On E^k – Cordial Graphs

J.Devaraj#1, M.Teffilia#2

¹Associate professor(retd),Dept. of Mathematics, NMC College Marthandam,Tamil Nadu,India Email : devaraj-jacob@yahoo.co.in ²Assistant Professor,Dept. of Mathematics,WCC College Nagercoil,Tamil Nadu,India

Email : teffiliafranklin@gmail.com

Abstract: A labeling f of G is said to be E_k - cordial if it is possible **to label the edges with the numbers from the set {0,1,2,………,k-1} in such a way that, at each vertex v, the sum of the labels on the edges incident with v modulo k satisfies the inequalities** $|v(i) - v(j)| \leq 1$ and $|e(i) - e(j)| \leq 1$, where v(s) and e(t) are

respectively, the number of vertices labeled with s and the number of edges labelled with t. In this paper we prove that the ladder graph, $C_n \odot K_2$, attaching triangle at each vertex of the **cycle, attaching k1,3 at each vertex of the cycle , flower graph,LIC2n are Ek- Cordial graphs.**

*Keywords***: Labeling, ladder graph, flower graph, LIC2n graph, Ek- Cordial graph.**

I. Introduction

A labeling or valuation of a graph G is an assignment of labels to the vertices of G that induces for each edge xy a label depending on the vertex labels $f(x)$ and $f(y)$. For all terminology and notations in graph theory we follow Harary [1] .Yilmaz and Cahit defined a new graph technique called E_k - Cordial labeling in 1997. Let f be an edge labeling of a graph $G=(V,E)$ such that $f:E(G) \rightarrow \{0,1,2,\ldots,k-1\}$ and the induced vertex labeling be given as

$$
f^+(v) = \left(\sum_u f(uv)\right) \pmod{k}
$$
, where $u, v \in V$ and $uv \in E$. The

map f is called an E_k - Cordial labeling of G, if the following conditions are satisfied for all $i, j \in \{0, 1, 2, \ldots, k-1\}$:

$$
(1) \left| e_f(i) - e_f(j) \right| \le 1
$$
 and

$$
(2) \quad \left| v_f(i) - v_f(j) \right| \le 1
$$

Where $e_f(i)$, $e_f(j)$ denote the number of edges labeled with i and j repectively and $v_f(i), v_f(j)$ denote the number of vertices labeled with i and j repectively. The graph G is called E_k - Cordial if it admits an E_k - Cordial labeling. A graph is E- Cordial if it is E_2 - Cordial. *Definition 1:*

Let P_n be a path on n vertices. A ladder graph $P_n \times K_2$ is defined as the Cartesian product of P_n and K_2 and it is denoted by L_n .

Theorem 1:

Ladder graph L_n is E_k -cordial for $k = n-1$ and $k \not\equiv 0 \pmod{3}$ *Proof :*

The Ladder graph $L_n = P_n x K_2$

Let $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$ be the vertices of L_n . The edge set of L_n be

 $E(L_n) = \{(u_iu_{i+1})/1 \le i \le n-1\} \cup \{(v_iv_{i+1})/1 \le i \le n-1\} \cup \{(u_iv_i)/1 \le i \le n\}$ L_n has 2n vertices and (3n-2) edges

- Define $f : E(L_n) \rightarrow \{0,1,2,...,k-1\}$ where $k = n-1$ as follows.
- $f(u_i u_{i+1}) = i-1, 1 \le i \le n-1$ $f(v_i v_{i+1}) = (n-2) - (i-1)$, $1 \le i \le n-1$ $f(u_i v_i)= i-1, 1 \le i \le n-1$ f(u_n v_n)= n-2 Now $e_f(0) = e_f(1) =$ = $e_f(k-2) = 3$, $e_f(k-1)=4$,
- The induced vertex labels are as follows.
- Now $f^+(u_1)$ = Sum of the edges incident with $u_1 \pmod{k}$
	- $f^+(u_1) = 0$ $f^+(u_2) = 2$ $f^+(u_i) = f^+((u_{i-1})+3)$ (modk), i=3,4,....., k-1 $f^+(u_k)=k-2$ $f^+(v_i) = k-i, i=1,2,...,k$ $f^+(v_{k+1}) = k-1$
- Then $v_f(0) = 3$, $v_f(i) = 2$, for $i \neq k-2$, $v_f(k-2)=3$
- In both the cases,
- $|e_f(i) e_f(j)| \leq 1, \forall i, j$ and
- $|v_f(i) v_f(j)| \le$
- L_n is E_k cordial for k= n-1 and k $\neq 0$ (mod 3)

Illustration:1

 L_8 is E_7 – cordial

Theorem 2:

The graph $C_n \odot K_2$ is E_k –cordial for $n \not\equiv 0 \pmod{4}$, $n\geq 3$ with $k = n$.

Proof :

Let C_n be the cycle. Let v_1, v_2, \ldots, v_n be the vertices of C_n . Let K_2 be the complete graph on two vertices. Now attach k_2 to each vertex of the cycle C_n . The newly obtained graph is denoted by $C_n \odot K_2$.

