
International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 10

©2017 IJAIR. All Rights Reserved

Design and verification of high speed 2^2 radix FFT module for DSP
processor

Astha singh, SRIT, Jabalpur
Prof. Dewyanshu Rao, SRIT, Jabalpur

Abstract: The FFT processor design with vedic
multiplier and new semi-pipelined Fast Fourier
transform (SPFFT) with modified multiplication
arrangement for modern communication systems
provides an efficient way for computation of FFT
with better area utilizing hardware architecture.
Previously, the radix-22 had been used only for
single path delay feedback architectures. Later with
many types of research works the radix 22 was
extended to multi-path delay commutator (MDC)
architectures. This work presents area optimization
of SPFFT architecture. This architecture is provided
for parallelism value 4 and 16 sample points and the
area of proposed SPFFT is compared with other
SPFFT (feed forward) architectures using the same
synthesis tool and FPGA.
Keywords: HDL- Hardware Descriptive Language,
SOC- System On Chip,FPGA- Field Programmable
Gate Array, RTL- Register Transfer Level

I-INTRODUCTION
The Fast Fourier Transform (FFT) is a widely used
transform algorithm in signal processing
applications, which is primarily a computational tool,
used to efficiently calculate the Discrete Fourier
transform (DFT) and its inverse using digital
computers. Since its introduction by Cooley and
Tukey [1], FFT has been the mainstay for spectral
analysis of digital signals. Spectral analysis is
extensively used in communication systems, signal
processing, image processing, bio-robotics,
intelligent maintenance and almost every branch of
science and engineering [2–4], making FFT one of
the most widely used algorithms on digital devices.
With the advent of smart phones and hand held
media and entertainment devices, the performance
and cost of FFT processors has an ever greater
significance. With the remarkable progress in the
very large scale integration (VLSI) circuit
technology, many complex circuits, unthinkable
yesterday have become easily realizable today.
Algorithms that seemed impossible to implement,
now have attractive implementation possibilities for
the future. This means that not only the conventional
computer arithmetic methods, but also the

unconventional ones are worth investigation in new
designs.

Author Topic Outcome

Ajmal S
A et al
[1]

FPGA based
area optimized
parallel
pipelined
Radix-22 feed
forward FFT
architecture

197 slice used of
vertex FPGA with
their new parallel
pipelined radix-22
feed forward Fast
Fourier transform
(PPFFT)
architecture

Ngoc-
Hung
Nguyen
et al [2]

An FPGA-
Based
Implementation
of a Pipelined
FFT Processor
for High-Speed
Signal
Processing
Applications

50, 866 slices for
1024-point FFT with
their pipelined FFT
processor based on
the radix-2
decimation-in-
frequency (R2DIF)
algorithm using the
single-path delay
feedback (SDF)
pipelined
architecture

Asmita
Haveliya
et al [3]

Design and
Simulation of
32-Point FFT
Using Radix-2
Algorithm for
FPGA
Implementation

2,016 slices for 32
points FFT, Fast
Fourier Transform
(FFT), based on
Decimation-In-Time
(DIT) domain,
Radix-2 algorithm,

Table 1 literature work summary

The FFT computation which we are modifying in
our thesis work actually consists of complex
multiplication. Along with this when FFT
computations are carried out it shows that it needs 4
multipliers along with 1 adder and 1 subtractor.
Vedic multiplication is although one of the fastest
methods of multiplication but it consumes much area
which turns out to be a drawback.

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 10

©2017 IJAIR. All Rights Reserved

Asmita Haveliya et al [3] use Fast Fourier Transform
(FFT), based on Decimation-In-Time (DIT) however
DIF is more suitable and need less computation.
Ngoc-Hung Nguyen et al [2] use pipelined FFT
processor based on the radix-2 decimation-in-
frequency (R2DIF) algorithm using the single-path
delay feedback (SDF) pipelined architecture, their
method was significantly good but single path
feedback need extra time for analysis, yes they save
the time using pipeline but feedback need extra time
which reduces overall timing performance as can be
expected by any pipeline architecture. Ajmal S A et
al [1] Use parallel pipelined radix-22 feed forward
Fast Fourier transform (PPFFT) architecture, this
type of architecture are very good for speed
enhancement but on the other hand due to extra
pipelining this type of architecture requires lots of
addition registers which increase the area demand
and cost also the power consumption. They did not
concern about the power and area need.

