
Dynamic Load Balancing In Distributed

Environment Using Rate Adjustment Policies
Jeganathan J.

#1
 Jaiganesh M .

 #2
Muneeshwari P

#3

Department of Information Technology1, 2, 3

PSNA College of Engineering and Technology, Dindigul, Tamilnadu, India.

jeganathanjayaram@gmail.com1, jaidevlingam@gmail.com2 radhamunishapcse@gmail.com3

Abstract - In today’s world of distributed systems

has raised a lot concerns about the efficiency. The

aim of researchers in this field is to develop new

dynamic load balancing techniques that could be

applied on the real-time that is more efficient and

dynamic than the existing systems. The real time

problems of network congestion, centralized point

of failure and fault tolerance still remain an open

research topic and they are not fully eliminated.

My work aims at giving firm solutions for these

issues. This work proposes solutions that are more

visible because here every implementation is done

in real time using several clients and server

machines. The clients send the requests to the

server based on the number of jobs currently

processed by each server and those jobs which are

waiting. The decision is taken dynamically to send

jobs to the server with least nodes. More dynamism

is further incorporated by using parameters like

arrival rate and mean service time which are

calculated dynamically by the centralized machine

using the data received from the server side so that

server side over head is avoided. Further, the work

portrait’s a peer to peer system. The request is sent

from the client to the server. Here our main aim is

to provide fault tolerance in an intelligent way.

Further an efficient scheduler was designed that

avoids starvation of low priority jobs.

Key Words—Distributed systems, Load Balancing,

fault tolerance, Scheduler.

.

1. Introduction

The major challenge associated with web

technology is the unpredictable and uneven

nature of traffic on the Internet[3], [17]. This is

particularly difficult for small businesses that

have to carefully balance their investment into

infrastructure for handling customer requests. On

one hand they need a sufficiently powerful

infrastructure to handle most of the traffic. At the

same time they do not want to over-invest by

acquiring hardware that mostly remain idle as

both the cost of acquisition and the cost of

ownership, in terms of maintenance and

management, need to be considered. Thus the

main perspective of my project is to show

improvements from existing systems and

perform optimization in it. The main objective

here is to propose a new solution with out any

new additional hardware, which increases the

cost, poses a great threat to small businesses. The

benefit we obtain here is going to be less cost but

good optimization. So what improvements can

be done with the existing resources is going to be

a major issue here.

The clients send the requests to the server based

on the number of jobs currently processed by

each server and those jobs which are waiting.

The decision is taken dynamically to send jobs to

the server with least nodes. More dynamism is

further incorporated by using parameters like

arrival rate and mean service time which are

calculated dynamically by the centralized

machine using the data received from the server

side so that server side over head is avoided.

Existing dynamic load balancing techniques have

been studied and altered. Initially the real time

distributed environment has been created. More

parameters are calculated dynamically and the

solution emphasizes dynamism. The problem of

how often load balancing should be done in

dynamic state to avoid performance overhead.

Dynamic state load balancing issues are taken in

to concern. No server memory is used to queue

the requests as the waiting requests are stored on

the originating clients in a distributed fashion. .

As addressed earlier the existing systems suffer

from some serious problems that are still open

for research. Existing load balancing methods

check the average idle-time of the workstations

periodically. But in these methods load

balancing cannot be performed until the end of a

period even if load imbalance has occurred in the

middle of the period. Issues on the shuttling jobs

and preemptive versus non preemptive transfer

still exist in real time. So, finding solution for

these real time issues like time optimization,

central point of failure, network congestion due

to messages, fault tolerance etc in existing

system to achieve optimization will be the major

task.

International Journal of Advanced and Innovative Research (2278-7844) / # 157 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 157

2. Literature Survey

2.1. Byzantine Fault Tolerance

Dynamic load balancing on the workloads of the

clustered workstations has emerged as a

powerful solution for overcoming load

imbalance[1], [4]. In order to detect such

imbalances, some load balancing methods check

the average idle-time of the workstations

periodically. But in these methods load

balancing cannot be performed until the end of a

period even if load imbalance has occurred in the

middle of the period. More over load balancing

when done very often also leads to severe

performance overhead. We also try to prevent it

by predictions done on collected histories like at

which time of day is more requests coming to the

server and will that lead to imbalance.

