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Abstract: Generally, the nature of noise is random 

and can be removed using both static and adaptive 

filters. Quasi-periodic noise may leave some effect 

on images. This artefact is often caused by 

electrical interferences during image acquisition 

or transmission, which makes remote sensing 

applications especially prone to the phenomenon. 

Periodic noise gives a bit of sharp spikes in the 

spectrum of image, which could be removed by 

means of notch filters. The problem is to automate 

detection of spike, that is, design of notch filter. 

Some works suggest, detecting spikes in the 

Fourier domain as great deviations in terms of a 

localized median value. However, distinguishing 

between spikes because of a repetitive structure or 

a localized texture (general in man-made 

conditions) and spurious ones caused by periodic 

noise is still challenging. It has been observed in 

past that periodic noise is likely to be the only 

periodic structure present in any patch extracted 

from the impaired image. The quasi periodic noise 

changes in structure over the time, thus removal 

becomes more complex. In this paper, a notch 

filter design is presented for quasi noise removal. 

 

Keywords: Quasi Periodic Noise, Notch Filter, 

Noise Removal. 

 

1. INTRODUCTION 

In the past few years, the use of internet has increased 

tremendously, as it now has become the major mode 

of communication. In internet, the transfer of data 

files, images and video is very common. The use of 

images is not limited to entertainment only but also 

used in steganography, watermarking, medical 

imaging and military applications etc [1-2]. Image 

transferring over the internet suffers from degradation 

like blurring and noise. Some noise can be easily 

removed using linear and non-linear filters. While for 

some noise adaptive filters is required. Periodic and 

quasi-periodic noises are such noises which require 

adaptive filters for the removal of noise. Periodic 

noises has repetitive structure thus filter design is not 

much complex. However, quasi-periodic noise seems 

to be periodic but they change structure slowly, thus a 

careful design of filter is needed to remove such 

noises [3]. 

 

Figure 1: Image degradation and restoration 

process 
In figure 1 image degradation and restoration process 

is shown. 
,i jO  is an input object 

,i j  is degrading 

term (may include noise, blurring or both) so ,i jx  is  

, , ,i j i j i jx O       (1) 

or 

, , ,i j i j i jx O       (2) 

, ,i j i jy H x        (3) 

H is filter operator. 

Let us consider that the degradation is represented by 

an operator A. Then the equation 1 can be written as 

, ,i j i jx A O    , now simply using basic concept of 

matrix, equation can be converted into  

1 1
, , ,

ˆ
i j i j i jA x A A O O              

(4) 

where, cap denotes the expected value.  In most of 

the image processing problems 
1A

 is singular. 

Therefore, estimation of ,
ˆ
i jO  is not possible through 

inverse process. Therefore filtering based techniques 

are proposed to reduce noises or degradation (cannot 

eliminate). 

Although, in the image processing, it has been proved 

that the linear techniques are not effective as they are 

not able to cope with the nonlinearities of the image 

formation model and don‟t make into note of visual 

system of humans. These techniques, hence, 

frequently create blurred images and are not sensitive 

to impulse noise. Image signals have the composition 

of flat regional parts and unexpectedly changing areas 

like edges, which convey essential information for 

visual perception. Therefore, in the course of the last 

15 years, nonlinear methods have been observed to 

be more impressive for this task. Nonlinear methods 
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can suppress non-Gaussian and signal dependent 

noise in order to preserve crucial signal elements, for 

example, edges and fine details and discard 

degradations happening at the time of signal 

formation or transmission through nonlinear channels 

[4]. Filters having decent characteristics of edge and 

image detail preservation are very much appropriate 

for image filtering and improvement. New techniques 

and algorithms, which can make use of the rise in 

computing power and can deal with more realistic 

suppositions, are required. Therefore, the 

advancement of nonlinear filtering procedures, which 

works equally fine under wide variety of applications, 

is of very high significance [5,6]. 

Moreover, transform domain techniques are capable 

of removing some part of the noises. That is why in 

image enhancement DFT or FFT is used. 

