

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 Issue 11

S S D P P Labelling of Snake Graphs

Sunoj B S^{#1}, Mathew Varkey T K^{*2}

[#]Assistant professor of Mathematics, GPTC, Attingal, Kerala, India

¹spalazhi@yahoo.com

^{*}Assistant Professor of Mathematics, Thangal Kunju Musaliar College of Engineering, Kollam, Kerala, India ²mathewvarkeytk@gmail.com

Abstract— In SSDPP labelling, vertices of the graph are numbered with first (p-1) whole numbers and the edges (e = ab) with $|\{f(a)\}^2 + \{f(b)\}^2 - f(a)f(b)|$, where f(u) is the label of the vertex u. Greatest common divisor of the values of all edges incident on a vertex is called greatest common incidence number. The greatest common incidence number of each vertex of degree greater than or equal to 2 is one, then the graph is called sum of the squares and product prime labelling. Here we investigate triangular snake graph, quadrilateral snake graph , pentagonal snake graph , comb triangular snake graph for the labelling .

Keywords—sum of squares, incidence number, prime labelling, ssdpp graph.

L

INTRODUCTION

Here we use the graphs obtained by replacing edges of a finite path by triangles, quadrilaterals and pentagons. Here we take basic notations and definitions from [1], [2],[3] and [4] We introduced the concept ssdpp labeling in [5]. Here we focus our study to triangular snake graph, quadrilateral snake graph, pentagonal snake graph, comb triangular snake graph.

Definition: 1.1 Let G be a graph with p vertices and q edges. The greatest common incidence number of a vertex of degree ≥ 2 , is the greatest common divisor of the values of the edges incident on the vertex.

II. MAIN RESULTS

Definition 2.1 Let G be a graph with n vertices and m edges. Let f be a mapping from the vertex set to $\{0,1,2,\dots,n-1\}$ defined by $f(a_j) = j-1$, $1 \le j \le n$, and $f^*_{sqsdppl}$ from set of edges of G into natural numbers by

 $f_{sqsdppl}^{*}(ab) = |\{f(a)\}^{2} + \{f(b)\}^{2} - f(a)f(b)|$. $f_{sqsdppl}^{*}$ is said to admit ssdpp labeling, if (i) f is one-one and onto (ii) $f_{sqsdppl}^{*}$ is one-one and (iii) gcin of (a) = 1 for every vertex a of degree greater than one.

Definition 2.2 A graph which satisfy the above definition is called square sum difference product prime labeled graph.

Theorem 2.1 Let G be the graph obtained by replacing each edge of a path by triangles. G is a ssdpp graph if (n+1) is not a multiple of 7.

Proof: Let G be the graph and let $a_1, a_2, \dots, a_{2n-1}$ are the vertices of G. G has 2n-1 vertices and 3n-3 edges. Let f be a mapping from the vertex set of G into $\{0,1,2,\dots,2n-2\}$

defined by $f(a_i) = j-1$, $1 \le j \le 2n-1$, and $f^*_{sqsdppl}$ from set of edges of G into natural numbers by

0	,	
$f^*_{sqsdppl}(a_{i+1} a_i)$	$= 1 - i + i^2$,	i = 1,2,,2n-2
$f_{sqsdppl}^{*}(a_{2i+1} a_{2i-1})$	$= 4-4i+4i^2$,	i = 1,2,,n-1
<i>gcin</i> of (a ₁)	= 1	
gcin of (a_{i+1})	= gcd of { $f_{sqsdppl}^{*}(a_i a_{i+1})$, $f_{sqsdppl}^{*}(a_{i+1} a_{i+2})$ } = gcd of {1-i+i ² , 1+i+i ² }	
	$=$ gcd of $\{2i, 1\}$	$ -i+i^2\}$
	$=$ gcd of {i, 1-	i(1-i)
	= 1,	i = 1,2,,2n-3
<i>gcin</i> of (a_{2n-1})	= gcd of $\{f_{sqsa}^*\}$	$_{lppl}(a_{2n-2} a_{2n-1}),$
	f^*_{sqsdj}	$a_{2n-3} a_{2n-1}$ }
	$=$ gcd of { 4n ² -	$10n+7, 4n^2-12n+12$
	$=$ gcd of { 2n-3	$5, 4n^2 - 12n + 12$
	$=$ gcd of { 2n-3	5, 2n+2}
	$=$ gcd of { 2n-3	5, n+1}
	$=$ gcd of { n-6,	n+1}
	$=$ gcd of { n-6.	7 = 1.

