Analysis On Pressure Vessel Design Parameter's With Solidworks

Bhupinder Singh¹ Sandeep Kumar² Mahakdeep Singh³

¹Asst. Prof., Mech.Engg.Dept., Chandigarh University, Gharuan, Mohali, India ²Research Scholar, Mech.Engg.Dept., Chandigarh University, Gharuan, Mohali, India ³Asst. Prof, Mech.Engg.Dept., Chandigarh University, Gharuan, Mohali, India

> ¹bhupinder.singh003@gmail.com ²er.sandip@rediffmail.com ³mahakdeep.cu@gmail.com

Abstract – In this paper scope of improvement lying in the design of the shell of the pressure vessel as the shell is the main component in a vessel which with stands maximum value and type of pressures so that is why the focus was shifted to wall thickness. With help of solidworks FEA module the various iterations are compared and by reviewing the values of the stresses and by analysis of the distribution tables and figures. The results shows the carried out work in form of analysis in solidworks the effective wall thick is found out to be median which is applicable to vertical pressure vessels. one of the main reason why the standard pate thickness have been chosen to be between 8mm to 17 mm as these are the three standard plate thicknesses available. with material C276 which is a grade of stainless steel. This particular grade with thickness 11mm proves to be best suited for many reasons, mainly that all the stresses are found to be comparatively less at around 18% and at the same time the property of material being less corrosive (as it is used to store corrosive chemicals) and weld ability, gives the encouragement to suggest that the alloy C276 will best meet the purpose. Two other grades are also analyses in comparison. and the analysis has been done on solidworks analyses module.

Keywords – Solidworks FEA Module, Pressure vessels, Stress, Strain, C276

I. INTRODUCTION

The [1-4] -discussion in paper is about the standard plate wall thickness with different iterations of material grade and wall thicknesses, because of this the most effective thickness the strength of the vessel is increased as the stresses formed by the pressure from inside is contained under the maximum allowable limits.

Three standard sizes of plate of thickness of 8mm, 11mm and 17 mm are considered, Firstly an glance of distributions of stresses, strains and von misses are elaborated and then further the table of resulting values is given with respect to the grades and thicknesses [15, 16, 17]. By the observation of the values it can be categorically finalized that the hastelloy C276 at the thickness of 11 mm can prove to be the best material to with stand the thermal and structural pressure [22, 24, 26, 28].

Currently the work which is being carried on focuses mainly on optimal wall thickness of the most cost effective material, ideas is to reduce the cost of manufacturing by selecting latest alloy material which can satisfy the all around requirements of a pressure vessel. In the scope of work the factors affecting the stress consecrations and heat conservation will be also monitor and overall enhancement the design of the vessel will be drafted and the code of selection will be maintained as per the international standards maintained by the societies regulating the designs the scope will also touch in the improvement of design of the rest of mounting which can affect the total performance of a vessel [29, 30].

II. RESEARCH OBJECTIVE

1. To improve the design by finding out the most effective wall thickness

2. To reduce the cost of manufacturing y reducing the use of excess material used in form of excessively thick sheets of material.

3. To used a material which has more availability in the industry so that again the manufacturing is comparatively easy 4. To reduce heat and stress concentration caused because of increased thickness.

2.1 COMPARISON GRAPHICALLY :-

III. EXPERIMENT ANALYSIS 2.1.1 Stress distribution Comparison

Figure - 1 Stress distribution Comparison

Figure - 2 Stress distribution Comparison

Figure - 3 Stress distribution Comparison

3.0 - Strain Comparison :-

Figure - 4 Strain distribution comparison

Figure - 5 Strain distribution comparison

Figure - 6 Strain distribution comparison

3.1 - Von Mises Stress Comparison :-

Figure - 7 Von Misses distribution comparison

Figure - 8 Von Misses distribution comparison

Figure - 9 Von Misses distribution comparison

3.2 - COMPARISION OF THE STRESS VALUES

3.2.1 - Hoop Stress Comparison

Material	Stress Values	Nominal	Stress Values	Nominal	Stress Values 3	Nominal
	1	Thickness 1	2	Thickness 2		Thickness
						3
Alloy B-2/B-	725 N/mm2	8mm	695 N/mm2	11mm	710 N/mm2	17mm
3						
Alloy C-276	525 N/mm2	8mm	500 N/mm2	11mm	515 N/mm2	17mm
Туре	801 N/mm	8mm	765 N/mm2	11mm	898 N/mm2	17mm
316/316L						
Stainless						
Steel						

3.2.2 - Longitudinal Stress Comparison

Material	Stress Values 1	Nominal	Stress Values 2	Nominal	Stress Values 3	Nominal Thickness 3
		Thickness 1		Thickness 2		
Alloy B-2/B-3	252 N/mm2	8mm	210 N/mm2	11mm	220 N/mm2	17mm
Alloy C-276	175 N/mm2	8mm	170 N/mm2	11mm	180 N/mm2	17mm
Туре	325 N/mm	8mm	315 N/mm2	11mm	320 N/mm2	17mm
316/316L						
Stainless Steel						

