
LLDB-TCP: An adaptive congestion control technique for

Mobile Ad-hoc Networks based on link layer

measurements
Sreenivas B.C

 1,
Dr.G.C.Bhanu Prakash

2

1Associate Prof. Department of Computer Science and Engineering

Research Scholar, SAHE University Tumkur.
2Professor Department of Computer Science and Engineering,

Sir M Visvesvaraya Institute of Technology, Bangalore, INDIA

Email: srinivasbc@rediffmail.com

Abstract: Congestion control is a key problem in mobile ad -

hoc networks. Congestion has a severe impact on the

throughput, routing and performance. Identifying the

occurrence of congestion in a Mobile Ad-hoc Network

(MANET) is a challenging task. The congestion control

techniques provided by Transmission Control Protocol

(TCP) is specially designed for wired networks. There are

several approaches designed over TCP for detecting and

overcoming the congestion. This paper considers design of

Link-Layer congestion control for ad hoc wireless networks,

where the bandwidth and delay is measured at each node

along the path. Based on the cumulated values, the receiver

calculates the new window size and transmits this

information to the sender as feedback. The sender behavior

is altered appropriately. The proposed technique is also

compatible with standard TCP.

Keywords: Congestion, TCP, Ad-hoc

1. Introduction

Mobile Ad-hoc Networks (MANET) do not have a

fixed infrastructure. MANETs uses standard IEEE 802.11

MAC. In ad-hoc network each node (Mobile device) acts

as a router, which helps in forwarding packets from a

source to destination. MANETs are suitable in situations

where fixed infrastructure is unavailable such as Military

war fields, disaster relief, sensor networks, Wireless mesh

network etc.,

TCP congestion control is very much suitable for

Internet, whereas for MANETs the same TCP is not

suitable due to some of the specific properties like node

mobility and shared wireless multi-hop channel. A slow

delivery and packet loss occurs due to node mobility and

unreliable shared medium. The delay in the packet

delivery or packet losses is due to route change should not

be misread as congestion.

 In Internet when congestion occurs it is normally

concentrated on a single router, whereas, due to the

shared medium of the MANET congestion will not

overload the mobile nodes but has an effect on the entire

coverage area. The changes in the routing of the packet

might lead to packet losses which is not caused due to

congestion in the network should not be erroneously

misinterpreted as TCP congestion. This can lead to wrong

reactions of TCP congestion control. Furthermore,

monitoring packet losses is much harder, because of their

varying transmission time and round trip time.

Many devices in ad-hoc network, sharing a common

resource (i.e., media) compete for link bandwidth, which

leads to network overload. When more data packet arrives

at the router, the un-serviced packet gets dropped. These

dropped packets would have consumed most of the

network resources. The lost packets have to be

retransmitted, which in turn leads to pumping of more

packets into the network, resulting in degradation of

network throughput and leading to congestion. To avoid

congestion and network overload each sender has to

adjust its data sending rate and window size.

A lot of research is being carried out in the area of

congestion control, routing of packets, modification of

standard TCP protocol, designing of new routing

protocol, etc. in MANET.

In OSI reference model, congestion control is the

responsibility of the transport layer. The combination of

congestion control and reliability features in TCP, allows

congestion control management without the information

about congestion status of the network. A proper

mechanism is to be adopted to avoid congestion collapse

of the MANET, which lead to the modification of TCP

congestion mechanism [1]. The modified TCP should

provide error and flow control. Flow control guarantees

that the sender does not flood out the receiver by sending

data at a rate faster than the receiver can process. It should

also provide reliable end-to-end transmission of data over

MANETs. The modified TCP should be capable of

providing full-duplex, reliable and byte-stream services to

the application programs.

2. Related work

A suitable congestion control technique for MANET

is considered as an important issue. Some of the

congestion related issues like throughput degradation and

flow fairness are initiated from Media Access Control

(MAC), routing and transport layer as discussed in

[2][3][4][5]. Several papers have addressed and provided

suitable solutions to overcome these problems.

A wireless link is prone to random packet losses

unlike wired network. These losses affect the transport

protocols performance, if they are wrongly interpreted as

congestion induced by dropped packets. The link layer

provides single hop reliability in 802.11 MAC protocol.