Note that $C_n \odot K_2$ is a graph with 3n vertices and 4n edges. Let a_i , b_i , $i=1,2,...,n$ be the vertices adjacent to the rim vertices of C_n Let the vertex set of G be

 $V(G) = \{a_i/1 \le i \le n\} \cup \{b_i \mid 1 \le i \le n\} \cup \{v_i \mid 1 \le i \le n\}$ Let the edge set of $G = C_n \odot k_2$ be $E(G) = \{(v_i \ v_{i+1})/1 \le i \le n-1\} \cup \{(v_n \ v_1)\} \cup \{(a_i \ b_i)/1 \le i \le n\}$ $U\{(v_i b_i) / 1 \le i \le n\} \cup \{(a_i v_i) / 1 \le i \le n\}$ Define f:E(G) \rightarrow {0,1,2,.....,k-1} where k=n as follows. $f(v_i v_{i+1}) = i-1$, $1 \le i \le k$ where $v_{k+1} = v_1$ f(v_i a_i)= i-1, $1 \le i \le k$ $f(a_i b_i)= i-1, 1 \le i \le k$ $f(v_i b_i)= i, 1 \le i \le k-1$ $f(v_{k+1}b_{k+1}) = 0$ Now () ()== () The induced vertex labels are as follows $f^+(v_1) = 0$ $f^+(v_i) = [f(v_{i-1})+4)] \text{ mod } k, 2 \le i \le k$ $f^+(a_1) = 0$ $f^+(a_i) = [f(a_{i-1})+2] \mod k, 2 \le i \le k$ $f^+(b_1) = 0$ $f^+(b_i) = [f(b_{i-1})+2)] \text{ mod } k, 2 \le i \le k$ Then ()= ()....................... () In both the cases $|e_f(i) - e_f(j)| \leq 1, \forall i, j$ and $|v_f(i) - v_f(j)| \le$ $C_n \odot K_2$ is E_k – cordial for $n \not\equiv 0 \pmod{4}$, $n \geq 3$ with k=n *Illustration:2* $C_5 \bigcirc K_2$ is E_5 – cordial

Theorem 3:

A graph obtained by attaching $k_{1,3}$ at each vertex of the cycle C_n is E_k – cordial, $k \ne 0$ (mod 3) and k=n *Proof:*

Let C_n be the cycle $u_1u_2.....u_nu_1$. Let v_i , x_i,y_i,z_i be the vertices of the ith copy of $k_{1,3}$ in which v_i is the central vertex. Identify z_i with $u_i, 1 \le i \le n$. Let the resultant graph be G. The edge set of G is

 $E(G) = \{(u_iu_{i+1})/1 \le i \le n \cup \{(u_nv_1)\} \cup \{(u_iv_i,v_ix_i,v_iy_i \mid 1 \le i \le n\}$ It has 4n vertices and 4n edges. Define f: $E(G) \to \{0,1,2,...... k-1\}$ by $f(u_iu_{i+1}) = i-1, u_{k+1} = u_1, 1 \le i \le k$ $f(u_iv_i) = i-1, 1 \le i \le k$ $f(v_i x_i) = i-1, 1 \le i \le k$ $f(v_i y_i) = i-1, 1 \le i \le k$ Now $e_f(0) = e_f(1) =$ $e_f(k-1) = k-1$ The induced vertex labels where $k = n$ are as follows $f^+(u_1) = k-1$ $f^+(u_i) = [f(u_{i-1}) + 3] \text{ mod } k, 1 \le i \le k$ $f^+(v_1)=0$ $f^+(v_i) = [f(v_{i-1}) + 3] \text{ mod } k, 1 \le i \le k$ $f^+(x_i)=i-1, 1 \le i \le k$ $f^+(y_i)=i-1, 1 \le i \le k$ then $v_f(0) = v_f(1) = ... = v_f(k-1) = 4$ In both the cases $|e_f(i) - e_f(j)| \le 1, \forall i, j \text{ and } |v_f(i) - v_f(j)| \le$: The graph is E_k – cordial, $k \not\equiv 0 \pmod{3}$ and k=n *Illustration:3*

Attaching k_{13} at each vertex of the cycle C₅ is E₅ – cordial,

II .flower graph

Definition 2:

A graph G is called a $(n \times m)$ – flower graph if it has n vertices which form an $n - cycle$ and n sets of m-2 vertices which form $m -$ cycles around the $n -$ cycle on a single edge. This graph is denoted by $f_{n\times m}$. It is clear that $f_{n\times m}$ has $n(m-1)$ vertices and mn edges.

Theorem 4:

Flower graph $f_{n\times 3}$ is E_k – cordial, where $k \not\equiv 0 \pmod{4}$ and k=n.

Proof :

Let v_1, v_2, \ldots, v_n , be the vertices of n-cycle of f_{nx3} and $\{u_i\}$ be the ith sets of vertices, $1 \le i \le n$, Which form 3cycles, around the n-cycle so that 3 cycle intersects with ncycle on a single edge.

