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Abstract : In a strong magnetic field, the effect of Hall Current is 

realized and it induces a cross flow in the transverse direction. 

The solution for temperature field subject to two boundary 

conditions that correspond to heat transfer and thermometer 

problems is derived. The effect of Hall and frequency parameters 

on temperature field caused by viscous dissipation are discussed.  

 

Introduction 

The time dependent oscillatory flow of viscous conducting 

fluid has been studied by Lighthill [7] by superimposing the 

fluctuating flow on the mean steady flow. Stuart [13] applied 

this assumption in studying the oscillatory flow of an 

incompressible viscous conducting fluid past an infinite 

horizontal porous plate with uniform suction. The effect of 

transversely applied magnetic field on Stuart's problem is 

presented by Rao [9, 10]. However for strong magnetic field, 

the effect of Hall current is realized and it induces a cross-

flow in the transverse direction. The effects of Hall current on 

shear stress have been examined by Katagiri [6]. Datta.and 

Jana [5] have discussed the effect of Hall current on velocity 

and shear stress for small and large frequencies of oscillation. 

Free convection MHD flow past porous have been studied by 

Bezan [1], Bezan et al. [2], Dubewar and Soundalgeker [4], 

Meyer [8], Santosh et al. [11] and Singh and Chand [12]. 

In the present chapter, we have proposed to study the effect of 

oscillation and Hall current on shear stress and temperature 

fields. With viscous dissipation of .kinetic energy taken into 

accounts, the corresponding exact solution for temperature 

field subject to two boundary conditions that the plate is kept 

at constant temperature or insulated to heat is derived. From 

the result it is found that amplitude of the shear stress rises 

with frequency and for constant magnetic field it decreases 

with Hall parameter while phase of the shear stress lags 

behind the free stream oscillation. Further, the mean 

temperature caused by viscous dissipation is largely affected 

by magnetic field parameter. The effect of Hall current on 

amplitude and phase of the harmonic fluctuation' of 

temperature field is discussed for small and large frequencies. 

 

Mathematical Analysis 

Consider an unsteady incompressible boundary layer flow of 

an electrically conducting viscous fluid past an infinite porous 

flat plate placed in the x-z plane. A uniform transverse 

magnetic field of strength H0 is acting in y direction. The 

effect of Hall current gives rise to a force in z-direction which 

induces a cross flow in that direction, hence the flow becomes 

to be three dimensional. Since the plate is infinite in extent, all 

physical variables (except pressure) are functions of y ant t 

only. The solenoidal relation  H =0 gives Hy = H0 = 

constant everywhere in the fluid, where H = (Hx, Hy, Hz).  

 

 

From Δ×H = j, we obtained Jy = 0 at the plate, where j = (jx, jy, 

jz). By the assumption of small magnetic Reynolds number, an 

induced magnetic field can be neglected in comparison with 

the applied field H0. In the absence of an external electric 

field, the effect of polarization of the ionized fluid is 

negligible. The generalized Ohm's law with negligible ion slip 

and thermoelectric effect is Cowling [3].  
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where m = we τe is the Hall parameter. 

where the free stream velocity U(t) is assumed as 
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 The boundary conditions are 

u = 0 = w at y = 0; u = U(t), w = 0 as y  

 (12) 

T = TW at y = 0; T = T∞ as y  for isothermal wall 

0





y

T
at y = 0; T = T∞ as y  for adiabatic wall  

Introducing the following non-dimensional quantities 
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and eliminating pressure gradient term with the help of free 

stream condition, the equation (8), (10) and (11) reduce to the 

form 
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In view of equation (6), we look for the solutions of equations 

(15-17) as 
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Substituting equation (18) into equations (15) - (17) and 

equating harmonic and non-harmonic terms, we get 
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and the boundary conditions are 

100 uu  , 100 ww   at y=0 

100 uu  , 100 ww  , at y  

10 T , 01 T ;   at y=0, T0=0=T1 as y  

dy

dT

dy

dT 1
0

0
  at y=0;  T0=0=T1 as y  

The solutions of equations (19) to (22) are 
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 In view of equations (27) - (30), the solution of equations 

(23) and (24) subject to the boundary conditions (26) are 
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for isothermal wall conditions, 

and  
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for adiabatic wall conditions, where asterisk (*) denotes 

complex conjugate, 

Discussions and Conclusion 

For isothermal condition of the plate, mean temperature 

distribution in the flow field can be obtained by equation (33). 

When Tw = T∞ the distribution of temperature created by 

frictional heating depends on the magnetic field parameter and 

the equation (33) leads to 
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and we observe that mean temperature in this case increases 

with Hall parameter and its highest value occur of closed 

distance from the plate. 

Under the condition of zero heat transfer between the plate 

and the fluid, the mean temperature field in the flow region is 

solely due to frictional heating of the fluid particles and its 

distribution in the flow field can be obtained by equation (35). 

The highest mean temperature in this case occur near the 

adiabatic wall which is readily anticipated that under zero heat 

transfer condition, the heat generated due to friction is 

superimposed on the conducting heat of the wall. The 

application of magnetic field increases the mean temperature 

while the consideration of Hall current reduces the heat 

generated through viscous dissipation. 

The harmonic fluctuation of temperature field can be obtained 

from equations (34) and (36). For isothermal boundary 

condition of the plate, the amplitude and phase angle of the 

heat transfer can be derived. It can be observed that due to 

application of magnetic field, the amplitude heat transfer 

decreases with λ. However, the effect of Hall current 

decreases the amplitude for fixed λ. The amplitude of 

harmonic fluctuation of adiabatic wall temperature decreases 

with λ. In the presence of magnetic field, the amplitude of 

fluctuating adiabatic wall temperature decays fastly as 

frequency approaches to a fixed value. Further, the phase of 

harmonic fluctuation of the adiabatic wall temperature always 

lags behind the free stream oscillation and the magnitude of 

tan δ increases with λ,. However the effect of Hall current 

increases the phase lag. 
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