The packets are dropped by link layer, only after

International Journal of Advanced and Innovative Research (2278-7844) / # 40 / Volume 6 Issue 5

 © 2017 IJAIR. All Rights Reserved 40

maximum transmission attempts. This occurs when either

a link is lost or due to packet collision. This section

mainly deals with different approaches for congestion

control in wireless ad-hoc network.

The performance of mobile ad-hoc network

improves substantially using a small TCP congestion

window as shown by Fu et al. in [17].

Dynamic congestion window limit [22]

This approach is based on the broadcast

characteristics of the wireless medium proposed by Chen

et al. In wireless multi-hop networks, the Bandwidth

Delay Product (BDP) of the connection depends upon the

congestion window limit. Further the author suggests that

the value of BDP should not exceed the round trip hop

count. In standard IEEE 802.11 the value of BDP is taken

as 1/5 of round trip hop count.

In this technique the Dynamic Source Routing (DSR)

protocol is used to find the path length at source. The

congestion window limit is set dynamically based on

previously computed path length of a connection. The

author has carried out NS-2 simulation experiments to

justify the performance improvement, in comparison with

TCP Reno. Further in their simulations the maximum

retransmission timeout of TCP is modified to 2s instead

of 240s as given in RFC 1122.

Slow Congestion Avoidance (SCA)[23]

In this technique the growth rate of TCP window size

is restricted to less than one segment per round trip time,

in order to bring down the number of packets in the

network. After receiving the successful acknowledgement

within round trip time, this technique increases the TCP

window size by one segment. The cross layer information

of the transport layer protocol is not used to carry on

shared channel properties of MANET. The author has not

explored the properties of this technique for different

traffic load.

Fractional window increment (FeW).[24]

This technique mainly focuses on the manner in

which TCP behaves in mobile ad-hoc network by

reducing the congestion window growth rate of TCP. The

congestion in wireless ad-hoc network usually occurs due

to link layer losses rather than queue overflows, thus

affecting the routing of packet.

To maintain low loss rate in wireless ad-hoc network,

this approach modifies the TCP’s operational range.

Author claims that, it is evident from the mathematical

analysis; the change in the TCP’s operational range is

accomplished by incrementing the TCP congestion

window of wireless ad-hoc network slower than in

standard TCP.

Non-work-conserving scheduling

Yang et al.[25] observed MANET connected to a

wired backbone , suggested that by reducing the

congestion window size it degrades the performance of

congestion control for a larger extent. They proposed

Non-work-conserving scheduling mechanism. In this

mechanism a timer is set after sending a data packet. In

the next step the data packets are not sent by the same

Node until the timer expires. This reduces the rate at

which the packets are forwarded, at each intermediate

Node.

Rate-Based Congestion Control (RBCC)

Zhai et al. in [26] proposed Rate-Based Congestion

Control (RBCC) which adopts leaky bucket algorithm. In

this mechanism the header is added with a new feedback

field which is utilized by each intermediate node along

the path. These nodes furnish information about

maximum rate of flow at each node. They study the

channel busy ratio, i.e. the time interval at which the

medium is non-idle. This information is utilized to modify

the newly added feedback field. This helps the source to

decide upon the sending rate. Every intermediate node

maintains the details of the flow passing through it for

later computation of convergence of fairness.

Cross-layer congestion control (C

3
TCP)[27]

 In this mechanism two network metrics, bandwidth

and delay are measured between source and destination

by cumulating intermediate hop measurements. This

scheme is proposed by Kliazovich et al. Similar to RBCC,

a feedback field is added to the link layer header. The

collected information at each intermediate node is stored

in the feedback field. When ACK is generated at

destination node, the feedback information of the data

packet is transmitted to the sender. This information is

used to modify receiver advertise window field in ACK.

Further more it is used to modify the windows size of the

sender, which is located beyond TCP stack as an

additional module. All C
3
TCP logic is part of additional

protocol module which performs without disturbing

original TCP.

TCP with Adaptive Pacing (TCP-AP)[28]

 ElRakabawy et al. proposed a technique TCP-AP.