Here (i) f is one-one and onto (ii) $f_{sqsdppl}^*$ is one-one and (iii) gcin of (a) = 1 for every vertex a of degree greater than one. Hence G is a ssdpp graph.

Theorem 2.2 Let G be the graph obtained by replacing each edge of a path by a quadrilateral. G is a ssdpp graph if (n+2) is not a multiple of 13.

Proof: Let G be the graph and let a_{1,a_2} ,-----, a_{3n-2} are the vertices of G. G has 3n-2 vertices and 4n-4 edges. Let f be a mapping from the vertex set of G into $\{0,1,2,--,3n-3\}$ defined by $f(a_i) = j-1$, $1 \le j \le 2n-1$, and $f_{sqsdppl}^*$ from set of edges of G into natural numbers by

$f_{sqsdppl}^*(a_{i+1} a_i)$	$= 1 - i + i^2$,	i = 1,2,,3n-3	
$f^*_{sqsdppl}(a_{3i-2} a_{3i+1})$	$= 9-9i+9i^2$,	i = 1,2,,n-1	
<i>gcin</i> of (a ₁)	= 1		
gcin of (a_{i+1})	= 1, i = 1,	2,,3n-4	
<i>gcin</i> of (a _{3n-2})	$= \gcd \text{ of } \{f^*_{sqsdppl}(a_{3n-3} a_{3n-2}),\$		
	f_{sqsd}^*	$_{ppl}(a_{3n-5} a_{3n-2}) \}$	
	$=$ gcd of { $9n^2-2$	$21n+13, 9n^2-27n+27$	
	= gcd of { 6n-	$14, 9n^2-27n+27$	
	$=$ gcd of { 3n-	$7, 9n^2-27n+27$	
	$=$ gcd of { 3n-	7, 3n+6}	
	$=$ gcd of { 3n-	7, n+2}	
	$=$ gcd of { n-1	1, n+2}	
	$=$ gcd of { n-1	$1, 13\} = 1.$	

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 Issue 11

Here (i) f is one-one and onto (ii) $f^*_{sqsdppl}$ is one-one and (iii) gcin of (a) = 1 for every vertex a of degree greater than one. Hence G is a ssdpp graph.

Theorem 2.3 Let G be the graph obtained by replacing each edge of a path by a pentagon. G is a ssdpp graph if (n+3) is not a multiple of 7 and n is not a multiple of 3.

Proof: Let G be the graph and let $a_1, a_2, \dots, a_{4n-3}$ are the vertices of G. G has 4n-3 vertices and 5n-5 edges.Let f be a mapping from the vertex set of G into $\{0,1,2,\dots,4n-4\}$ defined by $f(a_i)$ = j-1, $1 \le j \le 4n-3$, and $f_{sqsdppl}^*$ from set of edges of G into natural numbers by

natural numbers by $f_{sqsdppl}^*(a_{i+1} a_i) = 1 - i + i^2, \quad i = 1, 2, ..., 4n-4$ $f_{sqsdppl}^*(a_{4i-3} a_{4i+1}) = (4i)^2 + (4i-4)^2 - 4i(4i-4),$ i = 1, 2, ..., n-1 $gcin \text{ of } (a_1) = 1$ $gcin \text{ of } (a_{i+1}) = 1, \quad i = 1, 2, ..., 4n-5$ $gcin \text{ of } (a_{4n-3}) = gcd \text{ of } \{f_{sqsdppl}^*(a_{4n-4} a_{4n-3}), f_{sqsdppl}^*(a_{4n-3} a_{4n-7})\}$ $= gcd \text{ of } \{(4n-4)^2 + (4n-5)^2 - (4n-4)(4n-5)\}$ $= \gcd \text{ of } \{ (4n-4)^2 + (4n-5)^2 - (4n-4)(4n-5), \\ (4n-4)^2 + (4n-8)^2 - (4n-4)(4n-8) \}$

Here (i) f is one-one and onto (ii) $f^*_{sqsdppl}$ is one-one and (iii) gcin of (a) = 1 for every vertex a of degree greater than one. Hence G is a ssdpp graph.

