
Automated Testing Tool for Different Coverage Metrics
Shiva prasanth A

1
, Dhanalakshmi S

2
,Shilpa S

3
, kalyanisankar S

4
,

student1,3,4 Associate profesor2

Department of computer science and engineering

SNS College of Technology

Coimbatore
1shivaprasanthsp@gmail.com , 2rajamdhana senthilkumar@gmail.com3 shilpasundaram19@gmail.com ,

4sankar sekar@gmail.com

Abstract: Software testing is a critical element of

software quality assurance and represents the

ultimate review of specification, design and coding. It

is an important activity carried out in order to

improve the quality of the software. The main aim of

this testing approach is to find the errors and to make

the working of the software in efficient manner. Thus

testing can be carried out by finding the test cases. A

good test case is one that should have the high

probability of finding the errors. There are different

testing approaches and they are path coverage,

branch coverage, code coverage.It is a popular

approaches to measure the thoroughness of test

suites. For each testing approach there are different

tools available. In this paper we proposed the

technique that are used to find the coverage metrics

and common tool that can test all the coverage.

Key words: Branch coverage, Path coverage, Code

coverage, Cyclomatic Complexity.

INTRODUCTION

Coverages are of different types and the approaches

used for that also get varies. For each and every

coverage metrices the execution methods varies. In

this branch coverage can be found through

symbolic execution and symbolic reachablity. This

model identifies the frontier between symbolic

execution[1][2][3] and symbolic reachability. It

mainly focus on finding the rare execution

conditions and eliminate the infeasible branches

from coverage measurement.[4] It finds the product

a modified branch metric that indicates the amount

of feasible branches covered during testing.

Generalized Control Flow Graph(GCFG)[5] that

capture the state of analysis at each step.

Path Coverage is the structural testing strategy. It

mainly focus on the flow of execution. This flow of

execution can be founded by calculating cyclomatic

complexity.[6] Flow graph is a graphical

representation of logical control flow of the

program. Such a graph consists of a circle called a

flow graph node, which is known as node.[7]

Through the help of flow graph the execution and

the complexity of an program can founded. It

mainly concerate on the cyclomatic flow in the

graph. It also known as a cyclic flow graph.

[8]Graph that consists of a cycles and acyclic

nodes.

Code Coverage mainly focus on finding the code

that has be executed while performing the test

suites. There are different types in this code

coverage such as statement coverage, loop

testing,[11] condition testing, structural testing.

Branch Coverage comes under this code coverage

method.[10] It is very important metrices because

each and every software are developed by

executing the codes. Code coverage is used to test

the loop constructs. Structural testing[11] is

sometimes called white-box testing. Test cases is

according to the program structure.

BIDIRECTIONALSYMBOLIC ANALYSIS

Bidirectional symbolic analysis coordinates the

forward and backward analysis through the

model.[1] It includes finding the reachability

frontier, which guide the analysis. It includes

finding the symbolic execution and symbolic

reachability to improve and refine the branch

coverage, by covering not-yet coverd branches and

identifying the infeasible branches.[2] This analysis

finds the target branches and drives the alternation

of the different analysis steps. It includes finding

the code that test case that not yet covered.

A.Symbolic Execution

Symbolic Execution targets the frontier edge and

symbolically analysis towards the possible

successor node. It mainly focus on the sequence

flow of execution,[3][4] while we consider the

control flow edge. This execution strategy includes

drawing a graphic format of a given code. There

are different diagrammatic approach for coding a

control flow graph. All the possible flow of

execution will be in this statement. There are three

main computing process Symbolic execution,

ComputeFrontierEdges, ModelCoarseningstep.

B.Symbolic Reachability

A symbolic reachability analysis step augments the

GCFG with new reachability states.[5][4] It

International Journal of Advanced and Innovative Research (2278-7844) / # 120 / Volume 5 Issue 10

 © 2016 IJAIR. All Rights Reserved 120

mailto:shivaprasanthsp@gmail.com
mailto:senthilkumar@gmail.com3
mailto:sekar@gmail.com

includes the sequence flow of a graph from top to

bottom edges. Splitting of a flow graph into two

equal parts and finding the execution is carried out

through this execution strategy method. It produces

a new state by augmenting the predicate with the

information of the control flow branch.