This technique adopts an end to end based approach for

congestion control unlike C
3
TCP and RBCC. TCP-AP is

a mixture of both window and rate based approach. TCP

is added with rate based mechanism to avoid large burst

of packets.

 In this technique the author proposes 4 hops

propagation delay as a metric, measured using RTT of the

packets. This is assumed as any interference if happens

could be within 4 hops. The delay is the time between the

transmissions of packet by source node to the receiving

node 4 hops downstream. In order to estimate minimum

time between successive packets an addition metric, the

International Journal of Advanced and Innovative Research (2278-7844) / # 41 / Volume 6 Issue 5

 © 2017 IJAIR. All Rights Reserved 41

coefficient of variation of RTT samples, is used along

with the 4 hops propagation delay.

3. Link-Layer Delay Bandwidth (LLDB)

Technique.

TCP has been predominantly used as transport

protocol in the wired Internet to deliver data;

consequently, numerous Internet applications have been

developed to run over TCP. However, as explained

earlier, TCP may not work satisfactorily in ad-hoc

networks.

3.1 Concept

TCP in an ad-hoc network should be capable of

handling disconnection and reconnection, packet _out_

of_ order delivery in case of route change and errors due

to node mobility in addition to congestion control.

LLDB is a congestion avoidance method which

enables us to obtain high performance by gathering

capacity information such as bandwidth and delay at the

link layer in each participating node. In this paper, we

have introduced an additional module LLDB-End-

System, which is used by both sender and receiver. This

module contains code for

 Sending data and ACK packet

 Computation of RTT

 Modification of congestion window

 Receiving of both data and ACK packet

Sending data and ACK packet

Sender node initiates the transmission by sending a

LLDB data packet to destination node over the network.

Initially the send function will identify whether the packet

is LLDB data packet, LLDB ACK packet or any other

packets. In this function, if it is LLDB forwarding data

packet, instant time at which the packet is sent along with

congestion window and SRTT will be stamped onto the

packet header and the packet will be forwarded. If it is

LLDB ACK packet, then the packet is stored with

minimum delay and bandwidth is stored in to ACK packet

and sent to the sender for congestion window

modification and SRTT for the subsequent packet. Other

than LLDB packets are ignored.

Computation of RTT)

This function is used to calculate The Smoothened

Round Trip Sime(SRTT). Initially for the first packet

SRTT will be set to delay, for subsequent packets SRTT

will be obtained by considering the 86.5% of previous

delay and 13.5% of current delay ,further the calculated

value of SRTT is used for computation of congestion

window size. This function is also maintains the history of

smooth RTT to compute window threshold.

void LLDBEndsys::rtt_update(double tao)
{

 Int i;
 if(!rtt_inited){
 SRTT = tao;
 rtt_inited = 1;
 for(i=0;i<256;i++)
 wnd_thru[i] = 0.0;
 }
 else
 SRTT = SRTT *0.865 + tao*0.135;
 srtt_estimate_= SRTT;
 if(wnd_thru[tcp_->window()] == 0)
 wnd_thru[tcp_->window()] = tao;
 else
 wnd_thru[tcp_->window()] = wnd_thru[tcp_->window()]
 * 0.865 + tao*0.135;
 return;
}

Modification of congestion window

In this module the modification of congestion

window is based on old congestion window, SRTT, last

congestion throughput and current throughput. If the TCP

congestion window is greater than zero, then the current

throughput is set to the value obtained by dividing

product of old congestion window and LLDB packet size

by old congestion window throughput.

If current throughput is less than the last congestion

window, then the LLDB congestion window is

decremented by one value of the old congestion window.

If the decremented old congestion window is greater than

0, then the last congestion throughput is changed

otherwise, it is set to zero.

If current throughput is less than last window

throughput, then the congestion window size is set to old

congestion window. Otherwise, the congestion window

size will be increased; here rate at which packets should

be sent through the network is calculated. Thus limit

based congestion control window calculation takes place.

Receiving data and ACK packet

At the receiver side, upon the reception of the packet

the receiver has to identify the type of packet, i.e. whether

it is a LLDB data packet, LLDB ACK packet or any other

packet.

