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Abstract: A large number of algorithms have been 

evolved on account of natural phenomenon's and 

swarm behavior. Natural phenomenon's and swarms 

behavior are the warm area of research among the 

researchers. These algorithms have been executed on 

the different computational problems for the sake of 

solutions and gave critical outcomes than conventional 

system yet there is no such algorithm which can be 

connected for the greater part of the computational 

problems.   This paper proposes an optimisation 

algorithm called Grasshopper Optimisation Algorithm 

(GOA) and applies it to challenging problems in 

structural optimisation. The proposed algorithm 

mathematically models and mimics the behaviour of 

grasshopper swarms in nature for solving optimisation 

problems. The GOA algorithm is first benchmarked on 

a set of test problems to test and verify its performance 

qualitatively and quantitatively. The results show that 

the pro- posed algorithm is able to provide superior 

results compared to well-known and recent algorithms 

in the literature. The results of the real applications also 

prove the merits of GOA in solving real problems with 

unknown search spaces. 

 

Keywords:  Grasshopper Optimisation Algorithm 

(GOA), Nature Inspired Algorithm, Thermal 

generators, Economic load dispatch. 

 

                  I. INTRODUCTION  

In recent years, different heuristic optimization 

methods have been created. Many of these methods 

are inspired by swarm behavior in nature. Nature has 

dependably been a nonstop wellspring of motivation 

for scientists and researchers. A large number of 

algorithms have been produced in view of the 

characteristic procedure of development, laws, 

swarms conduct and so forth. Nature inspired 

algorithms are the most recent condition of art 

algorithms & works well with improvement problems 

and different problems than the traditional  methods 

since established techniques are resolute in nature. 

Over the last decades, there has been a growing 

interest in algorithms inspired by the behaviors of 

natural phenomena [5,8,17,19,21,28]. It is appeared 

by many researchers that these algorithms  are 

appropriate to settle complex computational  

problems, for example, optimization of objective 

functions [6,31], pattern recognition [24,27], control 

objectives [2,16,20], image processing [4,26], filter 

modeling [15,23], and so forth. etc. Various heuristic 

approaches have been adopted by researches so far, 

for example Genetic Algorithm [28], Simulated 

Annealing [21], Ant Colony Search Algorithm [5], 

Particle Swarm Optimization [17], etc. These 

algorithms are progressively analyzed or powered by 

researchers in many different areas [1,3,7,12,25,29]. 

These algorithms solve different optimization 

problems. However, there is no specific algorithm to 

achieve the best solution for all optimization 

problems. Some algorithms give a better solution for 

some particular problems than others. Hence, 

searching for new heuristic optimization algorithms 

is an open problem [30]. 

           

The economic dispatch problem (EDP) is one of the 

fundamental issues in power systems to solve  

keeping in mind the end goal to acquire benefits as  

stability, reliability and security. Its objective is to 

allocate the power demand among committed 

generators in the most efficient  way,  while all 

physical and operational limitations are fulfilled. The 

cost of power generation, especially  in fossil fuel 

plants, is high and economic dispatch helps in saving 

a significant amount of revenue [7]. Different 

algorithms have been adopted in order to find the rate 

of optimum product for each power generation unit. 

The effective and economic operation and 

management of electrical power generating system 

has always been an important concern in the 

electrical power industry. The developing size of 

energy networks, tremendous request and emergency 

of vitality over the world, continuous rise in cost of 

fossil fuel require the ideal mix of generation level of 

power generating units. The exemplary issue of 

Economic Load Dispatch (ELD) is to limit the 

aggregate cost of energy era (counting fuel utilization 

and operational cost) from differently found power 

plants while fulfilling loads and losses in the power 

transmission framework. The goal is to distribute the 

total load demand and total loss among the 

generating plants while at the same time limiting 

generation costs and fulfilling the operational 

limitations. 

