On E_k – Cordial Graphs

J.Devaraj^{#1}, M.Teffilia^{#2}

¹Associate professor(retd),Dept. of Mathematics, NMC College Marthandam,Tamil Nadu,India Email : devaraj.jacob@yahoo.co.in ²Assistant Professor,Dept. of Mathematics,WCC College Nagercoil,Tamil Nadu,India Email : teffiliafranklin@gmail.com

Abstract: A labeling f of G is said to be E_k - cordial if it is possible to label the edges with the numbers from the set {0,1,2,.....,k-1} in such a way that, at each vertex v, the sum of the labels on the edges incident with v modulo k satisfies the inequalities $|v(i) - v(j)| \le 1$ and $|e(i) - e(j)| \le 1$, where v(s) and e(t) are respectively, the number of vertices labeled with s and the

respectively, the number of vertices labeled with s and the number of edges labelled with t. In this paper we prove that the ladder graph, $C_n \odot K_2$, attaching triangle at each vertex of the cycle, attaching $k_{1,3}$ at each vertex of the cycle , flower graph,LIC_{2n} are E_k - Cordial graphs.

Keywords: Labeling, ladder graph, flower graph, $\rm LIC_{2n}$ graph, $\rm E_k\text{-}$ Cordial graph.

I. Introduction

A labeling or valuation of a graph G is an assignment of labels to the vertices of G that induces for each edge xy a label depending on the vertex labels f(x) and f(y). For all terminology and notations in graph theory we follow Harary [1] .Yilmaz and Cahit defined a new graph technique called E_k - Cordial labeling in 1997.Let f be an edge labeling of a graph G=(V,E) such that f:E(G) $\rightarrow \{0,1,2,\ldots,k-1\}$ and the induced vertex labeling be given as

$$f^{\dagger}(v) = \left(\sum_{u} f(uv)\right) \pmod{k}$$
, where $u, v \in V$ and $uv \in E$. The

map f is called an E_k - Cordial labeling of G, if the following conditions are satisfied for all i, $j \in \{0, 1, 2, \dots, k-1\}$:

(1)
$$|e_f(i) - e_f(j)| \le 1$$
 and

(2)
$$\left| v_f(i) - v_f(j) \right| \leq 1$$

Where $e_f(i)$, $e_f(j)$ denote the number of edges labeled with i and j repectively and $v_f(i)$, $v_f(j)$ denote the number of vertices labeled with i and j repectively. The graph G is called E_k - Cordial if it admits an E_k - Cordial labeling. A graph is E- Cordial if it is E_2 - Cordial. *Definition 1:*

Let P_n be a path on n vertices. A ladder graph $P_n \times K_2$ is defined as the Cartesian product of P_n and K_2 and it is denoted by L_n .

Theorem 1:

Ladder graph L_n is E_k -cordial for k = n-1 and $k \not\equiv 0 \pmod{3}$ *Proof*:

The Ladder graph $L_n = P_n \times K_2$

Let $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n$ be the vertices of L_n . The edge set of L_n be

$$\begin{split} E(L_n) &= \{(u_i u_{i+1})/1 \leq i \leq n-1\} \bigcup \{(v_i v_{i+1})/1 \leq i \leq n-1\} \bigcup \{(u_i v_i)/1 \leq i \leq n\} \\ & L_n \text{ has } 2n \text{ vertices and } (3n-2) \text{ edges} \end{split}$$

Define f: E(L_n) \rightarrow {0,1,2,....,k-1} where k = n-1 as follows. f(u_i u_{i+1})= i-1, 1 ≤ i ≤ n-1

 $f(v_i v_{i+1}) = (n-2) - (i-1), \ 1 \le i \le n-1$

 $f(u_i v_i) = i-1, 1 \le i \le n-1$

 $f(u_n v_n) = n-2$

Now $e_f(0) = e_f(1) = \dots = e_f(k-2) = 3$, $e_f(k-1) = 4$,

The induced vertex labels are as follows.