These multiplications addition and subtraction are
time and area consuming processes in it. Hence we
have come out with a new idea for eliminating this
problem. For this we have merged two types of
FFT’s, namely Area optimized and Pipelined FFT
and proposed a new FFT called FSM based FFT.
Here we have replaced one multiplier out of the 4 as
explained above with one adder and one subtraction.
So now we have total three multiplier, two adders
and three subtractions. Along with this we have also
added a new approach of addition which is called
Wallace method of addition. This method helps in
giving the results in much less time and hence helps
in speed enhancement. How this will affect the area
and speed is explained in detail in methodology but
this approach is a good deal to deal with area and
speed problem.

II-METHODOLOGY
The FFT processor design with vedic multiplier and
new semi-pipelined Fast Fourier transform (SPFFT)
with modified multiplication arrangement for
modern communication systems provides an
efficient way for computation of FFT with better
area utilizing hardware architecture. Previously, the
radix-22 had been used only for single path delay
feedback architectures. Later with many types of
research works the radix 22 was extended to multi-
path delay commutator (MDC) architectures. This

work presents area optimization of SPFFT
architecture. This architecture is provided for
parallelism value 4 and 16 sample points and the
area of proposed SPFFT is compared with other
SPFFT (feed forward) architectures using the same
synthesis tool and FPGA.

We are proposing a new approach to design FFT
algorithm for that we made significant logics on the
basic butterfly and reduced the total number of
multiplications, as we knew that basically we need
total four digital multiplications, one addition and
one subtraction for performing multiplication
between two complex number’s, our method has
reduced these four digital multiplications into only
three digital multiplications on the cost of one extra
addition and two extra subtractions, still it is a fair
deal if we concern about area and speed. We also
have proposal to have different categories of
butterflies and FSM based calculation to manage
these categories.

It is been proved that Vedic multiplication is the
fastest multiplication approach but there are some
other multiplication techniques which are better are
better than Vedic multiplication in terms of chip area.
We have come up with the idea to merge two
different multiplication techniques Vedic and
Wallace and these gives us a fast and area efficient
multiplication approach. Our proposed FFT
algorithm is already efficient in respect of area and
speed, all we need to optimize it further is to use our
proposed Vedic cum Wallace multiplication
technique on proposed FFT algorithm.

DIF-FFT algorithm: The basic DIF butterfly is
explained in figure 2, here we have two inputs A &
B and one twiddle factor W. The outputs are (A+B)
and (A-B)*W.

Figure 1: The basic butterfly

A

B

A+B

(A-B)*W

W

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 10

©2017 IJAIR. All Rights Reserved

Let say we have radix two & 8 point FFT. Figure 6
explains the process of 3 stage pipelining. Figure
explained pipelined FFT where they achieved 3
stages pipelining for 8 point FFT between different
stages, as we knew pipelining makes fast
computation so ref. [2] has achieved fast FFT using
pipelining.
In an 8 point FFT processor without pipelining it
takes four clock cycles to generate the output for one
set of input and in the next clock cycle the next set
of input is applied for processing. Where as in
pipelined FFT processor as soon as one set of input
is transferred to second stage a new set of input is
applied to the first stage during the same clock cycle,
due to which number of clock cycles is reduced.
Proposed Memory based FFT: Let say we have
radix two & N point FFT. We knew that each stage
required N/2 butterflies. Also we aware that total
m*(N/2) butterflies where m is the total stages.
Memory based FFT[1] shown in figure 8, suggest if
we have the combination of N/2 butterflies then we
can perform the FFT operations in ‘m’ number of
cycles.
This approach required a complex Control Unit for
proper arranging the output from the previous stage
and feed that into the next stage. It is also known as
feedback algorithm.