 

In this review, Grasshopper Optimization Algorithm 

(GOA) method based on fuzzy logic optimization 

algorithm is presented to search global optimum 

solution in the 23 benchmark test functions and well-

known ELD problem which is one of the important 

optimization problems in power systems. 
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Table-1: Unimodal test functions 

 

Table -2:  Multimodal test function 

 

The Grasshopper Optimisation Algorithm is proposed 

in Section 3 . Section 4 presents and discusses the 

results on the optimisation test beds and inspects the 

behaviour of the proposed algorithm. Finally, Section 

5 concludes the work and suggests several directions 

for future studies 

 

 

  II. PROBLEM FORMULATION 

Economic dispatch is the technique for deciding the 

most proficient, minimal effort and reliable operation 

of a power system by dispatching the available 

electricity generation resources to supply the load on 

the system. The primary objective of economic load 

dispatch problem is to limit the aggregate cost of 

generation while fulfilling the operational limitations 

of the available generation resources .The ELD 

problem can be conceived as an optimization 

problem of minimizing the total fuel cost of all 

generating units while satisfying the demand and 

losses. Consider a system with n power generating 

units. The objective function is to minimize the total 

fuel cost (F) given by the following expression: 

      ∑ (              
 )

  
   

  $/h      (1) 

 

Here n is the total number of generation units          
and    are the cost coefficients of     power 

generation unit,     is the output of     power 

generation unit, and    is the cost function of      

generating unit. i = 1, 2 … n. The operational 

constraints are given by:  

 

(a)Power Balance Equation: In ELD of energy, the 

aggregate power generated ought to precisely 

coordinate with the load demand and losses which is 

represented by the taking after condition. It is a sort 

of equality constraint. 
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Here      is the power output from    generating unit, 

   is the number of generating units,    is the 

Transmission Loss, and    is the Load Demand.    

is calculated using B-coefficient as: 

  

    ∑ ∑           
  
   

  
   

∑           
  
   

            

(3) 

 

(b) Generator Constraints: The output power of each 

generating unit is restricted by its upper    
   and 

lower     
    limits of actual power generation and is 

given  by: 

    

     
            

                      (4) 

 

   
    and    

    are, the output of the minimum and 

maximum operation of the generating unit i (in MW)  

In the case studies presented here with 6 thermal 

generators. 

 

III. Grasshopper Optimisation Algorithm (GOA) 

Grasshopper are insects. They are considered a pest 

due to their damage to crop production and 

agriculture. The life cycle of grasshoppers is shown 

in Fig. 1 . Although grasshoppers are usually seen 
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individually in nature, they join in one of the largest 

swarm of all creatures [9] . The size of the swarm 

may be of continental scale and a nightmare for 

farmers. The unique aspect of the grasshopper swarm 

is that the swarming behaviour is found in both 

nymph and adulthood [10] . Millions of nymph 

grasshoppers jump and move like rolling cylinders. 

In their path, they eat almost all vegetation. After this 

behaviour, when they become adult, they form a 

swarm in the air. This is how grasshoppers migrate 

over large distances. The main characteristic of the  

 

 

 
 

           Fig. 1. (a) Real grasshopper (b) Life cycle of grasshoppers (left image courtesy of Mehrdad Momeny). 

 
 

Benchmark function: F2 

 
 

Benchmark function:F3 

 
 

Fig.2 Convergence profiles of the selected unimodal test functions 
 

Benchmark function:F6 

 

Benchmark function:F7 
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Benchmark function:F8 

 
 

Fig.3  Convergence profiles of the selected multimodal  test functions. 

 

TABLE -3: Generating Unit Capacity and 

Coefficients 

 
Unit    

        
        

($) 
   
($/MW) 

   ($/MW2) 

1 100 500 240 7.0 0.0070 

2 50 200 200 10.0 0.0095 

3 80 300 220 8.5 0.0090 

4 50 150 200 11.0 0.0090 

5 50 200 220 10.5 0.0080 

6 50 120 190 12.0 0.0075 

 

TABLE-4: Transmission loss coefficients 
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 in the larval phase is slow movement and small steps 

of the grasshoppers. In contrast, long- range and 

abrupt movement is the essential feature of the swarm 

in adulthood. Food source seeking is another 

important characteristic of the swarming of 

grasshoppers. As discussed in the introduction, 

nature-inspired algorithms logically divide the search 

process into two tendencies: exploration and 

exploitation. In exploration, the search agents are 

encouraged to move abruptly, while they tend to 

move locally during exploitation. These two 

functions, as well as target seeking, are performed by 

grasshoppers naturally. Therefore, if we find a way to 

mathematically model this behaviour, we can design a 

new nature-inspired algorithm. The proposed 

mathematical formulations are able to explore and 

exploit the search space. However, there should be a 

mechanism to require the search agents to tune the 

level of exploration to exploitation. In nature, 

grasshoppers first move and search for foods locally 

because in larvae they have no wing. They then move 

freely in air and explore a much larger scale region. 

