

Energy efficient modified partial

Product generator for redundant binary multipliers
S.Geethamani

APPLIED ELCETRONICS

SHREE VENKATESHWARA HI-TECH ENGINEERING COLLEGE

ERODE, TAMILNADU, INDIA

sathkurube@gmail.com

Abstract: Due to its high modularity and carry-free

addition, a redundant binary (RB) representation can be

used when designing high performance multipliers. The

conventional RB multiplier requires an additional RB

partial product (RBPP) row, because an error-correcting

word (ECW) is generated by both the radix-4 Modified

Booth encoding (MBE) and the RB encoding. This incurs

in an additional RBPP accumulation stage for the MBE

multiplier. In this paper, a new RB modified partial

product generator (RBMPPG) is proposed; it removes the

extra ECW and hence, it saves one RBPP accumulation

stage. Therefore, the proposed RBMPPG generates fewer

partial product rows than a conventional RB MBE

multiplier. Simulation results show that the proposed

RBMPPG based designs significantly improve the area

and power consumption when the word length of each

operand in the multiplier is at least 32 bits; these

reductions over previous NB multiplier designs incur in a

modest delay increase (approximately 5%). The power-

delay product can be reduced by up to 59% using the

proposed RB multipliers when compared with existing RB

multipliers.

1 INTRODUCTION

D igital multipliers are widely used in arithmetic units

of microprocessors, multimedia and digital signal
processors. Many algorithms and architectures have been
proposed to design high-speed and low-power multipliers
[1-13]. A normal binary (NB) multipli-cation by digital
circuits includes three steps. In the first step, partial
products are generated; in the second step, all partial
products are added by a partial product re-duction tree
until two partial product rows remain. In the third step, the
two partial product rows are added by a fast carry
propagation adder. Two methods have been used to
perform the second step for the partial product reduction.
A first method uses 4-2 compressors, while a second
method uses redundant binary (RB) numbers [5-6]. Both
methods allow the partial product reduction tree to be
reduced at a rate of 2:1.

The redundant binary number representation has been

introduced by Avizienis [1] to perform signed-digit

arithmetic; the RB number has the capability to be
represented in different ways. Fast multipliers can be

designed using redundant binary addition trees [2-3]. The

redundant binary representation has also been ap-plied to a

floating-point processor and implemented in VLSI [4].

High performance RB multipliers have become popular

due to the advantageous features, such as high modularity

and carry-free addition [5-9].
A RB multiplier consists of a RB partial product

(RBPP) generator, a RBPP reduction tree and a RB-NB

converter. A Radix-4 Booth encoding or a modified

Booth encoding (MBE) is usually used in the partial

product generator of parallel multipliers to reduce the

number of partial product rows by half [5-6] [10-13]. A

RBPP row can be obtained from two adjacent NB partial

product rows by inverting one of the pair rows [5-6]; an

N-bit convention-al RB MBE (CRBBE-2) multiplier

requires _ /4_ RBPP rows. An additional error-correcting

word (ECW) is also required by both the RB and the

Booth encoding [5-6] [14]; therefore, the number of

RBPP accumulation stages (NRBPPAS) required by a

power-of-two word-length (i.e., 2 -bit) multiplier is given

by:
NRBPPAS = _log (/4 + 1)= n − 1, if _ = 2 (1)

If the additional ECW can be removed, an RBPP accu-

mulation stage is saved, so resulting in improvements of

complexity and critical path delay for a RB multiplier.

For example, a conventional 32-bit RB multiplier has 4

RBPP accumulation stages; if the ECW is removed,

then the number of RBPP accumulation stages is

reduced to 3, i.e., the stage count is decreased by 25%.