Upon the reception of LLDB data packet the

function will retrieve the required information such as

bandwidth and delay, stored in the structure DLBW for

computation of the congestion window, which in turn

takes the minimum bandwidth and also the sum of the

delay .If an ACK packet is encountered, the control flow

is sent to Modicwnd() where the new congestion window

size is calculated. This calculated window size is updated

in LLDB ACK packet. No modifications are performed

on any other packets other LLDB packets. In order to

store the obtained cumulative data, a structure is added in

the data frame of the link layer.

struct DLBW {
 double Mydelay_;
 double st_time_;

International Journal of Advanced and Innovative Research (2278-7844) / # 42 / Volume 6 Issue 5

 © 2017 IJAIR. All Rights Reserved 42

 double Mybw_;
 intMynode_;
 inline double&Mydelay() { return(Mydelay_); }
 inline double&Mybw() { return(Mybw_); }
 inline int&Mynode() { return(Mynode_); }
 inline double&st_time() { return(st_time_); }
};
struct MYDLBW {
 struct DLBW *my_opt;
};

The gathered information will be stored in the

structure DLBW which is defined in common header in

packet.h, which will be accessible by link layer during the

estimation of the delay and bandwidth without any

restriction.

Once the packet is sent up to the agent from the

link layer, the information about the packet will not be

available to the link layer for any computation , thus to

overcome this problem the control flow in the link layer

while sending the packets up, will be interrupted and

made to compute the delay.

void LL::sendUp(Packet* p)
{
 Int bh;
 .
 .
 .
 else if(ch->ptype()==59) { // 59 refers to LLDB packect
 Compute_delay(p,&bh);
 s.schedule(uptarget_, p, delay_); }
 else
 s.schedule(uptarget_, p, delay_);
}

Initially compute_delay() proceeds with the

computation if and only if the packet is a TCP packet, else

the control flow is resumed. If compute_delay() is

invoked by destination node ,then it calculates the delay :

difference between packet receive time(rctime) and

instance of arrival of packet(tin) and the minimum

bandwidth. Thus the calculated values are stored in

destination structure DLBW.

void LL::Compute_delay(Packet* p,int *flag)
{
 if (mac_->addr() == Mydst&&ch->ptype()==59) choice =-1;
 else if(mac_->addr() == src) choice = 0;
 else choice = mac_->addr();
 double rctime;
 if(ch->direction() == hdr_cmn::UP
 && mac_->addr() == Mydst) Myflg=1;
 else if(ch->direction() == hdr_cmn::DOWN) Myflg=1;
 if(ch->ptype()==59 &&ch->ack_pkt==0 &&Myflg) {
 // TCP Packet
 switch (choice) {
 case -1://destination node
 ch->Myflag=1;
 rctime = ch->BW_info.my_opt[mac_->addr()].st_time();
 ch->BW_info.my_opt[mac_->addr()].st_time()=tin;
 ch->BW_info.my_opt[mac_->addr()].Mydelay()=

tin-rctime;
ch->BW_info.my_opt[mac_->addr()].Mybw()

=ch->size()/(tin -rctime);
 *flag=1;
 filewrite(p,mac_->addr());
 break;

 case 0: // start node
 int nn,i;
 nn = LL::num_nodes;
 ch->BW_info.my_opt = new struct DLBW[nn];
 for(i=0;i<nn;i++){
 ch->BW_info.my_opt[i].Mydelay()=0;
 ch->BW_info.my_opt[i].Mybw()=0;
 }
 ch->BW_info.my_opt[ch->next_hop()].st_time()=tin;
 ch->BW_info.my_opt[src].Mydelay()=0;
 ch->BW_info.my_opt[src].Mybw()=0;
 *flag=0;
 ch->Myflag=0;
 prev_src = src;
 filewrite(p,ch->next_hop());
 break;
 default:// intermediate nodes
 rctime = ch->BW_info.my_opt[mac_->addr()].st_time();
 prev_src = mac_->addr();
 ch->BW_info.my_opt[ch->next_hop()].st_time()=tin;
 ch->BW_info.my_opt[mac_->addr()].Mydelay()=tin-rctime;
 ch->BW_info.my_opt[mac_->addr()].Mybw()

 =ch->size()/(tin-rctime);
 *flag=0;

ch->Myflag=0;
 filewrite(p,ch->next_hop());
 break;
 } } }

If the Compute_delay() is invoked by source node,

the function will allocate memory for the DLBW structure

for participating nodes, then the time at which the packet

is sent and other required information will be written in

the next hop’s structure for further computation.