2 RELATED WORKS 

 

In [7] an efficient methodology to remove periodic 

noise from digital images is proposed. Color image 

needs to be transformed into gray image, and after 

this 2D fast Fourier transform (2DFFT) is to be 

implemented on the gray image. The magnitude of 

applying 2DFFT is to be examined for the purpose of 

getting the periodic filter, which is to be correlated 

with the magnitude matrix, and correlation result is to 

be applied with the angle matrix to get the de-noised 

gray image. However, the quality of the recovered 

image is not good. 

 
Figure 2: Methodology for periodic noise removal 

process as in [7] 

In this paper [8] a 2-D FFT removal algorithm for 

reducing the periodic noise in natural and strain 

images is proposed. For the periodic pattern of the 

artifacts, we apply the 2-D FFT on the strain and 

natural images for peaks‟ extraction and removal 

which are corresponding with periodic noise in the 

frequency domain. Moreover, after this we apply the 

mean filter for much improved output. The 

performance of the proposed method is tested on both 

natural and strain images. In this method the PSNR of 

the recovered image is not very good. 

In [9], a new contourlet domain image denoising 

framework based on SURE shrink and bilateral filter 

has been presented. The new algorithm combined the 

good properties of the non-subsampled Contourlet 

transform, SURE shrink and bilateral filter in the 

image denoising issue. 

 

A latest algorithm is proposed for restoration of 

image with the help of partial differential equations 

applied on neighbors longer than one pixel [10]. To 

better preserve edges in this technique, slant edges 

are considered in addition to vertical and horizontal 

edges. A great number of experiments have been 

carried out to make the evaluation of performance of 

the proposed method and for the comparison of its 

performance with the current algorithms, wiener and 

median filters. 
 

Quasi-periodic noise may leave some effect on 

images. This feature which is not desirable manifests 

itself by means of spurious repetitive patterns that 

cover the total image, properly localized in the 

Fourier domain [11]. 

 

Even notch filtering gives us facility to overcome this 

characteristic, this however needs initial detection of 

the resulting Fourier spikes, and, specially, to make 

the discrimination between spectrum patterns and 

noise spikes took place because of repetitive 

structures or spatially localized textures. In this 

assignment, we propose an approach, in the Fourier 

domain, of statistical a contrario detection of noise 

spikes. 

  

3. PROBLEM FORMULATION 

This section discusses the problems mathematical 

formulation and system modeling and how spectral 

density can be used in noise removal process.  

A simple case quasi-periodic function obeys the 

equations of the form: 

( ) ( )f t T f t C   and  ( ) ( )f t T cf t  . (5)  

A useful example is the function: 

( ) sin( ) sin( )f t At Bt    (6) 

If the ratio A/B is rational, this will have a true 

period, but if A/B is irrational there is no true period, 

but a succession of increasingly accurate "almost" 

periods. 

Periodic and Quasi-periodic Signals 

Certain signals repeat itself after a definite time 

interval, for example heart rate, AC supply frequency 

etc..When a signal ( )x t is periodic with period T, 

then it satisfies the relation 

( ) ( )x t x t T      (7) 

Or 

( ) ( ) 0x t x t T   for all t.  (8) 

As we know from the fundamentals, that a periodic 

signal can be represented in terms of Fourier series 

and representation using cosine expansion would be 
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0 0
1

1
( ) [ cos(2 )]

2
n n

n

x t a r nf t 




    (9) 

where 0

1
f

T
 is the fundamental frequency and the 

Fourier coefficients are as follows 

0

0

2
cos( ) ( )cos(2 )

T

n n na r x t nf t dt
T

   

0

0

2
sin( ) ( )sin(2 )

T

n n nb r x t nf t dt
T

      

The fundamental frequency, 0f  and Fourier co-

efficient na , nb , nr , or n , are constants. It means 

that they are not functions of time. As far as the 

harmonic frequencies are concerned, they are exact 

integer multiples of the fundamental frequency. 

