
Study on Applications of String Searching and

Matching Algorithms
P.Sundari1, S.Deepasamili2

Assistant Professor1

PG & Research Department of Information Technology

Government Arts College (Autonomous), Coimbatore-18.

M.Phil. Research Scholar2

PG & Research Department of Computer Science

Government Arts College (Autonomous), Coimbatore-18.

Abstract: Many organizations gather huge amount of

data to maintain their business and decision making

process. The data gathered from different sources can

have data features problems. These types of problem

become familiar when different databases are

combined. The data in the combined structure need to

be cleaned for appropriate decision making. Cleansing

of data is one of the major critical problems. In this

survey, focus is on one of the major issues that varies

duplicate detection and search process using string

searching and string matching algorithms.

Keywords: Duplicate detection, string searching, string

matching.

I INTRODUCTION

Discovering database records that are partially

duplicates, but not accurate duplicates, is an

significant task. Dataset may have duplicate records

with the same real-world entity because of data entry

mistakes, unstandardized contractions, or variation in

the complete schemas of records from numerous

dataset. In real time appliance, classification of

records that denote the similar entity is a main contest

to be solved. Such records are represented as

duplicate records. This survey offered analysis of the

literature on duplicate record detection using string

searching and matching algorithm.

II BASIC CONCEPT:

STRING MATCHING:

String matching is a technique to locate occurrence of

a pattern string within one more text string. Given a

text T [0...n-1] and a pattern P [0...m-1] where m ≤ n,

find all occurrence of the pattern within the text.

Example: T = 010001100010110001 and P = 0001,

occurrence they are:

First occurrence starts at T [2], Second occurrence

starts at T [7], and Third occurrence starts at T [14].

To discover pattern within a text various string

matching algorithms are used.

III RELATED WORKS

A.RABIN KARP ALGORITHM:

It is a string search algorithm which evaluates string's

hash values, rather than the string itself. For effective,

the hash value of the next position in the text is

simply calculated from the hash value of the present

position.

Rabin karp string searching algorithm utilizes

hashing to conclude any one set of pattern strings in a

text. The Rabin-Karp string searching calculates a

hash value for the pattern, and for each M-character

correlate text to be calculated. If the hash values are

unequal, the algorithm will compute the hash value of

next M-character sequence. Then the hash values are

equal, the algorithm will calculate the pattern and the

M-character sequence. In this method, there is only

one comparison for each text subsequence, and

character matching is only required when hash values

match. Rather than following additional complicated

skipping, the Rabin–Karp algorithm looks testing of

equality and the pattern to the substrings in the text

by using hash function [8].

Hash value computation:

The key to the Rabin–Karp algorithm's performance

is the effective computation of hash value of the

successive substrings of the text. The Rabin finger

print is a familiar and efficient rolling hash function.

The Rabin fingerprint treats eash substring as a

number in some base, the base being generally a

large prime. For example, if the substring is "hi" and

the base is 101, and then the hash value would be 104

× 101
1
 + 105 × 101

0
 = 10609 (ASCII of 'h' is 104 and

of 'i' is 105). Systematically, this algorithm is only

same to the true number in a non-decimal system

description, because for the example we could have

the "base" less than one of the "digits". Let hash

function for a much more detailed discussion. The

important benefit achieved by utilizing a rolling hash

such as the Rabin fingerprint is that it is possible to

calculate the hash value of the next substring from

International Journal of Advanced and Innovative Research (2278-7844) / # 109 / Volume 5 Issue 10

 © 2016 IJAIR. All Rights Reserved 109

the earlier one by doing only a constant number of

operations, independent of the substring's lengths.

For example, if we have text "abracadabra" and we

are searching for a pattern of length 3, the hash of the

first substring, "abr", utilizing 101 as base is: ASCII a

= 97, b = 98, r = 114. Hash ("abr") = (97 × 101
2
) +

(98 × 101
1
) + (114 × 101

0
) = 999,509.

We can then calculate the hash of the next substring,

"bra", from the hash of "abr" by subtracting the

number further added for the first 'a' of "abr",

example 97 × 101
2
, multiplying by the base and

adding for the last a of "bra", i.e. 97 × 101
0
. Like so:

base old hash old 'a' new 'a' Hash ("bra") = [101

× (999,509 - (97 × 101
2
))] + (97 × 101

0
) = 1,011,309.