Otherwise if it is invoked by the intermediate nodes, then

the calculated delay and bandwidth will be written in to

next hop’s structure for further computation.

Finally, control flow returns from compute_delay()

to send_up() function .By the addition of the function

compute_delay() without any changes to the normal flow,

the required details of a TCP packet is obtained and stored

in the structure. This whole action is done for LLDB data

packet only.

Simulation Parameters

The network consists of 5 nodes arranged as string

topology in 500m x 500m square field and two nodes are

used for cross traffic. The MAC layer is configured to

IEEE 802.11. Interface queue at MAC layer is set to

default number of packets. The nominal bit rate is 2 Mbps

and maximum transmission range is 250m. The

TwoRayGround model is used with maximum node speed

of 4m/s. DSR is used as a routing protocol. The

simulation time is 50s. Constant Bit Rate (CBR) traffic is

introduced at a rate of 1Mbps between node(6) and

node(7). FTP traffic is introduced between node (0) and

node (5) with default packet size and LLDB as TCP

agent.

Simulation Analysis

International Journal of Advanced and Innovative Research (2278-7844) / # 43 / Volume 6 Issue 5

 © 2017 IJAIR. All Rights Reserved 43

Fig. 1 Throughput Analysis

Fig 1 presents simulation results of throughput. The

graph clearly indicates during the interval 0.41s to 15s the

LLDB flow is not disturbed by any traffic and the

achieved throughput is at 0.327Mpbs. Between the

intervals 15.00s to 30.00s due to cross-traffic the

throughput is varied from 0.217Mpbs to 0.243Mpbs.

Again, an uninterrupted LLDB flow is started between the

interval 30.00s to 35.00s where the throughput is

0.315Mpbs. When the cross-traffic UDP flow starts to

take a part of bandwidth from the LLDB flow during the

interval 35.00s to 45.00s, the throughput varies from

0.201Mpbs to 0.260Mpbs which can be observed in the

above graph.

Congestion Window Analysis.

The Fig 2 depicts the analysis of congestion

window. Initially the window size is set to be 1. When the

LLDB flow is initiated, the congestion window is varied

from 1.00 to 1.23.

Fig. 2 Congestion window

 During the interval 15.00 s to 30.00 s, the LLDB

increases the congestion window size based on the

feedback received because of which the packet loss

occurs. And also due to the cross-traffic at the same

interval the window size is varied from 1.00 to 1.98. The

same variation can be observed during the interval

35.00s to 45.00s.

RTT Analysis

RTT is the total time it takes for a signal to be sent

and the total time it takes for an acknowledgment of that

signal to be received. The Fig 3 shows the analysis of

RTT. Simulation is started at 0.41s at which the measured

RTT is found to be 0.108.

At the interval 0.51 the RTT is at 0.032 which is

maintained till the interval 15.00s. during the interval

15.00s to 30.00s, it is observed that the graph is varying

from 0.085 to 0.031. This is due to the cross-traffic

introduced by UDP flow because of which the delay

increases and in turn affects RTT. The same variation can

be observed at the intervals 35.00s to 45.00s

Fig. 3 RTT Analysis

Smoothened RTT Analysis

The Fig 4 presents the simulation graph for SRTT.

When the LLDB flow is initiated the SRTT is uniformly

maintained i.e. between the intervals 3s to 15s the value

of SRTT is 0.03. Due to the cross-traffic, SRTT varies

from 0.44 to 0.31 during the interval 15s to 30s and it

varies from 0.46 to 0.33 during the interval 35.00s to

45.00s.

Fig. 4 Analysis of SRTT

Analysis at node N1

Fig. 5 represents the delay experienced by the

packets at node N1. The X-axis represents the packet

number and Y-axis represents the delay.