The new method decides a proper time to

perform load balancing and does perform the

balancing right after the detection of the load

imbalance. We also show that a static load

balancing method with a long period is suitable

if the workstations have to deal with the jobs

having unpredictable arrival times and relatively

short execution times. Here the load balancing is

done randomly and also done based on previous

history collected through which we can predict at

which time there will be heavy load and how

often we should perform load balancing.

Here we check the time the server is idle and

then if it is greater than the threshold level LB is

performed. Moreover we also randomly perform

check on imbalance condition with in the given

time period and we adjust the time period

dynamically if the load imbalance has been

detected and this is also recorded in history.

Another major issue that arises here is if the

average idle time is a little bit smaller than the

threshold value we call this as minor imbalance

and we have to ignore this. If we avoid this

frequent load balancing can be avoided. For this

we can wait for a delta time delay after an

imbalance has been detected to see weather the

server becomes active again.

The environment visible phenomenon of this

project is the client machines, central machine

and several server machines. The jobs client send

to server can also be seen as only we are going to

give those to the servers. So the client side can

feel them. The jobs can be high intensity jobs

like image files or low ones like text documents.

Several of these jobs will be given as input and

checked. Moreover since this is going to be

implemented in a dynamic environment a lot of

testing can be done for various inputs and

varying load conditions. The centralized machine

we use knows about the server machines their

configuration and capacity based on the history it

maintains. These details are only known to this

and hidden from the client side. The decision the

load balancer takes purely depends on the

information collected from the server side such

as calculation of the idle time, its efficiency,

etc…and these are purely system visible and

environment hidden. The load balancer,

centralized priority schedulers are internal

identifiers of the system and they need not be

mentioned in the development specification.

There is going to be replications among them

also. There’s going to be a distributed

architecture. The protocols used are mainly TCP,

IP, HTTP and FTP.

2.2. ELISA: Estimated Load Information

Scheduling Algorithm

From the estimated queue lengths of the nodes in

its neighboring nodes and the accurate

knowledge of its own queue length, each node

computes the average load on itself and its

neighboring nodes. Nodes in the neighboring set

Figure 1. Normal operation of the Algorithm

International Journal of Advanced and Innovative Research (2278-7844) / # 158 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 158

whose estimated queue length is less than the

estimated average queue length by more than a

threshold theta form an active set. The node

under consideration transfers jobs to the nodes in

the active set until its queue length is not greater

than theta and more than the estimated average

queue length. The value of theta, which is

predefined, is a sensitive parameter and it is of

importance to the performance of ELISA. Here,

the threshold theta is fixed in such a way that the

average response time of the system is a

minimum.

When a job moves from one CPU to another,

when it is balanced consider a case where before

it reaches the target system it also gets

imbalanced and becomes idle. Now, again the

job has to be returned back to the priority

scheduler and then re assigned. This shuttling

time causes a lot of starvation for that process

since again it will be put only in back of the

queue it has to wait get processed. So to avoid

this first we identify such kind of shuttled jobs

and then we place it in a separate high priority

queue so that it gets processed quickly. Thus we

solve discrimination of these shuttled jobs.

The request is sent from the client to the server.

Initially a small sample file is downloaded from

each sever. The main file download is resumed

from the server with the least response time. If

the server from which the current down load

takes place is cut off then the download process

is resumed from the next server with the shortest

response time. Thus our main aim is to provide

fault tolerance in a intelligent way. This is

implemented in a real time environment with

variable buffer size. Further, when designing the

centralized priority scheduler more emphasis is

laid on avoiding the starvation of the low priority

jobs. Load balancing is done by rescheduling the

jobs to the queues that are free. Synchronization

is achieved and the parallel down load of the jobs

takes place where periodically chance is given

for the low priority jobs avoiding starvation.