If the substrings in question are lengthly, this

algorithm accomplish great savings compared with

many other hashing schemes.[8]

B. BOYER-MOORE ALGORITHM:

 It was built-up by Robert S. Boyer and J. Strother

Moore in 1977. It is an efficient string searching

algorithm that is the standard benchmark for practical

string search study. The BM algorithm is consider the

most effective string-matching algorithm in commen

applications, for example, in text editors and

commands substitutions. It woks the highest when

the alphabet is moderately sized and the pattern is

comparatively long. During with testing of a possible

placement of pattern P against text T, a dissimilar of

text character T[i] = c with the corresponding pattern

character P[j] is handled as follows: If c is not

represent anywhere in P, then shift the pattern P

completely past[i]. Otherwise, shift P until an

occurrence of character c in P gets joined with T[i].

As per the study the Boyer Moore algorithm is the

best for the string.[6]

 For example,

Let Input: MRRQRKKTETDDMAREWQLMS

Pattern: KKT

After the execution of Boyer Moore algorithm

Input: MRRQRKKTETDDMAREWQLMS

 | | |

 Pattern: KKT

 Position ^

C. KNUTH- MORRIS-PRATT ALGORITHM:

 The Knuth-Morris-Pratt Algorithm (KMP) was

formed by D. Knuth, J. Morris and V. Pratt in 1974.

Knuth, Morris and Pratt built-up a linear time

algorithm for the string matching problem. In this

algorithm, the pattern is evaluated with the text from

left to right. In case of a variation or whole match it

utilizes the notion border of the string. It decreases

the time of searching compared to the Brute Force

algorithm. It assures that a string search will not need

more than N character comparison. Knuth-Morris-

Pratt algorithm‟s asymptotic time complication is

O(n).The sprint time of KMP algorithm is

comparative to the time wanted to read the characters

in text and pattern. In additional words, the most

horrible–case flow time is O (m+n) and it requires O

(m) extra space.[3]

D. BRUTE FORCE ALGORITHM:

 It is also recognized as evidence by tiredness, also

known as evidence by cases. The brute force method

is a method of mathematical proof in which the report

to be verified is divided into a finite number of cases

and every case is tested to see if the proposal in query

holds. Evidence by exhaustion has two stages:

evidence that the cases are exhaustive; i.e., that every

case of the statement to be established matches

situations of (at least) one of the cases and an

evidence of each of the cases. [4]

E. ALGORITHM USING LEVENSHTEIN

DISTANCE:

 It is a metric for quantify the quantity of variation

between two sequences (i.e. an edit distance). The

term edit distance is often utilized to refer

particularly to Levenshtein distance. The Levenshtein

distance between two strings is explained as the

minimum number of edits wanted to convert one

string into the other, with the acceptable edit process

being insertion, deletion, or replacement of a

particular character.[5]

IV APPLICATONS:

String Prefix Matching Problem:

 This represents the matching of the prefixes of the

pattern and the text. It also tests the maximum prefix

of some specified sequence text. This arises at the

starting of the patterns. It also contains preprocessing

of the pattern. KMP algorithm and deterministic

sequential comparison model are applied to solve this

problem. This can be done by conveying the lower

and the upper bounds of the prefix to be matched.

 Retrieving Music Pattern from Musical

Database:

 When musical note from musical database are to

be recovered then we want string matching. The four

parallel techniques used for this are edit distance,

dice similarity, jacquard similarity and cosine

similarity. The musical notes are retrieved by Query

by Example approach. So the greatest scheme for this

technique is Levenshtein distance with jacquard

International Journal of Advanced and Innovative Research (2278-7844) / # 110 / Volume 5 Issue 10

 © 2016 IJAIR. All Rights Reserved 110

similarity. This is an inexact music search technique.

As the jacquard similarity execute exceptional in

passing a query when a pitch change scenario is

selected [11].

Network Intrusion Detection System:

 This problem includes accurate pattern matching

problem. This is open source Intrusion detection

system snort. It decrease computational time and

higher order of context matching is executed. Boyer

Moore algorithm is utilized to resolve this as it wants

precise matching of the certain pattern. To

accomplish this tree data structure is utilized in

adapted algorithms that translate the bad character

shift to good prefix shift and resulting in far better

performance.

String matching in detecting plagiarism:

 Organization of huge collection of simulated data in

fundamental environments is significant for several

systems that give data mining, reflecting, storage, and

content distribution. In its easiest form, the

documents are formulated, duplicated and

modernized by emails and web pages. Although

redundancy may enhance the reliability at a level,

unreserved redundancy aggravates the recovery

functions and might be ineffective if the revisited

documents are obsolete.

This suggests new plagiarism detection techniques by

using Karp-Robin algorithm and String Matching

algorithm. Here data reliance expression file, take out

keyword and utilize twin algorithm technique which

conquer all problems of matrix, parallel hash value as

well as string matching, which detects plagiarized

programs or documents by using hash function.