When ( )x t is quasi-periodic then 

( ) ( ( ))x t x t T t     (10) 

Or 

( ) ( ( ))x t x t T t       (11) 

Where 

/2

2 2

/2

1
0 lim ( )x x x t dt











       

Now the Fourier series representation would be 

0 0
1 0

1
( ) ( ) [ ( )cos(2 ( ) ( ))]

2

t

n n
n

x t a t r t n f d t   




    (12) 

where 0

1
( )

( )
f t

T t
  is the possibly time-varying 

fundamental frequency and the Fourier coefficients 

are 

( ) ( )cos( ( ))n n na t r t t     

( ) ( )sin( ( ))n n nb t r t t     

and the instantaneous frequency is 

0

1
( ) ( ) ( )

2
n n

d
f t nf t t

dt



    (13) 

On the other side, in this quasiperiodic case, the 

fundamental frequency 0( )f t , the harmonic 

frequencies ( )nf t , and the Fourier coefficients 

( )na t , ( )nb t , ( )nr t , or ( )n t , are not necessarily 

constant in the mandatory basis, and are time 

functions although slowly varying functions of time. 

Explained in a different way, these functions of time 

are band limited to quite less as compared to that of 

the fundamental frequency for ( )x t to be assumed to 

be quasi-periodic. 

The partial frequencies ( )nf t are quite closely 

harmonic but it is not in the mandatory basis. The 

time-derivative of ( )n t , that is ( )n

d
t

dt
 , has the 

influence of detuning the partials from their exact 

integer harmonic value 0( )nf t . A rapid pace 

variation ( )n t implies that at the instant frequency 

for that partial is intensely detuned from the integer 

harmonic value which would indicate that ( )x t is not 

quasi-periodic. 

With respect to time quasi-periodic signal vary 

slowly. Therefore equation can be simplified as 

1i if f k f

      (14) 

System Modeling 

Consider a system ( )G z  where ( )u n  is a 

deterministic input signal, ( )w n  is a deterministic 

output and ( )v n  a stochastic signal. 

( ) ( ) ( )y n w n v n     (15) 

If v(n) is a zero-mean stationary stochastic signal 

then the function, 

( , ) [ ( ) ( )]vR k n E v k v n   (16) 

is only a function of the difference between k and n. 

In this case we can write this as, 

( ) [ ( ) ( )]vR E v n v n     (17) 

However, the stochastic stationarity does not hold 

when the signal is the sum of a zero-mean stochastic 

and deterministic signal. This corresponds to the 

typical case in an identification experiment: the 

output, ( )y k , is the sum of a deterministic plant 

output, ( ) ( )iG j u k  plus a zero-mean noise signal, 

( )v k . Therefore we define a new class of signals: 

quasi-stationary signals. 

The covariance function of a signal ( )x k , (defined 

as a function of two time indices) is, 

( , ) [ ( ) ( )]xR k n E x k x n   (18) 

If this is bounded for all k and n and in the limit we 

have, 

1

1
lim ( , ) ( )

N

x x
n

k

R k k R
N

 




    (19) 

then the signal ( )x t  is quasi-stationary. Note that for 

quasi-stationary signals we only require the 

covariance function to depend solely on   in the 

limit.  
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Figure 3: Additive noise process 

 

Considering input image as ( )x t , noise as ( )n t and 

noise corrupted image reached as the receiver is 

( )y t . 

( ) ( ) ( )y t x t n t     (20) 

This will passes through the filter can be represented 

as [29,31] 

 ( ) ( ) ( ) ( )Ry t x t n t h t     (21) 

( ) ( ) ( ) ( ) ( )Ry t x t h t n t h t     (22) 

In above expression first term is filtered image and 

second term denotes the filtered noise. Thus both 

signal and noise superimpose each other. 

As filters are designed in frequency domain, therefore 

the time delayed version of the received signal is 

given by 

( ) ( ) ( )y t x t n t         (23) 

The autocorrelation function can be written as 

 ( ) ( ) ( ))( ( ) ( )        YYR E x t n t x t n t  

Assuming image and noise independent of each 

other, and noise with mean zero, then above 

expression can be simplified as 

( ) ( ) ( )YY XX nnR R R      (24) 

Taking Fourier transform of above expression we get, 

spectral density as 

( ) ( ) ( )YY XX nnS S S      (25) 

Let, [ ( )] ( )F h t H   

2
( ) ( ) ( )  R

YY YYS H S   

2 2
( ) ( ) ( ) ( ) ( )     R

YY XX nnS H S H S (26) 

As most of the images concentrated in low frequency 

regime, therefore in our method first we divide the 

image into and high frequency components by 

choosing suitable cut-off frequency. Then noise 

removal process is applied on the low frequency 

components and noise at high frequency components 

automatically removes. Thus noise reduces and 

image quality improves. 