3. System Architecture

The scheduler is immediately placed before the

queue. When a job arrives at a node, the

scheduler first arranges the job based on its

priority and then decides where the job should be

sent to the ready queue of the server. Here we

use a centralized priority scheduler. Once the job

has entered the queue, it would be processed by

the processor and will not be transferred to other

nodes. The concept of load balancing is brought

in to picture only when an imbalance condition is

detected. Until there is no imbalance the jobs are

ordered using the priority scheduler and sent to

the corresponding CPU’s. When the imbalance is

detected rescheduling is done. Using this

technique, the static algorithms can attempt to

control the job-processing rate on each node in

the system and eventually obtain an optimal (or

near optimal) solution for load balancing. On

rescheduling also we focus only on transferring

the non-preemptive jobs for transferring to avoid

the overheads. The performance of this system is

more simple and efficient because we do load

balancing only when an imbalance is detected.

Until that balancer is not brought to picture.

If there are many application servers sharing one

database server the database server become

congested. Usually, write operations are more

costly than reading operations as the results of

reading operations sometimes are cached and the

corresponding disk access is eliminated. The

strategy proposed here helps prevent a database

server from becoming overloaded as the web-

servers control the amount of queries submitted

to the database server. The strategy can be used

with load balancers, but it falls in the category of

techniques that do not require additional

hardware. . No server memory is used to queue

the requests as the waiting requests are stored on

the originating clients in a distributed fashion.

Thus the main objective of my project is to show

improvements from existing systems and

perform optimization in it. The advantage of the

proposed method is that it can be used to serve a

high number of requests that otherwise might

result in server crashes. Here we check the time

the server is idle and then if it is greater than the

threshold level LB is performed.

International Journal of Advanced and Innovative Research (2278-7844) / # 159 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 159

.

3.2 A Policy for Dynamic Load Balancing

In this section, we modify the centralized one-

shot LB strategy to a distributed, adaptive setting

and use it to develop a sender-initiated DLB

policy. The distributed one-shot LB policy is

different from the centralized one-shot LB

policy.

 Each time an external load arrives at a node, the

node seeks an optimal one-shot LB action that

minimizes the load-completion time of the entire

system, based on its present load, its knowledge

of the loads of other nodes, and its knowledge of

the system parameters at that time. For clarity,

we use the term external load to represent the

loads submitted to the system from some

external source and not the loads transferred

from other nodes due to LB. We will assume

external load arrivals of random sizes. Each time

an external load is assumed to arrive randomly at

any of the nodes, independently of the arrivals of

other external loads to it and other nodes.

Consider a system of n distributed nodes with a

given initial load and assume that external loads

arrive randomly thereafter. We assume that

nodes communicate with each

other at so-called “sync instants” on a regular

basis. Upon the arrival of each batch of external

loads, the receiving node and only the receiving

node prompts itself to execute an optimal

distributed one-shot LB. Namely, it finds the

optimal LB instant and gain and executes an LB

action accordingly. Since load balancing is

performed locally at the external-load-receiving

node, say, node j, the policy depends only on its

knowledge state vector ij, rather than the system

knowledge state I.

Further, considering the periodic sync-exchanges

between nodes, each node in the system is

continually assumed to be informed of the states

of other nodes.

International Journal of Advanced and Innovative Research (2278-7844) / # 160 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 160

In practice, external loads of different size

(possibly corresponding to different applications)

arrive at a distributed-computing system

randomly in time and node space. Clearly,

scheduling has to be done repeatedly to maintain

load balance in the system. Centralized LB

schemes [10], [11] store global information at

one location and a designated processor initiates

LB cycles. The drawback of this scheme is that

the LB is paralyzed if the particular node that

controls LB fails. Such centralized schemes also

require synchronization among nodes. In

contrast, in a distributed LB scheme, every node

executes balancing autonomously.

Moreover, the LB policy can be static or

dynamic [2], [12]. In a static LB policy, the

scheduling decisions are predetermined, while, in

a dynamic load-balancing (DLB) policy, the

scheduling decisions are made at runtime. Thus,

a DLB policy can be made adaptive to changes

in system parameters, such as the traffic in the

channel and the unknown characteristics of the

incoming loads. Additionally, DLB can be

performed based on either local information

(pertaining to neighboring nodes) [13], [14] or

global information, where complete knowledge

of the entire distributed system is needed before

an LB action is executed.