Experiments have well verified its effectiveness over

existing tools and it is appropriate in practice.[10]

Clone Detection System:

Code duplication is a usual problem found in

software development. It could produce various

clones. Clone is a block of code. It reproduces many

time on the source code. The existence of clone is

highly probable to intensify the risk on software

progress. Technique for detecting clone includes

textual, lexical, syntactic, and semantic approach. In

this algorithm, we estimate by utilize various aspects

based on the condition of every pair. We progress a

novel method to detect clone by using Rabin-Karp

parallel algorithm. The algorithm is more efficient

than the Rabin-Karp algorithm. In cases of

estimation, we construct a detecting tool competent

of processing source code in both lexical and

syntactic manner. We estimate the performance of

the proposed method. To do so, we contrast parallel

Rabin-Karp to Traditional Rabin-Karp. The result

express parallel Rabin-Karp could gain best

performance.[9]

ALGORITHM & ITS CHARACTERISITCS:

ALGORITHM

COMPARIS

ON

ORDER

 CHARACTERISTICS

Rabin karp

 Left to

right

Use hashing function,

very effective for

multiple patterns

matching, ID matching.

 KMP

 Left to

right

Independent of alphabet

size, use the notion of

border of the string,

increases performance,

decrease delay and

decrease time of

comparing.

 Brute

force

 Not

relevant

Use one by one

character shift. Not an

optimal one.

Boyer

Moore

 Not

relevant

 Use both good suffix

shift and bad character

shift.

V CONCLUSION:

 The algorithms for string searching may not be best

optimal algorithm but better than the usual

algorithms. Rather than utilizing each algorithm to

every application one application is represented with

certain optimal algorithm. Then it has been noticed

that main applications uses Boyer Moore, BMH or

KMP algorithms for their efficiency and

effectiveness and other applications utilize the basics

of these algorithms for their functionalities as the

KMP algorithm has less time complexity and Boyer

Moore algorithms has preprocessing time with less

complexity. The Robin Karp algorithm will produce

result of precision value up to 85% and above as well

as recall value. It is also able to minimize failed

detection percentage around 10%. Other algorithms

depend upon the type of input and are effective for

particular application.

REFERENCES:
1. Boyer Moore Word Search Algorithm Definition

Retrieved from Wikipedia

2. Dany Breslauer, Livio Colussi and Laura Toniolo, „Tight

Comparison Bounds for the String Prefix Matching

Problem‟, Stiching Mathematic Centrum, Amsterdam, 1-9,

1992.

International Journal of Advanced and Innovative Research (2278-7844) / # 111 / Volume 5 Issue 10

 © 2016 IJAIR. All Rights Reserved 111

 3. Kunth Moris Word Search Algorithm Definition

Retrieved from Wikipedia

4. Minal Suthar Amit Patel Shivali Shah” A Survey Paper

on String Matching IJSRD - International Journal for

Scientific Research & Development Vol. 3, Issue 05, 2015.

 5. Nimisha Singla, Deepak Garg ”String Matching

Algorithms and their Applicability in various Applications”

International Journal of Soft Computing and Engineering

(IJSCE) ISSN: 2231-2307, Volume-I, Issue-6, January

2012 218.

6.Pandiselvam.P, Marimuthu.T, Lawrance. R, A

comparative study on string matching algorithms of

biological sequences.

7. Ramazan S. Aygün “structural-to-syntactic matching

similar documents”, Journal Knowledge and Information

Systems archive, Volume 16 Issue 3, August 2008.

8. Rabin Karp Word Search Algorithm Definition

Retrieved from Wikipedia.

9. Rahadian Dustrial Dewandono , Fahmi Akbar Saputra ,

Siti Rochimah“Clone Detection Using 8. 8. Rabin-Karp

Parallel Algorithm” The Proceedings of The 7th ICTS,

Bali, May 15th-16th, 2013 (ISSN: 9772338185001)

10. Sonawane Kiran Shivaji, Prabhudeva S “Plagiarism

Detection by using Karp-Rabin and String Matching

Algorithm Together” International Journal of Computer

Applications (0975 – 8887) Volume 116 – No. 23, April

2015.

11. Vidya SaiKrishna, Prof. Akhtar Rasool and Dr. Nilay

Khare” String Matching and its Applications in Diversified

Fields” IJCSI International Journal of Computer Science

Issues, Vol. 9, Issue 1, No 1, January 2012.

12. Wikipedia The free Encyclopedia

en.wikipedia.org/wiki/String_searching_algorithm,

13. Yu-lung Lo Chien-Chi Huang, „Fault Tolerant Music

Retrieval by similar String Matching‟, National Science

Council of ROC Grant NSC98-2221-E-324-027,1.

International Journal of Advanced and Innovative Research (2278-7844) / # 112 / Volume 5 Issue 10

 © 2016 IJAIR. All Rights Reserved 112