The modified algorithm is as under: 

A. Algorithm 

Input: an image „i’(size X×Y) and its Fourier 

transform „I’, patch size „H’ 

Step 1:  

First divide the image in low and high frequency 

components. 

Step 2: 
Extract non-overlapping independent patches of size 

H×H over the low frequency components image and 

independent patches of size H×H over the low 

frequency components image obtain P patches. Then 

evaluate RF using step 5. 

Step 3: 
Obtain the power spectra of patches for any (n, m) 

and obtain minimum value. 

Step 4: 

For any (n, m), obtain NFA value. 

Step 5: 

Consider the spike map 
P

oM on H×H and H×H 

spectrum such that ( , ) 1P

oM n m  if NFA 

 , 1n mc   and 0 otherwise 

Step 6: 

Interpolate the outlier map 
P

oM of size H×H and 

H×H to X×Y providing map of oM of the probable 

false spikes in the original image spectrum. 

Multiplying, the initial image spectrum by, 1 oM  

acts as notch filter and thus eliminating quasi periodic 

noise. 

Step 6: 

Retrieve n̂ , estimation of the periodic noise 

components as the inverse Fourier transform (IFT) of 

oM I and î estimation of de-noised image as, ˆi n . 

The main advantages of the modifications are: 

1. The adjustment of patch size in low 

frequency regime reduces the error thus 

improves the SNR. 

2. In high frequency regime, generally image 

components are absent, thus noise can be 

easily eliminated. 

 

4. RESULTS AND DISCUSSIONS 

The 2D Fourier transform of an image ( , )i x y is 

denoted by ( , )I u v  and given by  

1 1
2 ( / / )

0 0

( , ) ( , )
X Y

j xu X yv Y

x y

I u v i x y e 
 

 

 

 (26) 

Where, u and v are integers values, with

( , ) [ /2, /2 1] [ /2, /2 1]u v X X Y Y      , ( , )I u v  is the 

amplitude of a periodic component of frequencies 

/u X and /v Y  (cycles per second) along each 
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direction. The normalized frequency given as 

   
2 2

/ /f u X v Y  . 

First, since most images have discontinuities between 

their left/right (respectively top/bottom) borders, their 

spectrum shows dominant straight lines along the 

horizontal axis (respectively vertical axis). To reduce 

these boundary effects, we multiply the patches p by 

a two-dimensional Hann window with the same 

width L as the patches.[12] 

The size of the patches should be large enough to 

ensure both a good accuracy in the periodic noise 

spike detection (frequencies are distributed with  

1/H  steps in the power spectrum of a patch, and 

the detectability of low-frequency noise, but not too 

large, so as to make it possible to build enough 

independent patches from the noisy image of interest. 

Using H H patches, it was found that a good 

compromise is to take a sampling step of /8H  in 

both the horizontal and vertical directions, which 

gives a total number of patches equal to [13] 

  8( )/ 8( )/X H H Y H H    (27) 

Synthetic periodic noise is added to an 8-bit noise 

free image 0i  of size X × Y. The periodic noise 

intensity is given by 

2 2
( , ) sin sin

p q
n x y A x y

X Y

    
    

   
 (28) 

Where p and q are the parameters defining the 

frequency of the periodic noise along the x and y 

axes, respectively. The unit of n is the gray level.  

   
2 2

2/ /p X q Y f  , frequencies are 

considered as very low components, hence are not 

considered as periodic noise components and thus are 

not eliminated by the algorithms, in the experiment 

2

8
f

H
 . 

Bilinear interpolation is used to expand outlier map. 

The notch filter is obtained after convolving the 

outlier map 0M (after interpolation) by an isotropic 

Gaussian kernel of standard deviation 2 pixels, 

reduces ringing effects at higher frequency. 

The experimental results are obtained on Baboon 

image and original image is shown in figure 4. The 

frequency domain picture is shown in Figure 5. 

Figure shows 2D spectrum, power and phase 

spectrum of the image. To view the frequency 

variation across the image, image is de-composed 

into low-mid and high frequencies zones. It is clear 

from the sub-figures that most part of the image 

concentrated in low frequency regime.  