Due to the emergence of heterogeneous

computing systems over WLAN’S or the

Internet, there is presently a need for distributed

DLB policies designed by considering the

randomness in delays and processing speeds of

the nodes. To date, a robust policy suited to

delay-infested distributed systems is not

available, to the best of our knowledge [3]. In

this paper, we propose a sender-initiated

distributed DLB policy where each node

autonomously executes LB at every external load

arrival at that node. The DLB policy utilizes the

optimal one-shot LB strategy each time an LB

episode is conducted, and it does not require

synchronization among nodes. Every time an

external load arrives at a node, only the receiver

node executes a locally optimal one-shot-LB

action, which aims to minimize the average

overall completion time. This requires the

generalization of the regeneration-theory-based

queuing model for the centralized one-shot LB

[9]. Furthermore, every LB action utilizes

current system information that is updated during

runtime. Therefore, the DLB policy adapts to the

dynamic environment of the distributed system.

This paper is organized as follows: Section 2

contains the general description of the LB model

in a delay-limited environment. In Section 3, we

present the regeneration based stochastic analysis

of the optimal multi node one-shot LB policy

and develop the proposed DLB policy.

4. Scheduling Algorithm

Scheduling techniques have also been used in the

multiple-class domain such as Output-Controlled

Round Robin (OCRR) [5], Priority Queuing

(PQ) [6], Weighted Round Robin (WRR) [12],

[24], PQWRR [13], DRR+ [9], and DRR++.

DRR++ suffers from head of line blocking when

scheduling more than one higher priority stream.

PQ is unfair to lower-priority traffic. PQWRR is

unfair to AF and BE by using PQ for the EF

traffic and WRR for the AF and BE traffic.

Finally, OCRR, DRR+, and DRR++ are

originally designed for two classes only. The

common approach to support Diff Server traffic

is to save all same-class packets from different

sources in a shared FCFS (First Come First

Served) buffer [10], [13], [14]. However, it is

difficult to control the service order of packets

from different sources because a busty source in

a class may cause a higher delay and even loss

for well behaved streams within that class.

In view of various deficiencies discussed above

(namely, supporting only one or two classes of

traffic, unfairness, non smooth scheduling (busty

transmission from same stream), higher service

time, and higher startup latency and jitter), we

extend our OCRR [5] to support multi class

traffic and provide extensive performance

analysis. Our objective is to fairly schedule IP

packets in the Diff Server

International Journal of Advanced and Innovative Research (2278-7844) / # 161 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 161

We consider a backbone packet switching

network with a number of core routers in the Diff

Serv domain. Each core router is physically

connected to R immediate upstream routers at its

input ports (each called a “source router”). We

assume R is fixed for a given interconnect

topology. An OCGRR scheduler resides at each

output port of a core (or an edge) router and

schedules traffic into a (output) router that is

immediately downstream. Each core router may

request edge routers to adjust their arrival rates

to satisfy the QoS requirements, in addition to

adjusting their scheduling parameters to achieve

a desired QoS Q represents a stream, and X bits

are the total transmitted bits in a frame. The En

queue process adds a new packet of any stream

in its relevant buffer. It then appends the stream

reference to the relevant Active List provided

that the stream not in the Active List becomes

backlogged (i.e., had a positive grant but was

empty).

The scheduling for each class is divided into two

parts:

1) In the De queue Init process, the grant of each

stream inside class J is incremented by some

quantum computed based on the frame beginning

time (see Section 3.3). Then, if a non backlogged

stream becomes backlogged, its reference is

appended to Active List J; and

2) in the De queue Process, packet scheduling is

performed. There are two scheduling processes:

one for the classes that use a dedicated buffer per

stream in a class, and the other for the classes

that use one shared buffer for all streams in a

class. The former case has the following steps:

1. Schedule Domain Determination: Define a

schedule domain J to include the backlogged

streams with in class J before processing this

class. This domain is handled with the Round

Len parameter. The

backlogged streams from the beginning of

Active List J and from this domain can only

transmit traffic during the current frame period,

and the serving of newly backlogged streams

during this period will be postponed to the next

frame.