Now $f^+(u_1) =$ Sum of the edges incident with $u_1 \pmod{k}$

 $f^{+}(u_{1}) = 0$ $f^{+}(u_{2}) = 2$ $f^{+}(u_{i}) = f^{+}((u_{i-1})+3) \pmod{k}, i=3,4,..., k-1$ $f^{+}(u_{k}) = k-2$ $f^{+}(v_{i}) = k-i, i=1,2,...,k$ $f^{+}(v_{k+1}) = k-1$ (1)

Then $v_f(0) = 3$, $v_f(i) = 2$, for $i \neq k-2$, $v_f(k-2) = 3$

In both the cases,

 $|\mathbf{e}_{\mathbf{f}}(\mathbf{i}) - \mathbf{e}_{\mathbf{f}}(\mathbf{j})| \le 1, \forall i, j \text{ and}$

 $|v_{f}(i) - v_{f}(j)| \leq 1, \forall i, j$

 L_n is E_k – cordial for k= n-1 and k $\not\equiv 0 \pmod{3}$

Illustration:1

 L_8 is E_7 – cordial

Theorem 2:

The graph $C_n \bigcirc K_2$ is E_k –cordial for $n \not\equiv 0 \pmod{4}$, $n \ge 3$ with k = n.

Proof:

Let C_n be the cycle. Let v_1, v_2, \dots, v_n be the vertices of C_n . Let K_2 be the complete graph on two vertices. Now attach k_2 to each vertex of the cycle C_n . The newly obtained graph is denoted by $C_n \bigcirc K_2$.

Note that $C_n \odot K_2$ is a graph with 3n vertices and 4n edges. Let a_i , b_i , i=1,2,...,n be the vertices adjacent to the rim vertices of C_n Let the vertex set of G be

 $V(G) = \{a_i/1 \le i \le n\} \bigcup \{b_i/1 \le i \le n\} \bigcup \{v_i/1 \le i \le n\}$ Let the edge set of $G = C_n \bigcirc k_2$ be $E(G) = \{ (v_i \ v_{i+1})/1 \le i \le n-1 \} \bigcup \{ (v_n \ v_1) \} \bigcup \{ (a_i \ b_i)/1 \le i \le n \}$ $\bigcup \{ (v_i b_i) / 1 \le i \le n \} \bigcup \{ (a_i v_i) / 1 \le i \le n \}$ Define f:E(G) \rightarrow {0,1,2,...,k-1} where k=n as follows. $f(v_i v_{i+1}) = i-1, 1 \le i \le k$ where $v_{k+1} = v_1$ $f(v_i a_i) = i - 1$, $1 \le i \le k$ $f(a_i b_i) = i - 1, 1 \le i \le k$ $f(v_i b_i) = i, 1 \le i \le k-1$ $f(v_{k+1}b_{k+1}) = 0$ Now $e_f(0) = e_f(1) = \dots = e_f(k-1) = 4$ The induced vertex labels are as follows $f^+(v_1) = 0$ $f^+(v_i) = [f(v_{i-1})+4)] \mod k, 2 \le i \le k$ $f^{+}(a_1) = 0$ $f^+(a_i) = [f(a_{i-1})+2)] \mod k, \ 2 \le i \le k$ $f^{+}(b_{1}) = 0$ $f^{+}(b_i) = [f(b_{i-1})+2)] \mod k, 2 \le i \le k$ Then $v_f(0) = v_f(1)$ $v_f(k-1) = 3$ In both the cases $|\mathbf{e}_{\mathbf{f}}(\mathbf{i}) - \mathbf{e}_{\mathbf{f}}(\mathbf{j})| \le 1, \forall i, j \text{ and}$ $|\mathbf{v}_{\mathbf{f}}(\mathbf{i}) - \mathbf{v}_{\mathbf{f}}(\mathbf{j})| \le 1, \forall i, j$ \therefore C_n \bigcirc K₂ is E_k – cordial for n $\neq 0 \pmod{4}$, n ≥ 3 with k=n Illustration:2 $C_5 \bigcirc K_2$ is E_5 – cordial

Theorem 3:

A graph obtained by attaching $k_{1,3}$ at each vertex of the cycle C_n is E_k – cordial, $k \not\equiv 0 \pmod{3}$ and k=n*Proof:*