Table 5.2 - Longitudinal Stress Comparison

3.2.3 - Von Mises Stress Strain Comparison

Material	Stress Values	Nominal	Stress Values	Nominal Thickness	Stress Values	Nominal
	1	Thickness 1	2	2	3	Thickness 3
Alloy B-	85.2 N/mm2	8mm	75.8 N/mm2	11mm	87.5 N/mm2	17mm
2/B-3						
Alloy C-	75.8 N/mm2	8mm	70.1 N/mm2	11mm	80.9 N/mm2	17mm
276						
Туре	99.1 N/mm	8mm	89.5 N/mm2	11mm	101.2 N/mm2	17mm
316/316L						
Stainless						
Steel						

Table 5.3 - Von Mises Stress Strain Comparison

It can be clearly observed by different iterations that Alloy C-276 is preferably the least in stress

3.2.4 - MATERIAL COST AND COMPARISON

Material	USD PER kg	Rs PER Kg	Availability	Availability	Corrosion	Weld Ability
				in sheets	resistibility	
Alloy B-2/B-3	\$ 55-50/Kg	3668.36 /Kg	Moderate	Yes	Low	High
Alloy C-276	\$ 35-40Kg	2334.41 /Kg	High	Yes	Moderate	High
Туре	\$ 57-60/Kg	4001.85 /Kg	Low	Yes	High	Low
316/316L						
Stainless Steel						

Table 5.4 – Material cost and comparison

Above is the comparison of the different type of materials at various parameters as weldabilty . ,Material availalabilty Cost comparison and Availability in sheets. Hastelloy C276 is a nickel-molybdenum-chromium superalloy with an addition of tungsten designed to have excellent corrosion resistance in a wide range of severe environments. The high nickel and molybdenum contents make the nickel steel alloy especially resistant to pitting and crevice corrosion in reducing environments while chromium conveys resistance to oxidizing media. The low carbon content minimizes carbide precipitation during welding to maintain corrosion resistance in as-welded structures. This nickel alloy is resistant to the formation of grain boundary precipitates in the weld heataffected zone, thus making it suitable for most chemical process application in an as welded condition.

IV. CONCLUSIONS

1. Since the excess wall thickness is discouraged in the result the wall thickness recommended is less

especially at the head level and all portions of the pressure vessel are totally safe and under maximum allowable limit as prescribed by ASME. It should also be noticed that the cost of grade Alloy B-2/B-3 is 25.7 % high as compared to Alloy C-276

- 2. Alloy C-276 compared to Alloy B-2/B-3 has more availability in the industrial market and is more malleable and machinable so as to form a vessel there for the objective of making it much easy to manufacture
- 3. The strength comparison are earlier mentioned and they provide a very elaborated schematic in order to explain the best combination
- 4. One of the Important finding is that the material c276 will best perform under the stressed conditions
- 5. Also the longitudinal stress and von misses stress distribution will be as low as 350 psi approx. at the thickness of 11 mm

V. FUTURE SCOPE

- 1. The wall thickness recommended is less especially at the head level and all portions of the pressure vessel are totally safe and under maximum allowable limit as prescribed by ASME. It should also be noticed that the cost of grade Alloy B-2/B-3 is 25.7 % high as compared to Alloy C-276 therefore this will act as a direct factor to contribute in reducing the cost effectiveness.
- 2. Alloy C-276 compared to Alloy B-2/B-3 has more availability in the industrial market and is more malleable and machinable so as to form a vessel there for the objective of making it much easy to manufacture and that to without using special tools and welding process.
- 3. The cost and strength comparison are earlier mentioned and they provide a very elaborated schematic in order to explain the best combination and iteration which can be set in order to evolve the technology of pressure vessel design.
- 4. One of the Important finding is that the material c276 will best perform under the stressed conditions.
- 5. The hoop stress which stands for the radial stress on the circumference will also be down by 15 % approx. at thickness of 11mm.
- 6. longitudinal stress and von misses stress distribution will be as low as 350 psi approx. at the thickness of 11 mm.
- 7. However the even important result is that the cost will reduce by 25% if C 276 is used .

VI. REFERENCES

- [1] A. O. Ayhan and H. F. Nied. (2002) "Stress intensity factors for three-dimensional surface cracks using enriched finite elements". International Journal for Numerical Methods in Engineering, 54:899–921.
- [2] AyubA.Miraje and Dr. Sunil A.Patil (2011) "Infinite fatigue life of three layer shrink fitted compound cylinder under fluctuation internal pressure" International Journal of Mechanical Engineering & Technology (IJMET), Vol 3, Issue 1, Journal-April (2012), pp. 288-299.
- [3] D. Chapelle and K. J. Bathe. (1993) "The inf-sup test. Computers and Structures," 47:537–545,
- [4] D. S. Malkus. (1996) "Eigen problems associated with the discrete LBB condition for incompressible finite elements.Int". J. Engng. Sci., 19:1299–1310, 1981.
- [5] D. Boffi, R. G. Duran, and L. Gastaldi. (1999) "A remark on spurious eigenvalues in a square". Appl. Math. Lett., 12:107–114.
- [6] D. Boffi, F. Brezzi, and L. Gastaldi. (2001) "Finite elements for the Stokes problem. In Mixed Finite Elements, Compatibility Conditions, and Applications. Springer.
- [7] D. Boffi, F. Brezzi, and L. Gastaldi. (2001) "On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Computation", 69:121
- [8] D. N. Arnold, R. S. Falk, and R. Winther. (2007) "Finite element exterior calculus, homological techniques and applications". Acta numerica, 15:1–155.