In stochastic optimisation algorithms, however, 

exploration comes first due to the need for finding 

promising regions of the search space. After finding 

promising regions, exploitation obliges search agents 

to search locally to find an accurate approximation of 

the global optimum 
 

IV. CASE STUDIES AND SIMULATION 

RESULTS 

This section presents a description of the three case 

studies of EDPs and the optimization results. First, 

the case study with Benchmark function  is presented. 

After, the case studies with 6  generators are solved. 

 

(a) Test case I: Benchmark function   

With a particular ultimate objective to demonstrate 

the viability and quality of the proposed GOA 

approach, it is associated with 15 standard benchmark 

test limits which are taken from Ref. [11]. Tables 1-2 
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speak to the benchmark capacities utilized as a part of 

this paper. The base esteem (fopt) of the elements of 

Tables 1-2 are zero, with the exception of F4 which 

has a base estimation of - 418.9829× n. n is 

characterized as measurement of the benchmark test 

capacities.  

 

Unimodal high-dimensional test functions:  

Functions F1 to F7 are unimodal functions. In this 

case the convergence rate of search algorithm is more 

important for unimodal functions than the final results 

because there are other methods which are 

specifically designed to optimize unimodal functions. 

Functions F1 to F7 are unimodal capacities which are 

appeared in Table 1. The outcomes are arrived at the 

midpoint of more than 500 runs and contrasted with 

past outcomes revealed in the writing [13]. The 

joining of the proposed GOA calculation for the 

chose unimodal test capacities is appeared in Fig 2. 

 

Multimodal high-dimensional test functions: 

Functions F8 to F15 are multimodal test Functions 

which are appeared in Table 2. These test capacities 

have numerous nearby minima and defined as 

difficult problems to be optimized.. The outcomes are 

found the middle value of more than 500 runs and 

contrasted with beforehand revealed outcomes in the 

writing [13]. The merging of the proposed GOA 

calculation for the chose multimodal test capacities is 

appeared in Fig 3. 

 

 

(b) Test case II: Six unit system  

The system contains six thermal units, 26 buses, and 

46 transmission lines [14]. The load demand is 

1263MW. The characteristics of the six thermal units 

are given in Tables 3 and 4. In normal operation of 

the system, the loss coefficients B with the 100 MVA 

base capacity power outputs, such as     ,    ,     , 

   ,    and     , which are generated randomly. 

The dimension of the population is equal to 6 100. 

Through the evolutionary process of the proposed 

methods, their best solutions are shown in Table 5, 

respectively, that satisfy the system constraints. The 

result got from the proposed  approach is 

15276.1591$/h. From Table 6, it can be seen that  the 

GOA has less aggregate fuel cost than the other 

evolutionary algorithms in the literature. Table 4 

shows the Transmission loss coefficients for test 

systems [18].Table- 5 demonstrates the  minimum  

results of the GOA technique for this test system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5:-  The results obtained from the proposed 

approach for  case II  in ($/h) 

 

 

V.CONCLUSION 

In this paper, we have successfully employed the 

GOA method to solve the ELD problem with the 

generator constraints. This paper proposes an 

optimisation algorithm called Grasshopper 

Optimisation Algorithm (GOA) and applies it to 

challenging problems in structural optimisation. The 

proposed algorithm mathematically models and 

mimics the behaviour of grasshopper swarms in 

nature for solving optimisation problems[22]. The 

effectiveness of the developed program is tested for  

 

Table 6:- Comparison of the results obtained from 

the proposed approach for case II. 

  

 

test function and for different generator set systems 

i.e. for  6-generator electrical power system. The 

electrical power systems were taken considering 

without valve point loading. It is found that GOA 

gives better solution on comparison with the Particle 

swarm optimisation method, and Genetic algorithm 

method. 
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