2. Traffic Transmission: When scheduling class J

traffic within the frame, only the backlogged

streams in class J can transmit traffic. Whenever

a stream in this class becomes non backlogged

(defined earlier), the stream is removed from

Active List J, and the schedule domain J

becomes smaller. Thus, in the next round, a

small number of streams will participate. In

OCGRR, when a stream becomes non

backlogged, its grant parameters remain

unchanged.

The scheduler visits the backlogged streams one

by one. In each visit, only one packet is

transmitted from a stream and then the next

stream is visited. This continues until the last

backlogged stream in the schedule domain J is

visited.

Then, the scheduler starts visiting the

backlogged streams from the head of Active List

J. We call this scheme Multiple Round Robin

(MRR) transmission because each stream may

transmit its packets in multiple rounds, but only

one packet in each round. Scheduling for class J

is stopped whenever there is no backlogged

stream left in Active List J or the total

transmitted traffic exceeds _. The latter condition

is evaluated at the end of each packet

transmission.

When scheduling a packet from a stream,

OCGRR first schedules the packet with any size

and then updates both grant values of the stream

with the transmitted packet size. This update

may lead to a negative grant if the size of the

transmitted packet is greater than the stream’s

grant. When the stream’s grant is negative, the

stream becomes non backlogged.

If the frame ends right before processing stream i

in class J, OCGRR flags this stream in the Last

List Ptr J parameter related to class J. At a future

frame when it is the turn of class J to be

processed, the scheduler would start processing

class J from the stream referenced by Last List

Ptr J, but not from the beginning of the streams

referenced by Active List J. This is handled by

“ListPtr GetStartingStreamRefInRound”. This

process ensures fairness for stream i. It is also in

the direction of reducing the inter transmission

time from the same stream.

In OCGRR, packets from the head of streams

have almost the same chance of being

transmitted under MRR because coherent

transmission of packets from the same stream is

reduced. Moreover, a packet in a newly

backlogged stream encounters a lower latency in

OCGRR.

In addition, jitter among packets of the same

stream is reduced in OCGRR.

International Journal of Advanced and Innovative Research (2278-7844) / # 162 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 162

5 Implementation

Our performance evaluation is carried out on a

test bed consisting of Windows servers

connected by a 100Mbps Ethernet. Each server is

equipped with a single Pentium D 2.8GHz

processors and 1GB memory.

Initial lab set up is done with clients and servers

connected and communication between them is

shown. The clients send the request to servers

based on the number of jobs waiting to get

processed in each server currently. The server

with the least number of jobs is given the

request. Dynamically the decisions are taken

based on the database table values. Three tables

are maintained of which load table contains the

load present at each server currently. Based on

this table only the loads are distributed by the

clients. The account table contains the account

number and the amount details of the customers.

Further optimizations were done by

implementing a middle ware which makes

decisions based up on mean arrival rate,

processing time, idle time, etc.

Initial download of a sample file from the

server’s .Server receives the file name and

streams the packets to the network. Client reads

and writes the packet in to destination The time

taken to download that file from each server is

calculated and they are sorted. The server with

the shortest time value is connected with the

client and through it only the main file to be

obtained is downloaded. Now, if this server is

cutoff in the middle of downloading process that

packet with which the download was cutoff is

marked and the next server with the shortest

response is contacted and again the download is

resumed. This scenario is implemented with

three servers using the concept of socket in java.

The entire file is streamed as equal size packets

in to the network using the buffers.

For accomplishing these tasks we pass messages

between the client and the servers.

When the client gets the “Initial connection

message” it does the initial normal streaming

from beginning of the packet. I.e. it’s the first

connection.

When the client gets the “Reset connection

message” it does the streaming from the cutoff

packet. I.e. it’s the Reset connection. So, through

this message we also send further information

such as the cut off packet number and the

remaining file size, etc.

The file reading at the server side is done from

three different sources namely source1, source2

and source3. Same copies of file to be

downloaded are maintained at these locations.