Figure 2: Memory based FFT

Pipelined FFT [2] suggests pipelining but no
hardware reduction as compare to basic conventional
one. It uses pipelining and complete hardware that is
12 butterflies. It is fastest with more hardware. Area
efficient FFT [3] suggest us to use one basic

butterfly and reuse it 12 times, but there we suppose
to wait 12 clock cycles for the output and then-after
new input can be given to it. It is slowest but need
less hardware. Memory based FFT[1] use four
butterflies three time means need hardware of four
butter fly but need only three clock to have desired
output. Memory based FFT is have somewhat in
between Area efficient FFT and Pipelined FFT it is
faster than Area efficient FFT and required less
hardware then Pipelined FFT. We are using the same
approach that Memory based FFT [1] has used.
But our designed basic butterfly has two major
difference over Memory based FFT. That is:-
New complex multiplication technique approach.
Combination of four basic butterfly and FSM based
Control unit to control them.
Complex multiplication: Consider a input
Z1=(x1+iy1) and Z2=(x2 + iy2). If we take simple
multiplication of these inputs they give the outputs
as-
Real Part(R) = (x1x2-y1y2) & Imaginary Part(I) =
(x1y2+y1x2)
On implementing it requires four multipliers and one
adder and one subtraction.
But if we multiply the two inputs by the proposed
approach we will get the outputs as
Real Part(R) = x1(x2+y2)-y2(x1+y1) & Imaginary
part(I) = x1(x2+y2)-x2(x1-y1)
If we add above two terms (R and I) it gives the
same value as simple multiplication. But
implementation of R and I requires three multipliers
and two adder and three subtractions (term x1(x1+x2)
is counted once because it is repeating in real and
imaginary part), so one multiplier is reduced on cost
of one adder and two subtraction.
Proposed complex multiplication need one extra
adder and two extra subtractions on the cost of one
reduced multiplier.
As we knew a 16 bit adder need 16 Full adder and
16 bit subtraction need 16 Full adder with 16 XOR
gates.
But one 16 bit multiplier needs 16x16=256 AND
gate and 32x15=480 Full adder (for conventional
multiplication) and this can be reducing maximum
up-to 75% of conventional requirement if we use
advance multiplication techniques (like Wallace,
Vedic, booth etc.).
Still one adder and two subtractions is a better deal
instead of using one 16 bit multiplication.

International Journal of Advanced and Innovative Research (2278

©2017 IJAIR. All Rights Reserved

Let if we need to multiply z1=3.25+3j and
z2=7.5+1.17 j then
R=3.25(7.5+1.17)-1.17(3.25+3) => 3.25(8.67)
1.17(3.25)=> 28.1775-3.8025=> 20.865
I=3.25(7.5+1.17)-7.5(3.25-3) => 3.25(8.67)
7.5(.25)=> 28.1775-1,875=> 26.3025
Let’s have the above example in binary as in our
proposed signed complex multiplier design
X1(3.25) => 000000000011.0100
X2(7.5) => 000000000111.1000
Y1(3) => 000000000011.0000
Y2(1.1875)=> 000000000001.0011
X2+Y2(8.6875) = 000000001000.1011
X1+Y1(6.25)= 000000000110.0100
X1-Y1(0.25)= 000000000000.0100
{X1*(X2+Y2)}(28.234375) =>
00011100.00111100
{Y2*(X1+Y1)}(7.421875)=>
00000111.01101100
{X2*(X1-Y1)}(1.875)=>
00000001.11100000
{X1*(X2+Y2) – Y2*(X1+Y1)}(20.8125) =>
00010100.11010000
{ X1*(X2+Y2) – X2*(X1-Y1)}(26.359375)=>
00011010.01011100
So our final Real number is R= 20.8125 and
imaginary number is I= 26.359375
Proposed Butterflies: As we know the twiddle
factor is a complex number and we need complex
floating signed multiplication only to multiply with
twiddle factor, also it is permanent for each butterfly.
We have identified those butterflies in which twiddle
factor has only real or imaginary value, and designed
different butterfly for them. So we have categorized
three types of butterflies.
Type-1: If twiddle factor has real and imaginary

both (= x1+iy1) then-
 Let two inputs are A = x2+iy2 and B = x3+iy3

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 10

©2017 IJAIR. All Rights Reserved

y z1=3.25+3j and

1.17(3.25+3) => 3.25(8.67)-
3.8025=> 20.865

3) => 3.25(8.67)-
1,875=> 26.3025

Let’s have the above example in binary as in our
sed signed complex multiplier design