- [9] F. Brezzi, J. Douglas, and L. D. Marini. (1991) "Two families of mixed elements for second order elliptic problems". Numer. Math., 47:217–235.
- [10] F. Brezzi and M. Fortin. (1991) "Mixed and Hybrid Finite Element Methods".
- [11] F. Brezzi. (1995) "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers." R.A.I.R.O. Anal. Number., 2:129– 1
- [12] Feng H., Mughrabi H., and Donth B. (2002) "Finiteelement modeling of low temperature autofrettage of thickwalled tubes of the austenitic stainless steel AISI 304L PartI. Smooth thick-walled tubes", Modeling Simul. Mater. Sci. Eng.; Vol. 6, pp. 51–69.
- [13] Huang Xiaoping and Moan Torgeir. (2009) "Residual Stress in an Autofrettaged Tube Taking Bauschinger Effect as a function of the Prior Plastic Strain", J Pressure Vessel Techno; Vol. 131, pp. 1-7.
- [14] I. Babuška and J. Melenk. (2008) "The partition of unity method. Int. J. Numer. Meths. Eng"., 40:727–758.
- [15] I. Babu`ska.(2006) "The finite element method with Lagrangian multipliers. Numer. Math"., 20:179–192,.
- [16] J. Morgan and L. R. Scott. (2010) "A nodal basis for C1 piecewise polynomials of degree $n \ge 5$." Math. Computation, 29:737–740.
- [17] J. Morgan and L. R. Scott. (2011) "The dimension of the space of C1 piecewise polynomials".
- [18] J. Qin. On (2004) "Convergence of Some Simple Finite Elements for Incompressible Flows". PhD thesis, Penn State.
- [19] Jahed Hamid, (2003) "ReAutofrettage", J Pressure Vessel Technol, 2006; Vol. 128, pp. 223-226. Parker A. P. and Huang X. "Autofrettage and Reautofrettage of spherical pressure vessel", J Pressure Vessel Technol, 2007; Vol. 129, pp. 83-88.
- [20] Jahed Hamid, FarshiBehrooz & KarimiMorvarid, (2006) "Optimum Autofrettage & Shrink-Fit Combination in Multi-Layer Cylinders", Journal of Pressure Vessel Technology, Transactions of the ASME, pp. 196-200, Vol. 128.
- [21] Jahromi Haghpanah B., (2011). "Autofrettage of layered and functionally graded metal-ceramic composite vessels", Composite Structures, 2010; Vol. 92, pp.
- [22] K.-A. Mardal, X.-C. Tai, and R. Winter. (2002) "A robust finite element method for Darcy–Stokes flow". SIAM Jour. Num. Anal., 40:1605–1631.
- [23] Kumar, et al. (2011): "Optimization of Shell Thickness in Multilayer Pressure Vessels and Study on Effect of Shell on Maximum Hoops" Stress, International Journal of Engineering Science and Technology (IJEST). Vol. 3, No. 4, April.
- [24] Livieri Paolo and Lazzarin Paolo. (2011) "Autofrettage Cylindrical Vessels and Bauschinger Effect: An Analytical Frame For Evaluating Residual Stress "Distribution", Transactions of ASME. 2002; Vol. 124, pp. 38-46.
- [25] MirajeAyub A., Patil Sunil A.,(2011) "Minimization of material volume of three layer compound cylinder having same materials subjected to internal pressure", International Journal of Engineering, Science and Technology, Vol. 3, No. 8, 2011, pp. 26-40.
- [26] Majzoobi G.H. &Ghomi A., (2006) "Optimization of compound pressure cylinders", Journal of Achievements in Materials and Manufacturing Engineering", Vol. 15, Issue 1-2 March-April.

- [27] O. Axelsson. (2013) "A survey of preconditioned iterative methods for linear systems of algebraic equations." BIT Numerical Mathematics, 25(1):165–187, March.
- [28] Pierre Alliez, Dasburg. (2005) "Variation in tetrahedral meshing. & ACM Transactions on Graphics", 24(3):617– 625,
- [29] P. A. Raviart (2014) "A mixed finite element method for second order elliptic problems. Mathematical Aspects of the Finite Element Meth. Lecture Notes in Math., Springer," 606:292–315.
- [30] Patil Sunil A., (2011) "Finite Element Analysis of optimized compound cylinder", Journal of Mechanical Engineering Research, Vol. 3(1), Issue March.