I.e. server 1 reads the required file from source1,

server 2 reads the required file from source2 and

so on .I.e. they are all not read from the same

location.

Similarly, the outputs are also stored at different

locations namely downloaded1, 2, and 3 to show

that download has been resumed from the cutoff

point.

International Journal of Advanced and Innovative Research (2278-7844) / # 163 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 163

Fig. 2. (a) Mean delay as a function of the

number of tasks transferred between nodes. The

stars are the actual realizations from the

experiments.

(b) Empirical pdf of the transfer delay per task

on the Internet under a normal work-day

Fig.3.(a) The AOCT as a function of LB

instants for the experiments over the Internet.

The LB gain was fixed at 1.

(b) The amount of load transferred between

nodes at different LB instants.

International Journal of Advanced and Innovative Research (2278-7844) / # 164 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 164

6 Conclusion
 In this project I implemented the initial

architectural lab setup. Our method is based on

the dynamic global optimization scheme.

Initially the load was split up based on the server

node with the least number of jobs to be

processed. More optimizations were done to this

considering parameters like arrival rate and mean

service time. Basic monitoring agent was

developed which makes these decisions based on

dynamic results obtained from calculations of the

above said parameters periodically.

 This work is further extended to design

efficient centralized priority scheduler. And then

I am going to implement intelligent agents. More

parameters will be brought to picture to show

dynamism. Demo will be shown like how

prevention will be done when all the servers get

hanged at the same time. More concentration

will be laid on avoidance of the congestion, fault

tolerance and centralized point of failure. More

real time problems will be studied and more

concentration will be laid on the performance

related issues.

References
[1] Ali M. Alakeel, “A Guide to Dynamic Load

Balancing in Distributed Computer Systems,” in

IJCSNS International Journal of Computer Science

and Network Security,June 2010, vol10,p-6

[2] Jagdish Chandra Patni M.S. Aswal Aman Aswal

Paras Rastogi "A Dynamic and Optimal Approach of

Load Balancing in Heterogeneous Grid Computing

Environment" in Emerging ICT for Bridging the

Future vol. 2 pp. 447-455 2015 Springer International

Publishing.

[3] S.E. Dashti, A. masoud Rahmani, "A New

Scheduling Method for Workflows on Cloud

Computing", International Journal of Advanced

Research in Computer Science, vol. 6, no. 6, 2015.

[4] Neeraj Rathore Inderveer Chana "Variable

Threshold-Based Hierarchical Load Balancing

Technique in Grid" Springer Engineering with

Computer 2014.

[5] Rohit Saxena Ankur Kumar Anuj Kumar Shailesh

Saxena "AHSWDG: An Ant Based Heuristic

Approach to Scheduling and Workload Distribution in

Computational Grids" IEEE International

Conference on Computational Intelligence &

Communication Technology pp. 569-574 2015.

[6] S. Blake et al., An Architecture for Differentiated

Services, RFC 2475,Dec. 1998.

 [7] V. Jacobson, K. Nichols, and K. Poduri, An

Expedited Forwarding PHB, RFC 2598, June 1999.

[8] J. Heinanen et al., Assured Forwarding PHB

Group, RFC 2597, June 1999.

[9] S.J. Golestani, “A Self-Clocked Fair Queueing

Scheme for Broadband Applications,” Proc. IEEE

Infocom ’94, pp. 636-646, June 1994.

[10] A.G.P. Rahbar and O. Yang, “The Output-

Controlled Round Robin Scheduling in Differentiated

Services Edge Switches,” Proc.

IEEE BROADNETS ’05, Oct. 2005.

[11] D. Bertsekas and R. Gallager, Data Networks.

Prentice Hall, 1992.

[12] S. Kanhere, A. Parekh, and H. Sethu, “Fair and

Efficient Packet Scheduling Using Elastic Round

Robin,” IEEE Trans. Parallel and

Distributed Systems, vol. 13, no. 3, pp. 324-336, Mar.

2002.

