
 International Journal of Advanced and Innovative Research (2278-844)/

 Volume 7 Issue 11

1

©2018 IJAIR. All Rights Reserved

http://ijairjournal.com

A SURVEY ON: MODULAR APPROACH FOR

CUSTOMIZABLE UART

1
Pratibha Vishwakarma,

2
Mr.Sanjeev Shrivastava

1
Research Scholar, RKDF College of Engineering Bhopal (MP), India

2
Guide, RKDF College of Engineering Bhopal (MP), India

Abstract—This paper propose a technique for

software-implementation of an UART (Universal-

Asynchronous-Receive-Transmit) with the goal of

getting a customizable UART-core which can be

used as a module in implementing a bigger system

irrespective of one’s choice of implementation

platform. This paper is implementing the design

through Verilog HDL using Xilinx 14.2 design suite

and it is tested on Spartan-6 FPGA after interfacing

the circuit under test using PC with the help of RS-

232 cable. The simulation results and the test results

are supporting our proposal.

Keywords—UART; COTS; CU.

I. INTRODUCTION

A UART (Universal Asynchronous Receiver and

Transmitter) is a standard communication component

that is provided by most of the available

microcontrollers. In order to supply a low-cost

solution, two novel field-bus protocols, TTP/A [1]

and LIN [2], specify a common UART as

communication interface to the network. Both

protocols are central master UART protocols for low-

cost single-chip smart sensor and actuator nodes,

which enable a temporal predictable communication

[3]. Case studies [4, 5] have shown that an

implementation with COTS (commercial-off the-

shelf) hardware is feasible. However, an in-deep

analysis of the behavior of standard hardware UARTs

has shown that they are hardly suitable for real-time

communication. Moreover, both LIN and TTP/A

specify a synchronization message that enables a

slave node with an imprecise low-cost on-chip

oscillator to synchronize with a running network. As

a consequence, implementations for LIN and TTP/A

exist that prefer a software-implemented UART to a

COTS hardware UART component, leading to

increased software complexity for the

implementation of the protocol.

 UART PROTOCOL

The UART protocol is a serial communication

protocol that takes bytes of data and transmits the

individual bits in a sequential fashion. At the

destination, a second UART re-assembles the bits

 International Journal of Advanced and Innovative Research (2278-844)/

 Volume 7 Issue 11

2

©2018 IJAIR. All Rights Reserved

http://ijairjournal.com

into complete bytes. The UART usually does not

directly generate or receive the external signals used

between different items of equipment. Separate

interface devices are used to convert the logic level

signals of the UART to and from the external

signalling levels. External signals may be of many

different forms. Examples of standards for voltage

signalling are RS-232, RS-422 and RS-485 from the

EIA. Typically it’s a 3-line (transmit, receive,

ground) communication. Communication which

enables it to be “full duplex” (both send and receive

at the same time) or “half duplex” (devices take turns

transmitting and receiving).

Figure 1: Block Diagram Of The UART Module.

A. Character Encoding: Each character is sent

(shown in fig.1) as a logic low start bit, a

configurable number of data bits (usually 7

or 8, sometimes 5), an optional parity bit,

and one or more logic high stop bits. The

start bit signals the receiver that a new

character is coming. The next five to eight

bits, depending on the code set employed,

represent the character. Following the data

bits may be a parity bit. The next one or two

bits are always in the mark (logic high, i.e.,

„1) condition and called the stop bit(s). They

signal the receiver that the character is

completed. Since the start bit is logic low (0)

and the stop bit is logic high (1) then there is

always a clear demarcation between the

previous character and the next one.

Figure 2: 8-Bit Character In One Frame.

B. Receiver: All operations of the UART

hardware are controlled by a clock signal

which runs at a multiple (say, 16) of the data

rate - each data bit is as long as 16 clock

pulses. The receiver tests the state of the

incoming signal on each clock pulse,

looking for the beginning of the start bit. If

the apparent start bit lasts at least one-half of

the bit time, it is valid and signals the start

of a new character. If not, the spurious pulse

is ignored. After waiting a further bit time,

 International Journal of Advanced and Innovative Research (2278-844)/

 Volume 7 Issue 11

3

©2018 IJAIR. All Rights Reserved

http://ijairjournal.com

the state of the line is again sampled and the

resulting level clocked into a shift register.