{X1*(X2+Y2)}(28.234375) =>

Y2*(X1+Y1)}(20.8125) =>

Y1)}(26.359375)=>

So our final Real number is R= 20.8125 and

As we know the twiddle
factor is a complex number and we need complex
floating signed multiplication only to multiply with

also it is permanent for each butterfly.
We have identified those butterflies in which twiddle
factor has only real or imaginary value, and designed
different butterfly for them. So we have categorized

has real and imaginary

Let two inputs are A = x2+iy2 and B = x3+iy3

Figure 3(a): Type-

Type-2: If twiddle factor has only real value (
1) then-
 Let two inputs are A = x2+iy2 and B =
x3+iy3

Figure 3(b): Type-

Type-3: If twiddle factor has only imaginary (
= -i) then-
 Let two inputs are A = x2+iy2 and B = x3+iy3

Figure 3(c): Type-

Above it is been observed that the butterfly of type
& type-3 does not required mu
have a complex control unit to identify butterfly type
and use different type of butterflies.
For high throughput systems, pipelined architecture
is a good choice, and it is also an ideal method to
implement high-speed long-size FFT ow
regular structure and simple control. The
performance of pipelined FFT processor can be
improved by optimizing the structure and saving
hardware resources. The block diagram of our
proposed FFT processor is illustrated in Fig.1. It
consists of four essential units. Control unit,
Butterfly unit (BU), which has three
structure, carries out the complex multiplication.
RAMs are used to store and output data.

1/ Volume 6 issue 10

-1 butterfly

If twiddle factor has only real value (=

Let two inputs are A = x2+iy2 and B =

-2 butterfly

If twiddle factor has only imaginary (

Let two inputs are A = x2+iy2 and B = x3+iy3

-3 butterfly

Above it is been observed that the butterfly of type-2
3 does not required multiplication, so we

have a complex control unit to identify butterfly type
and use different type of butterflies.
For high throughput systems, pipelined architecture
is a good choice, and it is also an ideal method to

size FFT owing to its
regular structure and simple control. The
performance of pipelined FFT processor can be
improved by optimizing the structure and saving
hardware resources. The block diagram of our
proposed FFT processor is illustrated in Fig.1. It

our essential units. Control unit,
Butterfly unit (BU), which has three-stage pipelined
structure, carries out the complex multiplication.
RAMs are used to store and output data.

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 10

©2017 IJAIR. All Rights Reserved

Figure 4: The pipelined FFT architecture

Timing signal Generator: To achieve pipelined
FFT algorithm we suppose to have a timing control
for changing different states of FSM. We have come
up with this isolated Timing signal generator after
having problem with synchronization in the same
control module.
The RAM Unit: We need RAM of size 8x8 in case
of 8 point FFT & RAM of size 64x8 for 64 point
FFT. We required RAM for storage of last butterfly
stage outputs, ones we have our output we suppose
to feed that back into the butterfly. Control unit is
there for read the data from RAM and after done sort
of calculation it put that into the butterfly stage
through Registers.
The ROM unit: we have two different purposes for
the ROM first to store the input data at the time of
simulation, we have FPGA with limited I/O ports
and in case of 64 point FFT, if we have 16 bit word
length we required total 64x16=1024 Pins for input
only. We also using ROM for storing the twiddle
factor which we know is permanent and specific for
specific butterfly.
The Registers: It same as the RAM and we just
need it store the output from the control unit and the
new stage gets the input from it. Registers used in
this system stores the output of the control unit and
supplies this data to the Butterfly Unit when needed.
Control Unit: Control unit, which generates all
control signals for the whole system, is responsible
for operation control of the processor.