Let C_n be the cycle $u_1u_2....u_nu_1$. Let v_i , x_i , y_i , z_i be the vertices of the ith copy of $k_{1,3}$ in which v_i is the central vertex. Identify z_i with u_i , $1 \le i \le n$. Let the resultant graph be G. The edge set of G is

 $E(G){=}\{(u_iu_{i+1})/1{\leq}i{\leq}n\cup\{(u_nv_1)\} \cup \{(u_iv_{i,}v_ix_i,v_iy_i \ / \ 1{\leq}i{\leq}n \ \}$ It has 4n vertices and 4n edges. Define f: $E(G) \to \{0, 1, 2, \dots, k-1\}$ by $f(u_i u_{i+1}) = i-1, u_{k+1} = u_1, 1 \le i \le k$ $f(u_iv_i) = i-1, 1 \le i \le k$ $f(v_i x_i) = i - 1, 1 \le i \le k$ $f(v_i v_i) = i - 1, 1 \le i \le k$ Now $e_f(0) = e_f(1) = \dots e_f(k-1) = k-1$ The induced vertex labels where k = n are as follows $f^+(u_1) = k-1$ $f^+(u_i) = [f(u_{i-1}) + 3] \mod k, \ 1 \le i \le k$ $f^+(v_1) = 0$ $f^+(v_i) = [f(v_{i-1}) + 3] \mod k, \ 1 \le i \le k$ $f^+(x_i) = i - 1, 1 \le i \le k$ $f^+(y_i) = i - 1, 1 \le i \le k$ then $v_f(0) = v_f(1) = \dots = v_f(k-1) = 4$ In both the cases $|\mathbf{e}_{\mathbf{f}}(\mathbf{i}) - \mathbf{e}_{\mathbf{f}}(\mathbf{j})| \leq 1, \forall i, j \text{ and } |\mathbf{v}_{\mathbf{f}}(\mathbf{i}) - \mathbf{v}_{\mathbf{f}}(\mathbf{j})| \leq 1, \forall i, j$ \therefore The graph is E_k – cordial, k $\not\equiv 0 \pmod{3}$ and k=n Illustration:3

Attaching $k_{1,3}$ at each vertex of the cycle C_5 is E_5 – cordial,

II .flower graph

Definition 2:

A graph G is called a $(n \times m)$ – flower graph if it has n vertices which form an n – cycle and n sets of m-2 vertices which form m – cycles around the n – cycle on a single edge. This graph is denoted by $f_{n \times m}$. It is clear that $f_{n \times m}$ has n(m-1) vertices and mn edges.

Theorem 4:

Flower graph $f_{n\times 3}~~is~E_k-cordial,$ where $k\not\equiv 0~(mod~4)$ and k=n.

Proof:

Let v_1, v_2, \dots, v_n , be the vertices of n-cycle of f_{nx3} and $\{u_i\}$ be the ith sets of vertices, $1 \le i \le n$, Which form 3cycles, around the n-cycle so that 3 cycle intersects with ncycle on a single edge.

The edge set of the graph G is

 $E(G) = \{(v_i \ v_{i+1}, v_{i+1}u_i, v_1u_n, v_nu_1/1 \le i \le n-1\} \cup \{(v_i \ u_i)/1 \le i \le n\}$ Then the graph has 2n vertices and 3n edges. Define f: E(G) \rightarrow {0,1,2,....,k-1} where k=n is as follows. $f(v_i v_{i+1}) = i-1, 1 \le i \le k, v_{k+1} = v_1$ $f(v_{2i-1} u_{2i-1}) = 2i-2, 1 \le i \le k$ $f(v_{2i} u_{2i}) = 2i-2, 1 \le i \le k$ $f(v_{2i} u_{2i-1}) = 2i-1, 1 \le i \le k$ $f(v_{2i+1} u_{2i}) = 2i-1, 1 \le i \le k, v_{k+1} = v_1$ Now $e_f(0) = e_f(1) = \dots e_f(k-1) = 3$ The induced vertex labels are as follows $f^+(v_1) = k-2$, $f^+(v_i) = [f(v_{i-1}+4)] \mod k$ $f^+(u_1) = 1$ $f^+(u_2) = 1$ $f^+(u_{2i+1}) = [f(u_{2i-1})+4] \mod k$ $f^+(u_{2i+2}) = [f(u_{2i})+4] \mod k$ Then $v_f(0) = v_f(1) = \dots = v_f(k-1) = 3$ In both the cases $|\mathbf{e}_{\mathbf{f}}(\mathbf{i}) - \mathbf{e}_{\mathbf{f}}(\mathbf{j})| \le 1, \forall i, j \text{ and } |\mathbf{v}_{\mathbf{f}}(\mathbf{i}) - \mathbf{v}_{\mathbf{f}}(\mathbf{j})| \le 1, \forall i, j$ $\div f_{nx3} \text{ is } E_k \ - \text{cordial}, \text{ where } k \not\equiv 0 \pmod{4} \text{ and } k{=}n$