Note that the problem of extra ECW does not exist in

standard signifi-cand size (i.e., 24×24-bit and 54×54-bit)

RB multipliers as used in floating point-arithmetic units

[5-6].
Alternatively, a high-radix Booth encoding technique

can reduce the number of partial products. However, the

number of expensive hard multiples (i.e., a multiple that

is not a power of two and the operation cannot be per-

formed by simple shifting and/or complementation) in-

creases too [14-16]. Besli et al. [16] noticed that some

hard multiples can be obtained by the differences of two

sim-ple power-of-two multiplies. A new radix-16 Booth

en-coding (RBBE-4) technique without ECW has been

pro-posed in [14]; it avoids the issue of hard multiples.

A radix-16 RB Booth encoder can be used to overcome

the hard multiple problem and avoid the extra ECW, but

at the cost of doubling the number of RBPP rows.

There-fore, the number of radix-16 RBPP rows is the

same as in the radix-4 MBE. However, the RBPP

generator based on a radix-16 Booth encoding has a

complex circuit struc-ture and a lower speed compared

with the MBE partial product generator [10] when

requiring the same number of partial products.

International Journal of Advanced and Innovative Research (2278-7844) / # 195 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 195

mailto:sathkurube@gmail.com

This paper focuses on the RBPP generator for design
[8-10] to speed up the partial product reduction tree and

decrease power dissipation. Optimized designs of 4-2

exact

compressors have been proposed in [8, 11 - 16]. [17]

[18] have also considered compression for approximate

multiplication. In [17], an approximate signed multiplier

has been proposed for use in arithmetic data value

speculation (AVDS); multiplication is performed using

the Baugh-Wooley algorithm. However, no new design

is proposed for the compressors for the inexact

computation. Designs of approximate compressors have

been proposed in [18]; however, these designs do not

target multiplication. It should be noted that the

approach of [7] improves over [17] [18] by utilizing a

simplified multiplier block that is amenable to

approximate multiplication.
Initially in this paper, two novel approximate 4-2

compressors are proposed and analyzed. It is shown that

these simplified compressors have better delay and

power consumption than the optimized (exact) 4-2

compressor designs found in the technical literature [8].

These approximate compressors are then used in the

restoration module of a Dadda multiplier; four different

schemes are proposed for inexact multiplication.

Extensive simulation results are provided at circuit-level

for figures of merit, such as delay, transistor count,

power dissipation, error rate and normalized error

distance under CMOS feature sizes of 32, 22 and 16 nm.

The application of these multipliers to image processing

is then presented. The results of two examples of

multiplication of two images are reported; these results

show that the third and fourth approximate multipliers

yield an output product image that has a very high

quality and resemblance to the image generated by an

exact multiplier, i.e. excellent values for the average

NED and the Peak Signal-to-Noise Ratio (PSNR) are

found (for the PSNR more than 50db). The analysis and

simulation results show that the proposed approximate

designs for both the compressor and the multiplier are

viable candidates for inexact computing.
This paper is organized as follows. Section 2 is a

review of existing schemes for (exact) compressors. The

two new designs of an approximate 4-2 compressor are

presented in Section 3.Multiplication and four different

approximate multipliers are proposed in Section 4.

Simulation results for the approximate compressors and

multipliers are provided in Section 5. The application of

the proposed approximate multipliers to image

processing is presented in Section 6. Section 7

concludes the manuscript.

II. EXACT COMPRESSORS

The main goal of either multi-operand carry-save

addition or parallel multiplication is to reduce n

numbers to two numbers; therefore, n-2 compressors (or

n-2 counters) have been widely used in computer

arithmetic. An-2 compressor (Figure 1) is usually a slice

of a circuit that reduces n numbers to two numbers

when properly replicated. In slice i of the circuit, the n-2

compressor receives n bits in position i and one or more

carry bits from the positions to the right, such as i – 1 or

i – 2. It produces two output bits in positions i and i + 1

and one or more carry bits into the higher positions,

such as i + 1

International Journal of Advanced and Innovative Research (2278-7844) / # 196 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 196

or i + 2.For the correct operation of the circuit shown in

Figure 1, the following inequality must be satisfied
… 3 2 4 8 … (1)