Figure 5. Control Unit FSM

*Red lines are IF conditions, Purple lines are the
ELSE conditions

Figure 5 shows the FSM for 8 point FFT. The input
signals are from the timing and control unit. The
main work of the control unit is to control and
proper arrangement of inputs and outputs it also
perform the correct type of butterfly selection for the
correct sequence of the Butterflies (sequence is
fixed as per the FFT algorithm). An 8-bit signal
controls the whole FFT processor. And this signal
generates two parameters, write_en and read_en, to
control the system. It also generates signals to select
data from RAM, each of which is made up of 8 32-
bit registers. The BU and the remaining parts are
controlled as well. This control unit harmonizes all
steps of the FFT processor based on a 7-bit counter.
To achive synchronization in control unit we have
used Melay type FSM (finite state machine) is
explained below the table:

III-RESULTS

Table explained below shows the result for our FFT
module for different inputs points. Here we can
observe the effect on area & speed because of
changes in the inputs

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 10

©2017 IJAIR. All Rights Reserved

 Platform Used
Vertex 4 xc2vp100-6ff1696

Synthes
is
Results
for

4-
point
FFT

8-
point
FFT

16
point
FFT

32
point
FFT

64
point
FFT

Numbe
r of
slices

183 368 694 1357 2664

Numbe
r of
slice
Flip-
Flop

307 616 1178 2302 4551

Numbe
r of 4
input
LUT

256 518 969 1892 3695

Numbe
r of
Bounde
d IOB

28 66 130 258 514

Numbe
r of
MULT
18x18s

2 3 6 12 24

Numbe
r of
GCLK

1 1 1 1 1

Total
Equival
ent
GATE
Count

10890 21,434 42,037 83,369 165783

Time
Delay

4.071
ns

4.35
ns

4.724
ns

4.891
ns

5.036
ns

Table 2: summary of synthesized results for different
inputs

From the table above we can observe the results
obtain after synthesis of proposed FFT processor for
different FFT points (number of inputs), Slice, LUT,
GATE count, No. of MULT and slice flip flop can
be consider as area report of the design, time delay
is the propagation time between input and output it
basically shows the speed of the design.

Figure 6- Internal modules RTL of proposed FFT

Figure 7 Design utilization summary of 8 point FFT

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 10

©2017 IJAIR. All Rights Reserved

Figure 8: FFT top simulation results Waveform

Author Outcome

Ajmal S
A et al [1]

197 slice used of vertex FPGA with
their new parallel pipelined radix-22
feed forward Fast Fourier transform
(PPFFT) architecture

Ngoc-
Hung
Nguyen
et al [2]

50, 866 slices for 1024-point FFT with
their pipelined FFT processor based on
the radix-2 decimation-in-frequency
(R2DIF) algorithm using the single-
path delay feedback (SDF) pipelined
architecture

Asmita
Haveliya
et al [3]

2,016 slices for 32 points FFT, Fast
Fourier Transform (FFT), based on
Decimation-In-Time (DIT) domain,
Radix-2 algorithm,

Proposed
FFT
processor
results

183 vertex FPGA slice for the 4 –point
FFT design,
1357 Vertex FPGA slice for the 32-
point FFT design
And 2664 Vertex FPGA slice for the
64- point FFT design, means 42,624
slices for the 1024 point FFT design

Table 3 Comparative results

Form the comparative results it can be observe that
proposed work requires less number of slices of
Vertex FPGA as compare to available works.

IV-CONCLUSION
Fast Fourier Transform (FFT) processor is widely
used in different applications, such as: WLAN,
Image process, spectrum measurements, Radar and
multimedia communication services, FFT blocks are
used in OFDM links such as very high speed digital
subscriber line (VDSL), Digital Audio Broadcasting
(DAB) systems and microwave portable links, It can
also be used to design the speed efficient Infinite
Impulse Response Filter, Finite Impulse Response
Filter and Wireless communication.
In field of DSP, Transformation is prime
requirement here we are proposing to design an IP
(Intellectual Property) for the FFT. VLSI is all about
Area, Power and speed, in our proposed design we
have reduced the Area and got high frequency of
FFT operations. The FFT processor design with
vedic multiplier and new semi-pipelined Fast
Fourier transform (SPFFT) with modified
multiplication arrangement for modern
communication systems provides an efficient way
for computation of FFT with better area utilizing
hardware architecture. We have gone through
around 20 literature papers and after their thorough
study we have come up with an idea as explained in
thesis. We have tried to implement our module as
per our proposed design. Form the comparative
results it can be observe that proposed work requires
less number of slices of Vertex FPGA as compare to
available works.
We are concluding our thesis that our designed FFT
module is very much area optimized and it has
higher speed of computation with all sort of
operations which FFT can perform.