International Journal of Advanced and Innovative Research (2278-7844) / # 44 / Volume 6 Issue 5

 © 2017 IJAIR. All Rights Reserved 44

Fig. 5 Delay at node N1

A variation in delay with the peak value of

0.0239ms is observed between the packet numbers 903

and 1504. Another such variation is observed between the

packet numbers1900 and 2350 with the peak value of

delay being 0 .0262ms. These variations are basically due

to cross-traffic which is pretty less at the source node.

Fig. 6 Bandwidth at Node N1

Fig. 6 represents the bandwidth per packet at node

N1. The X-axis shows the packet number and Y-axis

represents the bandwidth in Mbps. A drastic dip in the

bandwidth with the lowest value of 0.51Mbps is between

the packet numbers 903 and 1504. Another such variation

is between the packet numbers 1900 and 2350 with the

least value of bandwidth being 0.46Mbps. These

variations are basically due to cross-traffic which is pretty

less at the source node.

 Analysis at node N2

Fig.7 Delay at Node N2

Fig. 7 represents the delay experienced by each

packet at node N2. The X-axis represents the packet no.

and Y-axis represents the delay. A variation in delay with

the peak value of 0.0447ms is observed between the

packet numbers 903 and 1504. Another such variation is

observed between the packet numbers1900 and 2350 with

the peak value of delay being 0 .02917ms. The variation

in delay is high in node N2 when compared to node N1

due to the presence of large cross-traffic.

Fig. 8 Bandwidth at Node N2

Fig. 8 represents the bandwidth per packet at node

N2. The X-axis shows the packet number and Y-axis

represents the bandwidth in Mbps. A drastic dip in the

bandwidth with the lowest value of 0.35Mbps is between

the packet numbers 903 and 1504. Another such variation

is between the packet numbers 1900 and 2350 with the

least value of bandwidth being 0.44Mbps.The decrease in

bandwidth of node N2 is greater when compared to node

N1 due to the presence of large cross-traffic.

 Analysis at node N3

Fig.9 represents the delay experienced by the

packets at node N3.

Fig. 9 Delay at Node N3

The variation in delay is high in node N3 when

compared to node N1 due to the presence of large cross-

traffic. Fig. 10 represents the bandwidth per packet at

node N3.

Fig. 10 Bandwidth at Node N3

International Journal of Advanced and Innovative Research (2278-7844) / # 45 / Volume 6 Issue 5

 © 2017 IJAIR. All Rights Reserved 45

A drastic dip in the bandwidth with the lowest value

of 0.72Mbps is between the packet numbers 903 and

1504. Another such variation is between the packet

numbers 1900 and 2350 with the least value of bandwidth

being 0.62Mbps. The decrease in bandwidth of node N3

is greater when compared to node N1 due to the presence

of large cross-traffic.

 Analysis at node N4

Fig. 11 Delay at Node N4

Fig. 11 represents the delay experienced by the

packets at node N4. A variation in delay with the peak

value of 0.0131ms is observed between the packet

numbers 903 and 1504. Another such variation is

observed between the packet numbers1900 and 2350 with

the peak value of delay being 0.0133ms. These variations

are basically due to cross-traffic which is pretty less at the

destination node.

Fig. 12 Bandwidth at Node N4

Fig. 12 represents the bandwidth per packet at node

N4. A drastic dip in bandwidth with the lowest value of

0.84Mbps is between the packet numbers 903 and 1504.

Another such variation is between the packet numbers

1900 and 2350 with the least value of bandwidth being

0.83Mbps. These variations are basically due to cross-

traffic which is pretty less at the destination node.

5 CONCLUSION

A congestion control algorithm using LLDB for a

Wireless Ad-Hoc Access Network is developed and tested

using the NS2 simulator. The reasons of throughput

degradation and unfairness among flows, when using TCP

in a Wireless Ad-hoc Network, were studied and

simulations were conducted to verify the performance of

TCP.

LLDB introduces several recent transport layer

protocols, and current bandwidth estimation algorithms,

which is the basis for designing the congestion control

algorithm in this project. The proposed congestion control

algorithm LLDB is able to obtain higher performance by

gathering capacity information such as bandwidth and

delay at the link layer. This method requires the

introduction of an additional module within the protocol

stack of the mobile node, which is capable of adjusting

the outgoing data stream based on capacity

measurements.