After the required number of bit periods for

the character length (5 to 8 bits, typically)

have elapsed, the contents of the shift

register is made available (in parallel

fashion) to the receiving system. The UART

will set a flag indicating new data is

available, and may also generate a processor

interrupt to request that the host processor to

transfer the received data. In some common

types of UART, a small first-in, first-out

FIFO buffer memory is inserted between the

receiver shift register and the host system

interface. This allows the host processor

more time to handle an interrupt from the

UART and prevents loss of received data at

high rates.

C. Transmitter: Transmission operation is

simpler since it is under the control of the

transmitting system. As soon as data is

deposited in the shift register after

completion of the previous character, the

UART hardware generates a start bit, shifts

the required number of data bits out to the

line, generates and appends the parity bit (if

used), and appends the stop bits. Since

transmission of a single character may take a

long time relative to CPU speeds, the UART

will maintain a flag showing busy status so

that the host system does not deposit a new

character for transmission until the previous

one has been completed; this may also be

done with an interrupt. Since full-duplex

operation requires characters to be sent and

received at the same time, practical UARTs

use two different shift registers for

transmitted characters and received

characters.

II. LITERATURE SURVEY

Kumar [6] [7] showed the benefit of multi-core

general purpose processor chips aving heterogeneous

rather than homogenous cores. They considered

superscalar processor parameters related to cache,

instantiations of floating-point, multiply, and

arithmetic-logic units, and sizes of the register file,

translation lookaside buffer, and load/store queue,

yielding 480 possible single-core configurations. Via

exhaustive search, they showed that an optimally

configured four-core system has up to 40% better

performance for a given workload, versus the best

homogeneous four-core system for that workload.

Givargis [8] developed a tuning approach for

parameterized system-on-a-chip platforms,

considering parameters related to cache, bus,

processor voltage, and a few parameters in

peripherals. They used a user’s denotation of

independent subsets of parameters to extensively

prune the configuration space before searching

dependent parameters exhaustively or using

heuristics. They showed roughly 5x tradeoffs

between power and performance for different

applications.

 International Journal of Advanced and Innovative Research (2278-844)/

 Volume 7 Issue 11

4

©2018 IJAIR. All Rights Reserved

http://ijairjournal.com

Sekar [9] discussed trends toward highly

parameterized platforms, including parameterized

processor cores, peripherals, caches, etc., and then

described a technique for dynamically tuning the

voltage and frequency of the processor.

Yiannacouras [10] [11] developed a framework for

generating and customizing a soft-core for FPGAs,

with parameters including hardware versus software

multiplication, different shifter implementations, and

pipeline depth. They showed 30% improvements

obtained by optimally tuning soft-core parameters for

a specific application, using exhaustive search to

carry out the tuning. Their work motivates the need

to develop efficient automated customization

heuristics.

We previously [12] developed heuristics for soft-core

parameter tuning. The approach assumed that

synthesis and execution (or simulation) of soft-core

configurations, rather than pure estimation

approaches, is essential for accurate evaluation of

FPGA soft cores, due to the tremendous variation of

soft core performance for different applications and

across the hundreds of different FPGA devices by an

FPGA vendor. Because synthesis/execution runs are

costly, requiring tens of minutes or more, we

developed several tuning heuristics that utilized only

about a dozen synthesis/execution runs, thus

executing in 1-2 hours. We considered a Xilinx

Microblaze soft core processor whose parameters

each involved the option of instantiating a hardware

component, including a hardware multiplier, barrel

shifter, divider, floating point unit, or a fixed-sized

cache. That work showed 2x application speedups of

a customized core versus a base core having no

optional components instantiated.

