1D} \leq \sigma_{2D}$.

5. Totally regular property of union of two fuzzy digraphs

©2018 IJAIR. All Rights Reserved http://ijairjournal.com

Definition: 5.1

The union of two fuzzy digraph G_{1D} and G_{2D} is defined as a fuzzy digraph $G_{1D} = G_D U G_{2D} : (\sigma_{1D} U \sigma_{2D}, \mu_{1D} U \mu_{2D})$ on G^*_{D} Where $V = V_1 U V_2$ and $E = E_1 U E_2$ with,

$$
\begin{array}{ccc}\n(\sigma_{1D}U\sigma_{2D}) (u) & f_{1D} (u) & f_{2D} (u) & f_{2D} (u) \\
\sigma_{2D} (u) & f_{1D} (u) \vee \sigma_{2D} (u) & f_{1D} (u) \vee \sigma_{2D} (u) & f_{1D} (u) & f_{2D} (u) \\
(\mu_{1D}U \mu_{2D}) (e) & \mu_{2D} (e) & \
$$

Definition: 5.2

Let G_{1D} : (σ_{1D}, μ_{1D}) and G_{2D} : (σ_{2D}, μ_{2D}) be two fuzzy digraphs with underlying crisp graph (V_1, E_1) and (V_2, E_2) respectively.

1) If $u \in V_1$ UV₂ and u is arbitary then

$$
td_{G_{1D\cup G2D}}(u) = \begin{cases} td_{G1D}(u) \ u \in V_1 \\ td_{G2D}(u) \ u \in V_2 \end{cases}
$$

Definition: 5.3

If $u \in V_1$ UV₂ but no edge incident at u lies in $E_1 \cap E_2$ Then any edge incident at u is either in E_1 or in E_2 but not both.

Also all these edges will be incident in $G_{1D} \cup G_{2D}$.

$$
td_{G_{1D\cup G2D}}(u) = td_{G_{1D}}(u) + td_{G_{2D}}(u) - \sigma_{1D}(u) \wedge \sigma_{2D}(u)
$$

Definition: 5.4

If $u \in V_1$ UV₂ and some edges incident at a are in $E_1 \cap E_2$. Any edge uv which is in $E_1 \cap E_2$ $G_{1D}U G_{2D}$ and for this uV.

$$
td_{G1DUG2D}(u) = (td_{G1D}(u) + td_{G2D}(u) - \sigma_{1D}(u) \wedge \sigma_{2D}(u) -
$$

$$
\sum_{\text{uv}\in E_1\cap E_2}\mu_{1D}(\text{uv})\wedge\mu_{2D}(\text{uv}).
$$

Theorem 5.5

If G_{1D} and G_{2D} are two disjoint k- totally regular fuzzy digraph then G_{1D} U G_{2D} is a k totally regular fuzzy digraph,

Proof:

Since G_{1D} and G_{2D} are disjoint fuzzy digraph

$$
td_{G1DUG2D}(u) = \begin{cases} td_{G1D}(u) & \text{if } u \in V_1 \\ td_{G2D}\ (u) & \text{if } u \in V_2 \end{cases}
$$

$$
= k \text{ for every } u \in V_1 U V_2
$$

 $G_1 U G_2$ is totally regular.

Conclusion

In this paper totally regular fuzzy digraphs, we have discussed the concept of total degree and every fuzzy digraph induced subdigraph of a totally regular fuzzy digraph. Also the total degree of a vertax in fuzzy digraphs formed by the operation union interms of the total degree of vertices in the given fuzzy digraphs for some particular cases are obtained.

References

- 1. P. Bhattacharya, Some Remarks on Fuzzy Graphs, Pattern Recognition Letter, 6(1987), 297-302.
- 2. John N.Modeson, Premch and S.Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica- verlag, Heidelberg, (2000).
- 3. L.A Zadeh, Fuzzy Sets, Inform. Control, 8(1965), 338-53.
- 4. J.N. Mordeson and C.S.Peng, Operations on Fuzzy Graphs, Inform. Sci., 79(1994), 159-170.
- 5. A.Nagoorgani and M.Basheer Ahamed, Order and Size in Fuzzy Graph, Bulletin of Pure and Applied Sciences, 22E(1) (2003), 145-148
- 6. A.Nagoorgani and K.Radha, Some Sequences in Fuzzy Graphs, Far East Journal of Applied Mathematics, 31(3)(2008), 321-335.
- 7. N.Nagoorgani and K.Radha, On Regular Fuzzy Graphs, Journal of Physical Sciences, 12(2008), 33-40.
- 8. A. Nagoorgani and K.Radha, The Degree of a vertex in some fuzzy graphs, International Journal of Algorithms, Com- puting and Mathematics, 3(2009).
- 9. A. Rosenfeld, Fuzzy Graphs, In: L.A Zadeh, K.S. Fuz, M.Shimura, Eds., Fuzzy sets and Their Applications, Academic Press, (1975), 77-95.
- 10. K.Radha and M.Vijaya, The Total Degree of a vertex in some fuzzy graphs, Jamal Academic Research Journal: An Interdisciplinary, special issue, (2014), 160-168.
- 11. A. Nagoorgani and B.Fathima Kani, Degree of a vertex in Alpha, Beta, Gamma Product of Fuzzy Graphs, Jamal Academic Research Journal: An Interdisciplinary, special issue, (2014), 104-114.
- 12. .Radha and M.Vijaya, Totally regular fuzzy graphs, International Journal of Current Research and in Science and Technology, 3(8) (2017), 11-18.

©2018 IJAIR. All Rights Reserved