 
Figure 4 Image of Baboon and pixel representation 

Figure 5: Baboon image FFT and associated parametres 
 

 
Figure 6: Frequency variation  

 

 

min[ ( , )]

2
L H

i m n
f f    (29) 

In the above expression, Lf is low pass frequency and 

Hf is high pass frequency.[ ( , )]i m n is the size of 
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image. Most of the practical images are low 

frequency image. However, the cut-off frequency 

varies with images. 

 
(a)  (b)  (c) 

Figure 7: (a) Original image (b) low pass image 0-10 Hz 

(c) high pass image 10-256 Hz 

 
Figure 8: (a) Original image (b) low pass image 0-50 Hz 

(c) high pass image 50-256 Hz 

 
Figure 9: (a) Original image (b) low pass image 0-100 

Hz (c) high pass image 100-256 Hz 

In figure 7 to 9 baboon image is divided into low and 

high frequency components with varying cut-off 

frequncies. In figure 5, it is clear that the highest 

contained frequncies in image is arount 100 Hz. In 

figure 7, the cut-off frequncy is 10 Hz, therefore most 

of the image pixels appears in high pass image. In 

figure 8, the cut-off frequncy is increased to 50 Hz, 

thus image is appeaed in both low and high pass 

system. While in figure 9, the low pass frequncy is 

increased to 100 Hz, and thus full image appears in 

low pass regime. 

BABOON IMAGE 

 
Figure 10: Power spectrum of initial image (log scale) 

 

 
Figure 11: Minimum power spectrum on patches 

(log scale) 

 
Figure 12: Logarithm of NFA (log scale) 
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Figure 13: Corrected Power spectrum 

 
Figure 14: Origial Image 

 

 
Figure 15: Denoised Image 

 
Figure 16: Noise components 

Results for Baboon image is shown in Figure 10 to 

16. The initial power spectrum is shown in figure 10 , 

which shows how power is distributed with respect to 

frequency.After identifying the pathces, the minimum 

power spectrum of the patches is shown in figure 11. 

Detection of number of false alarms is shown in 

figure 12 and therefater obtained corrected power 

spectrum is shown in figure 13. The original Baboon 

image is shown in figure 14, and after applying the 

algorithm, the de-noised image is shown in figure 15 

and finally recovered noise components presnet in the 

image is shown in figure 16. 

This analysis clearly reveals that, for the removal of 

quasi noise designed filter should be able to filter 

very low frequency components. However in some 

other images it may require to design such filter on 

high frequency components. Therefore the estimation 

of frequency components is necessary in quasi noise 

removal. 

Peak Signal to Noise Ratio (PSNR) 

Removal of noises from the images is a critical issue 

in the field of digital image processing. The phrase 

Peak Signal to Noise Ratio, often abbreviated PSNR, 

is an engineering term for the ratio between the 

maximum possible power of a signal and the power 

of corrupted noise that affects the fidelity of its 

representation. As many signals have wide dynamic. 

The MSE and PSNR is defined as: 

10

255
20logPSNR

MSE

 
  

 
  (30) 

 
1 1

2

0 0

1
( , ) ( , )

m n

i j

MSE I i j k i j
mn

 

 

   (31) 

In table 1 results in terms of PSNR is shown, here 

with the proposed method the improvement in PSNR 

ranges from 0.2 dB to 1.3 dB. Thus the proposed 

method improves the PSNR, when there is scope of 

improvement. 
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Table 1: Comparison of PSNR  

Image Current [11] Proposed 

Baboon 48.2638 48.7217 

Lenna 45.5598 46.8640 

Barbara 42.9342 43.9953 

Peppers 41.3737 41.5368 

 

4.5 CONCLUSIONS 

In this paper, results for the noise removal process are 

presented. Noise removal in an image is important 

and complicated problem due to the randomness of 

the noise. Most of the time noises are easily removed 

by measuring their pdfs. But in some cases estimation 

of noises is complicated which is superimposed on 

the signal spectral components. In such a case 

problem become complex as first, those frequency 

components has to be find out and careful removal of 

noise has to be done. The concept of false alarm 

helps in detecting those spectral components which 

are corrupted with noise.  
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