[13] Y. Ito, S. Tasaka, and Y. Ishibashi, “Variably

Weighted Round Robin Queueing for Core IP

Routers,” Proc. IEEE Int’l Performance,

Computing, and Comm. Conf. (IPCCC ’02), Apr.

2002.

[14] M. Shreedhar and G. Varghese, “Efficient Fair

Queuing Using Deficit Round Robin,” IEEE/ACM

Trans. Networking, vol. 4, no. 3,

June 1996.

[15] Y. Jiang, C.-K. Tham, and C.-C. Ko, “A

Probabilistic Priority Scheduling Discipline for Multi-

Service Networks,” Elsevier Computer Comm., vol.

25, no. 13, pp. 1243-1254, 2002.

[16] M. MacGregor and W. Shi, “Deficits for Bursty

Latency-Critical Flows: DRR++,” Proc. IEEE Eighth

Int’l Conf. Networks (ICON ’00),

Sept. 2000.

[17] M. Katevenis, S. Sidiropoulos, and C.

Courcoubetis, “Weighted Round-Robin Cell

Multiplexing in a General-Purpose ATM Switch

Chip,” IEEE J. Selected Areas in Comm., vol. 9, no. 8,

pp. 1265-1279, Oct. 1991.

[19] J. Mao, W.M. Moh, and B. Wei, “PQWRR

Scheduling Algorithm in Supporting of DiffServ,”

Proc. IEEE Int’l Conf. Comm. (ICC ’01), vol. 3, June

2001.

[20] L. Ji, T.N. Arvanitis, and S.I. Woolley, “Fair

Weighted Round Robin Scheduling Scheme for

Diffserv Network,” IEE Electronic

Letters, vol. 39, no. 3, Feb. 2003.

[21] C. Guo, “SRR: An O(1) Time-Complexity Packet

Scheduler for Flows in Multiservice Packet

Networks,” IEEE/ACM Trans. Networking, vol. 12,

no. 6, Dec. 2004.

[22] C. Zhang and M. MacGregor, “Scheduling

Latency-Critical Traffic: A Measurement Study of

DRR+ and DRR++,” Proc. IEEE High Performance

Switching and Routing (HPSR), June 2002.

[23] S.S. Kanhere and H. Sethu, “Fair, Efficient and

Low-Latency Packet Scheduling Using Nested Deficit

Round Robin,” Proc. IEEE High Performance

Switching and Routing (HPSR), May 2001.

[24]http://www.opnet.com/products/modeler/home.ht

ml, 2007.

[25] V. Paxson and S. Floyd, “Wide Area Traffic: The

Failure of Poisson Modeling,” IEEE/ACM Trans.

Networking, vol. 3, no. 3, pp. 226-244, 1995.

[26] ttp://www.caida.org/analysis/AIX/plen_hist,

2007.

International Journal of Advanced and Innovative Research (2278-7844) / # 165 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 165

[27] R.R.-F. Liao and A.T. Campbell, “Dynamic Core

Provisioning for Quantitative Differentiated Services,”

IEEE/ACM Trans. Networking,

vol. 12, no. 3, pp. 429-442, June 2004.

[28] J. Yang, “A Proportional Congestion Control

Solution for Real-Time Traffic,” MS thesis, Carleton

Univ., Ottawa, ON, Canada,

2005.

[29] F. Agharebparast and V.C.M. Leung, “A New

Traffic Rate Estimation and Monitoring Algorithm for

the QoS-Enabled

Internet,” Proc. IEEE Globecom ’03, Dec. 2003.

[30] H.M. Chaskar and U. Madhow, “Fair Scheduling

with TunableLatency: A Round-Robin Approach,”

IEEE/ACM Trans. Networking,

vol. 11, no. 4, pp. 592-601, Aug. 2003.

[31] A. Habib, S. Fahmy, and B. Bhargava,

“Monitoring and ControllingQoS Network Domains,”

ACM/Wiley Int’l J. Network Management,vol. 15, no.

1, pp. 11-29, Jan. 2005.

International Journal of Advanced and Innovative Research (2278-7844) / # 166 / Volume 5 Issue 11

 © 2016 IJAIR. All Rights Reserved 166