C.Frontier

The frontier states represent the best candiates for

increasing branch [1][2][3]coverage by i) extending

executed states towards reachability conditions that

of uncovered branches ii) refining reachability

conditions that cannot be satisfied from the

currently executed states, iii) identified

unsatisfiable reachability conditions to revel

infeasible branches.[5] The identification of the

frontier states prevents forward and backward

analyses.

D.GCFG Model

The GCFG model[5] integrates the states computed

with symbolic execution, the states computed with

symbolic reachability analysis and the control flow

relations among them.

The GCFG[5][4] represents the program branches

executed during symbolic execution and identifies

the target branches that are program branches that

have not been executed and have not been

identified as unreachable yet with symbolic

reachability analysis

Fig 1 Statement coding

The GCFG flow graph for above program can be

represented by flow graph. The symbolic execution

and the symbolic reachability can be founded with

the help of given flow graph.

Fig 2 Control Flow Graph

Symbolic Execution : 1-R0-2, 1-R1-3, 3-R2-4, 3-

R4-5, 4-R5-6, 5-R6-6

Symbolic Reachability: 1-R0-2,

1-R1-3-R2-4-R5-6,

1-R1-3-R4-5-R6-6

PATH COVERAGE

This coverage metrices is intended to exercise

every independent execution path of the program at

lease once. It is a important strategic approach in

the testing metric.[7][8] There are sequence flow of

steps that needs to carried out for maintaining a

path coverage metric. The steps are as follows

1. Design the flow graph for the program or a

component

2. Calculate cyclomatic complexity

3. Select a basis set of path[8]

4. Generate the test case for the paths

 These are the steps that needs to carried out while

performing the path coverage, Step 1 is a design of

flow graph which is included in the fig

no.2.2.[7][8] Cyclomatic Complexity can be

calculated through the equation

 V(G)= E-N+2

Where E-Number of edges in the flow graph

N- Total number of nodes in the flow graph

International Journal of Advanced and Innovative Research (2278-7844) / # 121 / Volume 5 Issue 10

 © 2016 IJAIR. All Rights Reserved 121

In the figure 2.2 the number of edges =7,

Number of Nodes=6

Cyclomatic Complexity=E-N+2

 7-6+2

3

Complexity rate=3

Next includes finding the set of paths that are

available in the flow graph. Paths are

Path 1: 1,2,6

Path 2: 1,3,4,6

Path 3: 1,3,5,6

Last steps includes finding the test cases. Test cases

that included in this program are illustrated below

Test case 1: validating the list boundary and

checking the loop condition statement

Test case 2: Checking[7][8] the second loop

statement and checks whether it moves to the

proper else statement.

CODE COVERAGE

Code Coverage[11][10] is a metric that includes

finding the code that’s are not executed while

performing the execution of test cases. Coverage

includes finding the which part of particular suite

case runs. First method invented for systematic

software testing. There are many tools for

performing the code coverage metrices. Statement

coverage comes under this technique.

 if a and b then

Condition coverage can be satisfied by

two tests

 A=true b=false

 A=false b=false

A. Modified Condition/Decision Coverage

It requires both decision and condition coverage be

satisfied. Avionics software is required of modified

condition/decision coverage(MC/DC).[10] It is a

multiple coverage .It includes other types of

coverage[9] such as loop coverage, entry/exit

coverage, state coverage.

B.Loop Coverage

Loop testing is a white box testing technique which

is used to test the loop constructs.[9] For simple

loops there are different step concern,

i) n=0 that means skip the loop completely.

ii)n=1 that means one pass through the loop is

tested.

iii)n=2 that means two passes through the loop is

tested.

iv)n=m that means testing is done when there are m

passes where m<n.

v)Perform the testing when number of passes are n-

1,n,n+1.

Coverage Tools

There are different testing tools available in market,

but depends on the tools coverage metrices[10]may

get varies and some of the tools are given below

A.Jcov

Developed by sun JDK, it test from very beginning

of Java,[11] distribution terms are GNU Public

License, Version 2 with the class path Exception,

open source, working with JDK.