Figure 1.Schematic diagram of n-2 compressors in a multi operand

addition circuit [13]

Where denotes the number of carry bits from slice ito

slice i+ j.
A widely used structure for compression is the 4-2

compressor; a 4-2 compressor (Figure 2) can be

implemented
with a carry bit between adjacent slices (

as c
). The carry bit

from the position to the right is denoted while the carry

1 in
1

bit into the higher position is denoted as cout. The two
output bits in positions i and i + 1are also referred to as
the sum and carry respectively.

Figure2.4-2 compressor

The following equations give the outputs of the 4-2

compressor, while Table 1 shows its truth table.

1 2

2

3 4

2 1

 (2)

 (3)

1
The

 1 3 1 (4)

common implementation of a

 4-2 compressor is

2 3 4 1 2 3 4 4

accomplished by utilizing two full-adder (FA) cells

(Figure 3) [8]. Different designs have been proposed in

the literature for 4-2 compressor [8, 11-16].
Figure 4 shows the optimized design of an exact4-2

compressor based on the so-called XOR-XNOR gates

[8]; a XOR-XNOR gate simultaneously generates the

XOR and XNOR output signals. The design of [8]

consists of three XOR-XNOR (denoted by XOR
*
) gates,

one XOR and two 2-1 MUXes. The critical path of this

design has a delay of 3 , where is the unitary delay

through any gate in the design.

International Journal of Advanced and Innovative Research (2278-7844) / # 197 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 197

performance improvement compared to an exact compressor

with respect to delay, number of transistors and power

consumption.

Figure 3. Implementation of 4-2 Compressor

TABLE I
TRUTH TABLE OF 4-2 COMPRESSOR

 cin X4 X3 X2 X1 cout carry sum
 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 1
 0 0 0 1 0 0 0 1
 0 0 0 1 1 1 0 0
 0 0 1 0 0 0 0 1
 0 0 1 0 1 1 0 0
 0 0 1 1 0 1 0 0
 0 0 1 1 1 1 0 1
 0 1 0 0 0 0 0 1
 0 1 0 0 1 0 1 0
 0 1 0 1 0 0 1 0
 0 1 0 1 1 1 0 1
 0 1 1 0 0 0 1 0
 0 1 1 0 1 1 0 1
 0 1 1 1 0 1 0 1
 0 1 1 1 1 1 1 0
 1 0 0 0 0 0 0 1
 1 0 0 0 1 0 1 0
 1 0 0 1 0 0 1 0
 1 0 0 1 1 1 0 1
 1 0 1 0 0 0 1 0
 1 0 1 0 1 1 0 1
 1 0 1 1 0 1 0 1
 1 0 1 1 1 1 1 0
 1 1 0 0 0 0 1 0
 1 1 0 0 1 0 1 1
 1 1 0 1 0 0 1 1
 1 1 0 1 1 1 1 0
 1 1 1 0 0 0 1 1
 1 1 1 0 1 1 1 0
 1 1 1 1 0 1 1 0
 1 1 1 1 1 1 1 1

III. PROPOSED APPROXIMATE COMPRESSORS

In this section, two designs of an approximate compressor

are proposed. Intuitively to design an approximate 4-2

compressor, it is possible to substitute the exact full-adder

cells in Figure3 by an approximate full-adder cell (such as the

first design proposed in [2]). However, this is not very

efficient, because it produces at least 17 incorrect results out

of 32 possible outputs, i.e. the error rate of this inexact

compressor is more than 53% (where the error rate is given

by the ratio of the number of erroneous outputs over the total

number of outputs). Two different designs are proposed next

to reduce the error rate; these designs offer significant

Figure4. Optimized 4-2 compressor of [8]

A. Design 1

As shown in Table I, the carry output in an exact

compressor has the same value of the input cin in 24 out of 32

states. Therefore, an approximate design must consider this

feature. In Design 1, the carry is simplified to cin by changing

the value of the other 8 outputs.