Theorem 2.4 Let G be the graph obtained from a path of even number of vertices by replacing the edges by triangles alternately starting from the first vertex. G is a ssdpp graph if (n+2) is not a multiple of 14.

Proof: Let G be the graph and vertices of G are $a_1, a_2, \dots, a_{\underline{3n}}$.

Graph has $\frac{3n}{2}$ vertices and 2n-1edges.

Let f be a mapping from the vertex set of G into $\{0,1,2,\dots,\frac{3n-2}{2}\}$ defined by $f(a_i) = j \cdot 1$, $1 \le j \le \frac{3n}{2}$, and $f_{sqsdppl}^*$ from set of edges of G into natural numbers by $f_{sqsdppl}(a_{i+1} a_i) = 1 \cdot i + i^2$, $i = 1, 2, \dots, \frac{3n-2}{2}$ $f_{sqsdppl}^*(a_{3i-2} a_{3i}) = 7 \cdot 12i + 9i^2$, $i = 1, 2, \dots, \frac{n}{2}$ gcin of $(a_1) = 1$ $= 1, \qquad i = 1, 2, ..., \frac{3n-4}{2}$ = gcd of $\{f_{sqsdppl}^*(a_{\frac{3n}{2}}a_{\frac{3n-2}{2}}), f_{sqsdppl}^*(a_{\frac{3n}{2}}a_{\frac{3n-4}{2}})\}$ = gcd of $\{\frac{9n^2-18n+12}{4}, \frac{9n^2-24n+28}{4}\}$ *gcin* of (a_{i+1}) **gcin** of $(a_{\underline{3n}})$

Here (i) f is one-one and onto (ii) $f_{sqsdppl}^*$ is one-one and (iii) gcin of (a) = 1 for every vertex a of degree greater than one. Hence G is a ssdpp graph.

Theorem 2.5 Let G be the graph obtained from a path of even number of vertices by replacing the edges by triangles

alternately starting from the second vertex. G is a ssdpp graph. Proof: Let G be the graph and vertices of G are $a_1, a_2, \dots, a_{3n-2}$.

Graph has
$$\frac{3n-2}{2}$$
 vertices and 2n-3edges.

Let f be a mapping from the vertex set of G into $\{0,1,2,\dots, 0\}$ Let f be a mapping from the vertex set of G into $\{0,1,2,\dots,\frac{3n-4}{2}\}$ defined by $f(a_i) = j-1$, $1 \le j \le \frac{3n-2}{2}$, and $f_{sqsdppl}^*$ from set of edges of G into natural numbers by $f_{sqsdppl}^*(a_{i+1} a_i) = 1 - i + i^2$, $i = 1, 2, \dots, \frac{3n-4}{2}$ $f_{sqsdppl}^*(a_{3i-2} a_{3i}) = 7 - 12i + 9i^2$, $i = 1, 2, \dots, \frac{n-2}{2}$ $gcin of (a_1) = 1$ $gcin of (a_{i+1}) = 1$, $i = 1, 2, \dots, \frac{3n-6}{2}$ Here (i) f is one-one and onto (ii) $f_{sqsdppl}^*$ is one-one and (iii) gcin of (a) = 1 for every vertex a of degree greater than one

gcin of (a) = 1 for every vertex a of degree greater than one. Hence G is a ssdpp graph.

Theorem 2.6 Let G be the graph obtained from a path of odd number of vertices by replacing the edges by triangles alternately starting from the first vertex. G is a ssdpp graph . Proof: Let G be the graph and vertices of G are $a_1, a_2, \dots, a_{\underline{3n-1}}$.

Graph has $\frac{3n-1}{2}$ vertices and 2n-2edges.