B.JACOCO

Open source toolkit for measuring and reporting of

Java Code Coverage, Eclipse Public License

distribution terms. It is developed for replacement

of EMMA. It instruments[10][11] bytecode, while

running ECLEMMA Eclipse(software) is included.

C.Cobertura

Developed by stevan christou, it does not

instrumenting the byte code, License GPL 2.0

Operating system cross-platform.

D.Emma

It is a latest release took place in mid-2005. As

replacement of JACOCO works by wrapping each

time of code and each condition with flag. It iss

possible to dump[10] or result coverage data

remotely without JUM exit. Outputs reports can

highlight items with the coverage levels below

thresholds.

E.Djunit

Djunit[10] is a eclipse plug in-that generated test

coverage can be founded, Test with mock

objects,and provide simple trace information about

the cases.It is covering reporting tool.

F.Edumma

Edumma[11] is based on jacoco code coverage

library. The eclipse integration has its focus on

suppprorting the individual developer in high

interactive way.

CONCLUSION

We conclude by saying that there are different tools

available for performing different testing coverage.

But the coverage level varies from tool to tool. So

by having the common tool which can perform all

the three coverage metrices the efficiency get

increases. Through the proposed system only one

International Journal of Advanced and Innovative Research (2278-7844) / # 122 / Volume 5 Issue 10

 © 2016 IJAIR. All Rights Reserved 122

common tool is used for perform the coverages. No

need of going for separate tool for different

coverages. Sequence flow is maintain by having the

common automated testing tool for all coverage

metrices.

REFERENCEES

[1] L. A. Clarke and D. S. Rosenblum, “A historical

perspective on runtime assertion checking in software

development,” SIGSOFT Sooft. Eng. Notes,vol. 31, no.

3, pp. 25-37, May 2006.

[2] M.Baluda , P. Braione, G. Denaro,”Enhancing

structural software coverage by increementally

computing branch executability,” Software quality

journal,Volume 19,no.4,2011

[3] RTCA, Inc.,”DO-178C/ED-12C: Software

considerations in airborne systems and equipment

certification,”Dec 2011

[4] C.Cadar,D.Dunbar, ”KLEE: Unassisted automatic

generatoin of high-coverage tests for complex system

programs,” in proceedings of Eighth USENIX

Symposium on operating systems design and

implementation(OSDI 2008), 2008

[5] T. Xie, N. Tillmann, P. de Halleux, and W.

Schulte,“Fitnessguided path exploration in dynamic

symbolic execution,”in Proceedings of the 39th Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN 2009), June-July 2009, pp.

359–368

[6] A. Bertolino and F. Basanieri. A practical approach to

UML-based derivation of integration tests. Proceedings

of the 4th International Software Quality Week Europe

and International Internet Quality Week Europe, 2000.

[7] J.R. Birt and R. Sitte. Optimizing testing efficiency

with error-prone path identification and genetic

algorithms. In Software Engineering Conference, 2004.

Proceedings. 2004 Australian, pages 106 – 115, 2004.

[8] Z. Zhonglin and M. Lingxia. An improved method of

acquiring basis path for software testing. In Computer

Science and Education (ICCSE), 2010 5th International

Conference on, pages 1891 –1894, aug. 2010.

[9] C. Youngblut and B. Brykczynski, “An examination

of selected commercial software testing tools”, IDA

Paper P- 2769, Inst. for Defense Analyses, Alexandria,

Va., (1992) December.

[10] H. Zhu, P.A.V. Hall and J. H. R. May, “Software

unit test coverage and adequacy”, ACM Computing

Surveys (CSUR), vol. 29, no. 4, (1997), pp. 366-427.

[11] M. Kessis, Y. Ledru and G. Vandome, “Experiences

in Coverage Testing of a Java Middleware”, In Fifth

International Workshop on Software Engineering and

Middleware (SEM’05), Lisbon, Portugal, ACM Press,

(2005), pp. 39–45.

International Journal of Advanced and Innovative Research (2278-7844) / # 123 / Volume 5 Issue 10

 © 2016 IJAIR. All Rights Reserved 123