To support this designed congestion control module

i.e. LLDB an additional proposal has been made which

provides an optional field to support the existing IEEE

802.11 protocol stack to store the information obtained

from the link layer.

Acknowledgement

The author acknowledges SAHE University

Tumkur, for the encouragement and permission to publish

this paper based on the research work carried out by the

author towards his Ph.d work.

The author thanks the principal of Sir MVIT, Prof.K

R Kini for his constant en-couragement and The author

thanks Prof. Dilip K. Sen, Head of Department Computer

Science Engineering for his invaluable guidance and

suggestions from time to time.

References
[1] S. M. ElRakabawy, A. Klemm, and C. Lindemann. TCP with

Adaptive Pacing for Multihop Wireless Networks. In

MobiHoc ’05: Proceedings of the 6th ACM International

Symposium on Mobile Ad Hoc Networking and

Computing, pages 288–299, May 2005.

[2] K. Chen, Y. Xue, and K. Nahrstedt. On Setting TCP’s

Congestion Window Limit in Mobile Ad Hoc Networks. In

ICC ’03: Proceedings of the IEEE International Conference

on Communications, Anchorage, Alaska, May 2003.

[3] V. Raghunathan and P. R. Kumar. A Counterexample in

Congestion Control of Wireless Networks. In MSWiM ’05:

Proceedings of the 8th ACM International Symposium on

Modeling, Analysis and Simulation of Wireless and Mobile

Systems, pages 290–297, Oct. 2005. DOI:

http://doi.acm.org/10.1145/1089444.1089496.

[4] K. Tang and M. Gerla. Fair Sharing of MAC under TCP in

Wireless Ad Hoc Networks. In MMT ’99: Proceedings of

the Workshop on Multi-access, Mobility and Tele-traffic

for Wireless Communications, Oct. 1999.

[5] H. Zhai, X. Chen, and Y. Fang. Alleviating Intra-Flow and

Inter-Flow Contentions for Reliable Service in Mobile Ad

Hoc Networks. In MILCOM ’04: Proceedings of the IEEE

Military Communications Conference, volume 3, pages

1640–1646,Oct. 2004. DOI: 10.1109 / MILCOM. 2004

1495184.

[6] D. Kliazovich and F. Granelli. Cross-layer congestion

control in ad hoc wireless networks. Ad Hoc Networks,

4(6):687–708, Nov. 2006.

[7] H. Zhai, X. Chen, and Y. Fang. Rate-Based Transport

Control for Mobile Ad Hoc Networks. In WCNC ’05:

International Journal of Advanced and Innovative Research (2278-7844) / # 46 / Volume 6 Issue 5

 © 2017 IJAIR. All Rights Reserved 46

http://doi.acm.org/10.1145/1089444.1089496

Proceedings of the IEEE Wireless Communications and

Networking Conference, volume 4, pages 2264–2269, Mar.

2005.

[8] M. G¨unes¸ and D. Vlahovic. The Performance of the

TCP/RCWE Enhancement for Ad-Hoc Networks. In ISCC

’02: Proceedings of the 7th IEEE International Symposium

on Computers and Communication, pages 43–48, 2002.

[9] Z. Fu, B. Greenstein, X. Meng, and S. Lu. Design and

Implementation of a TCP-Friendly Transport Protocol for

Ad Hoc Wireless Networks. In ICNP ’02: Proceedings of

the 10th IEEE International Conference on Network

Protocols, pages 216–225, Nov. 2002.

[10] R. de Oliveira and T. Braun. A Delay-based Approach

Using Fuzzy Logic to Improve TCP Error Detection in Ad

Hoc Networks. In WCNC ’04: Proceedings of the IEEE

Wireless Communications and Networking Conference,

volume 3, pages 1666–1671, Mar. 2004. 24

[11] R. de Oliveira, T. Braun, and M. Heissenb¨uttel. An Edge-

based Approach for Improving TCP in Wireless Mobile Ad

Hoc Networks. In DADS ’03: Proceedings of the

Conference on Design, Analysis and Simulation of

Distributed Systems, Orlando, USA, Mar. 2003.