Let f be a mapping from the vertex set of G into $\{0,1,2,\dots,\frac{3n-3}{2}\}$ defined by $f(a_i) = j-1$, $1 \le j \le \frac{3n-1}{2}$, and $f^*_{sqsdppl}$ from set of edges of G into natural numbers by

$f^*_{sqsdppl}(a_{i+1} a_i)$	$= 1-i+i^2$,	$i = 1, 2,, \frac{3n-3}{2}$
$f^*_{sqsdppl}(a_{3i-2} a_{3i})$	= 7-12i+9i ² ,	$i = 1, 2,, \frac{n-1}{2}$
gcin of (a ₁)	= 1	
gcin of (a_{i+1})	= 1,	$i = 1, 2,, \frac{3n-5}{2}$

Here (i) f is one-one and onto (ii) $f^*_{sqsdppl}$ is one-one and (iii) gcin of (a) = 1 for every vertex a of degree greater than one. Hence G is a ssdpp graph.

Theorem 2.7 Let G be the graph obtained from a path of odd number of vertices by replacing the edges by triangles alternately starting from the second vertex. G is a ssdpp graph, if (n+1) is not a multiple of 14.

Proof: Let G be the graph and vertices of G are $a_1, a_2, \dots, a_{3n-1}$.

Graph has
$$\frac{3n-1}{2}$$
 vertices and 2n-2edges.
Let f be a mapping from the vertex set of G into $\{0,1,2,-..,\frac{3n-3}{2}\}$ defined by $f(a_i) = j-1$, $1 \le j \le \frac{3n-1}{2}$, and $f_{sqsdppl}^*$
from set of edges of G into natural numbers by
 $f_{sqsdppl}^*(a_{i+1} a_i) = 1-i+i^2$, $i = 1,2,-..,\frac{3n-3}{2}$
 $f_{sqsdppl}(a_{3i-2} a_{3i}) = 7-12i+9i^2$, $i = 1,2,-..,\frac{n-1}{2}$
 $gcin of (a_1) = 1$
 $gcin of (a_{i+1}) = 1$, $i = 1,2,-..,\frac{3n-5}{2}$
 $gcin of (a_{(\frac{3n-3}{2})}) = gcd of \{f_{sqsdppl}^*(a_{\frac{3n-3}{2}} a_{\frac{3n-5}{2}}), f_{sqsdppl}(a_{\frac{3n-3}{2}} a_{\frac{3n-5}{2}})\}$
 $= gcd of \{\frac{39-36n+9n^2}{4}, \frac{61-42n+9n^2}{4}\}$
 $= 1.$

Here (i) f is one-one and onto (ii) $f_{sqsdppl}^*$ is one-one and (iii) gcin of (a) = 1 for every vertex a of degree greater than one. Hence G is a ssdpp graph.

Theorem 2.8 Let G be the graph obtained from a comb graph by replacing each path edge by triangles. G is a ssdpp graph.

International Journal of Advanced and Innovative Research (2278-7844) / # 1/ Volume 6 Issue 11

Proof: Let G be the graph and let $a_1, a_2, \dots, a_{3n-1}$ are the vertices of G. G has 3n-1 vertices and 4n-3 edges. Let f be a mapping from the vertex set of G into $\{0,1,2,\dots,3n-2\}$ defined by $f(a_i) = j-1$, $1 \le j \le 3n-1$, and $f^*_{sqsdppl}$ from set of edges of G into natural numbers by

0	2	
$f_{sqsdppl}^*(a_{i+1} a_i)$	$= 1-i+i^{2},$	i = 1,2,,2n-1
$f_{sqsdppl}^{*}(a_{2i+1} a_{2i-1})$	$= 4-4i+4i^{2}$, $i = 1, 2, \dots, n-1$
$f_{sqsdppl}^{*}(a_{2i-1} a_{3n-i})$	= (3n-3i+1)	$)^{2}+(3n-i-1)(2i-2),$
		$l \le i \le n-1$
<i>gcin</i> of (a ₁)	= 1	
<i>gcin</i> of (a_{i+1})	= 1, i=	= 1,2,,2n-2
Here (i) f is one-one and	l onto (ii) f_{sqs}^*	sdppl is one-one and (iii)

Hence G is a ssdpp graph.

REFERENCES

1. David Burton, Elementary Number Theory, 7/e, Mc Graw Hill, (2007).

- 2. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall of India Private Limited, New Delhi, (1994)
- 3. Joseph A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics(2016), #DS6, pp 1 – 408.
- 4. T K Mathew Varkey, Some Graph Theoretic Generations Associated with Graph Labeling, PhD Thesis, University of Kerala 2000.

gcin of (a) = 1 for every vertex a of degree greater than one.