The edge set of the graph G is

 $E(G) = \{ (v_i \, v_{i+1}, \, v_{i+1}u_i, \, v_1u_n, v_nu_1/1 \leq i \leq n-1 \} \bigcup \{ (v_i \, u_i)/1 \leq i \leq n \}$ Then the graph has 2n vertices and 3n edges. Define f: $E(G) \rightarrow \{0,1,2,...,k-1\}$ where k=n is as follows. $f(v_i v_{i+1}) = i-1, 1 \le i \le k, v_{k+1} = v_1$ $f(v_{2i-1} u_{2i-1}) = 2i-2, 1 \le i \le k$ $f(v_{2i} u_{2i}) = 2i-2, 1 \le i \le k$ f($v_{2i} u_{2i-1}$)= 2i-1, 1 ≤ i ≤ k $f(v_{2i+1} u_{2i}) = 2i-1, 1 \le i \le k, v_{k+1} = v_1$ Now $e_f(0) = e_f(1) =$ $e_f(k-1) = 3$ The induced vertex labels are as follows $f^+(v_1) = k-2$, $f^+(v_i) = [f(v_{i-1}+4)] \mod k$ $f^+(u_1)=1$ $f^+(u_2)=1$ $f^+(u_{2i+1}) = [f(u_{2i-1})+4] \text{ mod } k$ $f^+(u_{2i+2}) = [f(u_{2i})+4] \text{ mod } k$ Then $v_f(0) = v_f(1) =$= $v_f(k-1) = 3$ In both the cases $|e_f(i) - e_f(j)| \le 1, \forall i, j \text{ and } |v_f(i) - v_f(j)| \le$ \therefore f_{nx3} is E_k – cordial, where k\#0 (mod 4) and k=n

III. Lotus inside a circle *Definition 3:*

The graph lotus inside a circle is denoted by LIC_n , $n \geq 3$ and is defined as follows. Let S_n be the star graph with vertices $b_0, b_1, b_2, \ldots, b_n$ whose centre is b_0 . Let C_n be the cycle of length n whose vertices are $a_1, a_2, a_3, \ldots, a_n$. We join a_{i+1} with b_i and b_{i+1} for each $i \ge 1$ and join a_1 with b_1 and b_n . *Theorem 5:*

The graph LIC_{2n} is E_k – cordial for $k \geq 4$, $k \not\equiv 0 \pmod{5}$ and $k=n$

Proof :

The vertex set is $V(LIC_{2n}) = {b_i/1 \le i \le 2n} \bigcup {a_{i/1} \le j \le 2n}$ The edge set is $E(LIC_{2n}) = \{(b_0b_i) / 1 \le i \le 2n\} \cup \{(b_i a_i) / 1 \le i \le 2n\}$ $\bigcup \{ (b_i a_{i+1}) / 1 \le i \le 2n \& a_{2n+1} = a_1 \} \bigcup \{ (a_i a_{i+1}) / 1 \le i \le 2n \& a_{2n+1} \}$ $a_{2n+1} = a_1$

 LIC_{2n} has (4n+1) vertices and 8n edges.

Define f: $E(LIC_n) \rightarrow \{0,1,2,...,k-1\}$ where k=n is as follows. $f(b_0 b_i) = i-1, 1 \le i \le k$ $f(b_0 b_{i+k}) = i-1, 1 \le i \le k$ $f(b_i a_i) = 2i-2 \pmod{k}, 1 \le i \le 2k$ $f(b_i a_{i+1}) = 2i-1 \pmod{k}, 1 \le i \le 2k, a_{2k+1} = a_1$ $f(a_{2i-2} a_{2i-1}) = i-1, 1 \le i \le k-1, a_{2k} = a_0$ $f(a_{2i-1} a_{2i}) = i-1, 1 \le i \le k-1$ Now $e_f(0) = e_f(1) =$ = $e_f(k-1)=8$ The induced vertex labels are as follows $f^+(b_0) = 0$ $f^+(b_1) = 1$ $f^+(b_i) = [f(b_{i-1})+5] \text{ mod } k$ $f^+(a_1) = k-1$ $f^+(a_i) = [f(a_{i-1})+5] \text{ mod } k$ Then vf(0) = 5, vf(1) = = vf(k-1)=4 In both the cases

 $|e_f(i) - e_f(j)| \le 1, \forall i, j \text{ and } |v_f(i) - v_f(j)| \le$ \therefore LIC_{2n} is E_k – cordial for k≥4, k $\not\equiv$ 0 (mod5) where k =n *Illustration :5* LIC_{12} is E_6 – cordial

References

- [1] Harary F, Graph Theory, Narosa Publishing House, New Delhi(1993)
- [2] Joseph A. Gallian, Dynamic Survey of graph labeling (2015)
- [3] Sridharan N. and. Umarani R., E_k cordial labeling of graphs, Elixir Appl.Math,38(2011)4564-4567
- [4] Maged Z. Youssef, On E_k cordial labeling ,Article in Ars Combinatoria-waterloo then Winnipeg-April 2012.