(5)

Since the Carry output has the higher weight of a binary bit,

an erroneous value of this signal will produce a difference

value of two in the output. For example, if the input pattern is

“01001” (row 10 of Table II), the correct output is “010” that

is equal to 2. By simplifying the carry output to cin, the

approximate compressor will generate the “000” pattern at the

output (i.e. a value of 0). This substantial difference may not

be acceptable; however, it can be compensated or reduced by

simplifying the cout and sum signals. In particular, the

simplification of sum to a value of 0 (second half of Table II)

reduces the difference between the approximate and the exact

outputs as well as the complexity of its design. Also, the

presence of some errors in the sum signal will results in a

reductions of the delay of producing the approximate sum and

the overall delay of the design (because it is on the critical

path).
1 2 3 4 (6)

In the last step, the change of the value of cout in some

states, may reduce the error distance provided by approximate
carry and sum and also more simplification in the proposed

design.
1 2 3 4 (7)

International Journal of Advanced and Innovative Research (2278-7844) / # 198 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 198

B. Design 2

Although the above mentioned simplifications of carry and

sum increase the error rate in the proposed approximate

compressor, its design complexity and therefore the power

consumption are considerably decreased. This can be realized

by comparing (2)-(4) and (5)-(7).Table II shows the truth table

of the first proposed approximate compressor. It also shows

the difference between the inexact output of the proposed

approximate compressor and the output of the exact

compressor. As shown in Table II, the proposed design has 12

incorrect outputs out of 32 outputs (thus yielding an error rate

of 37.5%). This is less than the error rate using the best

approximate full-adder cell of [2].

TABLE II
TRUTH TABLE OF THE FIRSTAPPROXIMATE 4-2 COMPRESSOR

cin X4 X3 X2 X1 cout’ carry’ sum' Difference
0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 1 -1
0 0 1 0 0 0 0 1 0
0 0 1 0 1 1 0 0 0
0 0 1 1 0 1 0 0 0
0 0 1 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0 0
0 1 0 1 0 1 0 0 0
0 1 0 1 1 1 0 1 0
0 1 1 0 0 0 0 1 -1
0 1 1 0 1 1 0 1 0
0 1 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1 -1
1 0 0 0 0 0 1 0 1
1 0 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0 0
1 0 0 1 1 0 1 0 -1
1 0 1 0 0 0 1 0 0
1 0 1 0 1 1 1 0 1
1 0 1 1 0 1 1 0 1
1 0 1 1 1 1 1 0 0
1 1 0 0 0 0 1 0 0
1 1 0 0 1 1 1 0 1
1 1 0 1 0 1 1 0 1
1 1 0 1 1 1 1 0 0
1 1 1 0 0 0 1 0 -1
1 1 1 0 1 1 1 0 0
1 1 1 1 0 1 1 0 0
1 1 1 1 1 1 1 0 -1

(5)-(7) are the logic expressions for the outputs of the first

design of the approximate 4-2 compressor proposed in this

manuscript.
The gate level structure of the first proposed design (Figure

6) shows that the critical path of this compressor has still a

delay of 3 , so it is the same as for the exact compressor of

Figure 5. However, the propagation delay through the gates of

this design is lower than the one for the exact compressor. For

example, the propagation delay in the XOR* gate that

generates both the XOR and XNOR signals in [8], is higher

than the delay through a XNOR gate of the proposed design.

Therefore, the critical path delay in the proposed design is

lower than in the exact design and moreover, the total number

of gates in the proposed design is significantly less than that in

the optimized exact compressor of [8].