REFERENCES
[1] Ajmal S A, S L Gangadharaiah, FPGA based
area optimized parallel pipelined Radix-22 feed
forward FFT architecture, IEEE International
Conference On Recent Trends In Electronics
Information Communication Technology, May 20-
21, 2016, India, ISBN: 978-1-5090-0774-5/16, 2016
IEEE
[2] Ngoc-Hung Nguyen, Sheraz Ali Khan, Cheol-
Hong Kim, and Jong-Myon Kim, An FPGA-Based
Implementation of a Pipelined FFT Processor for
High-Speed Signal Processing Applications,
Springer International Publishing AG 2017 S. Wong
et al. (Eds.): ARC 2017, LNCS 10216, pp. 81–89,
2017. DOI: 10.1007/978-3-319-56258-2_8

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 issue 10

©2017 IJAIR. All Rights Reserved

[3] Asmita Haveliya, Design and Simulation of 32-
Point FFT Using Radix-2 Algorithm for FPGA
Implementation, 2012 Second International
Conference on Advanced Computing &
Communication Technologies 978-0-7695-4640-
7/12, 2012 IEEE, DOI 10.1109/ACCT.2012.43
[4] S.S.Kerur, Prakash Narchi, Jayashree C N,
Harish M Kittur and Girish V A “Implementation of
Vedic Multiplier for Digital Signal Processing”
International Conference on VLSI, Communication
& Instrumentation (ICVCI) 2011.
[5] G. Shafirulla, M. Subbareddy, “ Design of high
speed FFT processor based on FPGA”, Vol.2, Issue
3, May- June 2012, pp 657-660, International
Journal of Modern Engineering Research (IJMER) ,
ISSN: 2249-6645.
[6] Anvesh kumar, Ashish raman, “Low power,
High Speed ALU by Vedic Mathematics” published
in National Conference organised by NIT, hamirpur
2009.
[7] Chen-Fong Hsiao, Yuan Chen, Chen-Yi Lee,“A
Generalized Mixed-Radix Algorithm for Memory-
Based FFT Processors”, pp 1549-7747 © 2010 IEEE.
[8] M. Mohamed Ismail, M.J.S Rangachar, Ch. D. V.
Paradesi Rao, “An Area Efficient Mixed-Radix 4-2
Butterfly with Bit Reversal for OFDM Applications”,
European Journal of Scientific Research, ISSN
1450-216X Vol.40 No.4 (2010), pp.515-521, ©
EuroJournals Publishing, Inc. 2010.
[9] M. Ramalatha, Senior Member, IEEE, K. Deena
Dayalan, Member, IEEE, P. Dharani, Member, IEEE,
S. Deborah Priya, Member, IEEE,” High Speed
Energy Efficient ALU Design using Vedic
Multiplication Techniques” ACTEA 2009, July 15-
17, 2009 Zouk Mosbeh, Lebanon, 978-1-4244-3834-
1/09/ © 2009 IEEE.
[10] Xin Xiao, Erdal Oruklu and Jafar Saniie, “Fast
Memory Addressing Scheme for Radix-4 FFT
Implementation”, 978-1-4244-3355-
1/09/$25.00©2009 IEEE.
[11] Hen-Geul Yeh, Gerald Truong, “Speed and
Area Analysis of Memory Based FFT Processors in
a FPGA”, 1-4244-0697-8/07/.00 © 2007 IEEE.
[12] Himanshu Thapliyal and Hamid R Arabnia, “A
time area power efficient multiplier and square
architecture based on Ancient Indian Vedic
mathematics”, department of computer science. The
University of Georgia, 415 graduate studies research
centre Athens, Georgia 30602-7404, U.S.A.

[13] Shripad Kulkarni, “Discrete Fourier Transform
(DFT) by using Vedic Mathematics”, report,
vedicmathsindia.blogspot.com, 2007.