III. Lotus inside a circle *Definition 3:*

The graph lotus inside a circle is denoted by LIC_n , $n \ge 3$ and is defined as follows. Let S_n be the star graph with vertices $b_0, b_1, b_2, ..., b_n$ whose centre is b_0 . Let C_n be the cycle of length n whose vertices are $a_1, a_2, a_3, ..., a_n$. We join a_{i+1} with b_i and b_{i+1} for each $i \ge 1$ and join a_1 with b_1 and b_n .

Theorem 5:

The graph LIC_{2n} is E_k – cordial for $k \geq 4,$ $k{\not\equiv}0~(mod5)$ and k=n

Proof:

The vertex set is $V(LIC_{2n}) = \{b_i/1 \le i \le 2n\} \cup \{a_j/1 \le j \le 2n\}$ The edge set is $E(LIC_{2n}) = \{(b_0b_i)/1 \le i \le 2n\} \cup \{(b_i a_i)/1 \le i \le 2n\} \cup \{(b_i a_{i+1})/1 \le i \le 2n \& a_{2n+1} = a_1\} \cup \{(a_i a_{i+1})/1 \le i \le 2n \& a_{2n+1} = a_1\}$

 LIC_{2n} has (4n+1) vertices and 8n edges.

Define f:E(LIC_n) \rightarrow {0,1,2,....,k-1} where k=n is as follows. $f(b_0 b_i) = i-1, 1 \le i \le k$ $f(b_0 b_{i+k}) = i-1, 1 \le i \le k$ $f(b_i a_i) = 2i-2 \pmod{1}, 1 \le i \le 2k$ $f(b_i a_{i+1}) = 2i-1 \pmod{k}, 1 \le i \le 2k, a_{2k+1} = a_1$ $f(a_{2i-2} a_{2i-1}) = i-1, 1 \le i \le k-1, a_{2k} = a_0$ $f(a_{2i-1} a_{2i}) = i-1, 1 \le i \le k-1$ Now $e_f(0) = e_f(1) = \dots = e_f(k-1)=8$ The induced vertex labels are as follows $f^{+}(b_0) = 0$ $f^{+}(b_1) = 1$ $f^+(b_i) = [f(b_{i-1})+5] \mod k$ $f^{+}(a_1) = k-1$ $f^+(a_i) = [f(a_{i-1})+5] \mod k$ Then $v_f(0) = 5$, $v_f(1) = \dots = v_f(k-1)=4$ In both the cases

$$\begin{split} |e_f(i) - e_f(j)| &\leq 1, \forall i, j \text{ and } |v_f(i) - v_f(j)| \leq 1, \forall i, j \\ \therefore LIC_{2n} \text{ is } E_k - \text{cordial for } k \geq 4, k \not\equiv 0 \pmod{5} \text{ where } k = n \\ \textit{Illustration :5} \\ LIC_{12} \text{ is } E_6 - \text{cordial} \end{split}$$

References

[1] Harary F, Graph Theory, Narosa Publishing House, New Delhi(1993)

[2] Joseph A. Gallian, Dynamic Survey of graph labeling (2015)

[3] Sridharan N. and. Umarani R., E_k – cordial labeling of graphs, Elixir Appl.Math,38(2011)4564-4567

[4] Maged Z. Youssef , On E_k – cordial labeling ,Article in Ars Combinatoria-waterloo then Winnipeg-April 2012.