Our previous best heuristic (as well as our other

heuristics) used what we will call a “single factor”

analysis, a common analysis approach. The heuristic

was guided by the speedup versus the base core when

instantiating exactly one (single factor) of the core’s

optional hardware components. The heuristic then

sorted each component by the ratio of its speedup

over size, yielding an “impact-ordered tree” of

parameters, which the heuristic then descended

(encountering two choices per tree level) to find a

solution. While a single-factor analysis is effective

for on/off-type parameters, such an approach lacks an

obvious extension for parameters that have two non-

zero values (which value would be the base value?)

or that have three or more values. Furthermore, a

single-factor analysis may be inaccurate if parameters

are interdependent. For example, neither of two

components may individually yield speedup, but the

two together may; conversely, two components may

individually each yield speedup, but instantiating

both may yield little benefit beyond instantiating just

one, due to functionality overlap. In contrast, the

approach we introduce here performs a multifactor

analysis, supporting multi-valued parameters and

considering interdependent parameters, as will be

described.

III. CONCLUSION

 International Journal of Advanced and Innovative Research (2278-844)/

 Volume 7 Issue 11

5

©2018 IJAIR. All Rights Reserved

http://ijairjournal.com

We have designed our UART module in generic form

which is operating fine with no under run error and

can be customized to make it free from overrun error

with the capability provided and so can be made

available as IP core(Intellectual-Property-Core) by

simply coating it with a proper wrapper(e.g. IBM-

core connect SPLB-wrapper, AMBA APB-wrapper

etc.

REFERENCES

[1] H. Kopetz et al. Specification of the TTP/A protocol.

Technical report, Technische Universitat Wien, Institut f ¨

ur Technische Informatik, Vienna, Austria, March 2000.

[2] Audi AG, BMW AG, DaimlerChrysler AG, Motorola

Inc. Volcano Communication Technologies AB,

Volkswagen AG, and Volvo Car Corporation. LIN

specification and LIN press announcement. SAE World

Congress Detroit, http://www.lin-subbus.org, 1999.

[3] H. Kopetz, W. Elmenreich, and C. Mack. A comparison

of LIN and TTP/A. In Proceedings of the 3rd IEEE

International Workshop on Factory Communication

Systems, pages 99–107, Porto, Portugal, September 2000.

[4] P. Peti and L. Schneider. Implementation of the TTP/A

slave protocol on the Atmel ATmega103 MCU. Technical

Report 28/2000, Technische Universitat Wien, Institut f ¨ ur

Technische Informatik, ¨ Vienna, Austria, August 2000.

[5] Atmel Corporation. LIN Protocol Implementation on

the T89C51CC01/02, March 2003. Application note

available at http://www.atmel.com.

[6] Kumar, R., D. Tullsen, N. Jouppi. Core Architecture

Optimization for Heterogeneous Chip Multiprocessors.

International Conference on Parallel Architectures and

Compilation Techniques, PACT, Seattle, April 2006.

[7] Kumar. R., D. Tullsen, P. Ranganathan, N. Jouppi, K.

Farkas. Single-ISA Heterogeneous Multicore Architectures

for Multithreaded Workload Performance. In31st

International Symposium on Computer Architecture, ISCA-

31, June 2004.

[8] Givargis, T., F. Vahid. Platune: A Tuning Framework

for Systemon-a-Chip Platforms. IEEE Transactions on

Computer Aided Design, Vol. 21, No. 11, Nov. 2002, pp.

1317-1327.

[9] Sekar, K., Kanishka Lahiri, Sujit Dey. Dynamic

Platform Management for Configurable Platform-Based

System-on-Chips. Intl. Conf. on Computer-Aided Design

(ICCAD), 2003.

[10] Yiannacouras, P., J. G. Steffan,J. Rose. Application-

Specific Customization of Soft Processor

Microarchitecture. FPGA 2006.

[11] Yiannacouras, P., J. Rose, J. G. Steffan. The

Microarchitecture of FPGA-based soft processors

International Conference on Compilers, Architecture, and

Synthesis For Embedded Systems (CASES), 2005.

[12] Sheldon, D., R. Kumar, R. Lysecky, F. Vahid, D.

Tullsen. Application-Specific Customization of

Paramaterized FPGA SoftCore Processors. Intl. Conf. on

ComputerAided Design (ICCAD), 2006.

http://www.atmel.com/