[12] B.C Sreenivasa, G. C. Bhanu Prakash, K. V. Ramakrishnan.

Survey on congestion control techniques in AD-HOC

network. Published in Elixir Adoc.Net. 32 (2011) 2061-

2067 March 2011.

[13] Christian Lochert,Bj¨orn Scheuermann, Martin Mauve. A

Survey on Congestion Control for Mobile Ad-Hoc

Networks article published in Wiley Wireless

Communications and Mobile Computing 7 (5), pp. 655–

676, June 2007. http://www.interscience.wiley.com.

 [14] S. Biaz and N.H. Vaidya, ”Distinguishing congestion

losses from wireless transmission losses” IEEE 7th Int.

Conf. on Computer Communications and Networks,

October 1998.

[15] Sachin Gajjar and Hari M Gupta. Improving performance

of Ad-hoc TCP in Mobile Ad-hoc Network. Article is

published in IEEE 2008, 987-1-4244-2746-8/08

[16] Miss Ashwini D Bhople and P.A Tijare. An analysis of

ADTCP,I-ADTCP and Cross-Layer Based Protocol for

Improving Performance of TCP in Mobile Adhoc

Network. Published by IJCSA, Vol. No 4, No 2 June-July

2011. pp 56-70

[17] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla.

The Impact of Multihop Wireless Channel on TCP

Throughput and Loss. In INFOCOM ’03: Proceedings of

the 22nd Annual Joint Conference of the IEEE Computer

and Communications Societies, volume 3, pages 1744–

1753, Apr. 2003.

[22] K. Chen, Y. Xue, and K. Nahrstedt. On Setting TCP’s

Congestion Window Limit in Mobile Ad Hoc Networks. In

ICC ’03: Proceedings of the IEEE International Conference

on Communications, Anchorage, Alaska, May 2003.

[23] S. Papanastasiou and M. Ould-Khaoua. TCP congestion

window evolution and spatial reuse in MANETs. Journal of

Wireless Communications and Mobile Computing,

4(6):669–682, Sept. 2004

[24] K. Nahm, A. Helmy, and C.-C. J. Kuo. TCP over Multihop

802.11 Networks: Issues and Performance Enhancement. In

MobiHoc ’05: Proceedings of the 6th ACM International

Symposium on Mobile Ad Hoc Networking and

Computing, pages 277–287, 2005.

[25] L. Yang, W. K. G. Seah, and Q. Yin. Improving Fairness

among TCP Flows crossing Wireless Ad Hoc and Wired

Networks. In MobiHoc ’03: Proceedings of the 4th ACM

International Symposium on Mobile Ad Hoc Networking &

Computing, pages 57–63, New York, NY, USA, June 2003.

ACM Press.

[26] H. Zhai, X. Chen, and Y. Fang. Rate-Based Transport

Control for Mobile Ad Hoc Networks. In WCNC ’05:

Proceedings of the IEEE Wireless Communications and

Networking Conference, volume 4, pages 2264–2269, Mar.

2005.

[27] D. Kliazovich and F. Granelli. Cross-layer congestion

control in ad hoc wireless networks. Ad Hoc Networks,

4(6):687–708, Nov. 2006.

[28] S. M. ElRakabawy, A. Klemm, and C. Lindemann. TCP

with Adaptive Pacing for Multihop Wireless Networks. In

MobiHoc ’05: Proceedings of the 6th ACM International

Symposium on Mobile Ad Hoc Networking and

Computing, pages 288–299, May 2005.

[29] B.C Sreenivasa, G. C. Bhanu Prakash, K. V. Ramakrishnan.

Comparative analysis of ADTCP and M-ADTCP:

Congestion Control Techniques for improving TCP

performance over Ad-hoc Networks in International

Journal of Mobile Network Communications & Telematics

(IJMNCT) Vol.2, No.4, August 2012

International Journal of Advanced and Innovative Research (2278-7844) / # 47 / Volume 6 Issue 5

 © 2017 IJAIR. All Rights Reserved 47

http://www.interscience.wiley.com/