A second design of an approximate compressor is proposed

to further increase performance as well as reducing the error

rate. Since the carry and cout outputs have the same weight,

the proposed equations for the approximate carry and cout in

the previous part can be interchanged. In this new design,

carry uses the right hand side of (7) and cout is always equal to
cin; since cin is zero in the first stage, cout and cin will be zero

in all stages. So, cin and cout can be ignored in the hardware
design. Figure 7shows the block diagram of this approximate
4-2 compressor and the expressions below describe its outputs.

1 2 3 4 (9)(8)

1 2 3 4

Figure 6. Gate level implementation of Design 1

Figure7. Approximate 4-2 compressor, Design 2

Note that (9) is the same as (7) and (8) is the same as (6) for

cin= 0. Figure 8 shows the gate level implementation of the

second proposed design. The delay of the critical path of this

approximate design is 2 , so it is 1 less than the previous

designs; moreover, a further reduction in the number of gates

is accomplished.

Figure 8. Gate level implementation of Design 2

Table III shows the truth table of the second approximate

design for a 4-2 compressor; this Table also shows the

difference between the exact decimal value of the addition of

the inputs and the decimal value of the outputs produced by

the approximate compressor. For example when all inputs are

International Journal of Advanced and Innovative Research (2278-7844) / # 199 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 199

1, the decimal value of the addition of the inputs is 4.

However, the approximate compressor produces a 1 for the

carry and sum. The decimal value of the outputs in this case is

3; Table II shows that the difference is -1.

TABLE III
TRUTH TABLE OF SECOND PROPOSED 4-2 COMPRESSOR

 X4 X3 X2 X1 carry’ sum' difference
 0 0 0 0 0 1 1
 0 0 0 1 0 1 0
 0 0 1 0 0 1 0
 0 0 1 1 0 1 -1
 0 1 0 0 0 1 0
 0 1 0 1 1 0 0
 0 1 1 0 1 0 0
 0 1 1 1 1 1 0
 1 0 0 0 0 1 0
 1 0 0 1 1 0 0
 1 0 1 0 1 0 0
 1 0 1 1 1 1 0
 1 1 0 0 0 1 -1
 1 1 0 1 1 1 0
 1 1 1 0 1 1 0
 1 1 1 1 1 1 -1

This design has therefore 4 incorrect outputs out of 16

outputs, so its error rate is now reduced to 25%. This is a very

positive feature, because it shows that on a probabilistic basis,

the imprecision of the proposed design is smaller than the

other available schemes.

IV. MULTIPLICATION

In this section, the impact of using the proposed

compressors for multiplication is investigated. A fast (exact)

multiplier is usually composed of three parts (or modules) [8].
• Partial product generation.
• A Carry Save Adder (CSA) tree to reduce the partial

products’ matrix to an addition of only two operands
• A Carry Propagation Adder (CPA) for the final

computation of the binary result.
In the design of a multiplier, the second module plays a

pivotal role in terms of delay, power consumption and circuit

complexity. Compressors have been widely used [9, 10] to

speed up the CSA tree and decrease its power dissipation, so

to achieve fast and low-power operation. The use of

approximate compressors in the CSA tree of a multiplier

results in an approximate multiplier.
A 8×8 unsigned Dadda tree multiplier is considered to

assess the impact of using the proposed compressors in

approximate multipliers. The proposed multiplier uses in the

first part AND gates to generate all partial products. In the

second part, the approximate compressors proposed in the

previous section are utilized in the CSA tree to reduce the

partial products. The last part is an exact CPA to compute the

final binary result. Figure 9(a) shows the reduction circuitry of

an exact multiplier for n=8. In this figure, the reduction part

uses half-adders, full-adders and 4-2 compressors; each partial

product bit is represented by a dot. In the first stage, 2 half-

adders, 2 full-adders and 8 compressors are utilized to reduce

the partial products into at most four rows. In the second or

final stage, 1 half-adder, 1 full-adder and 10 compressors are

used to compute the two final rows of partial products.

Therefore, two stages of reduction and 3 half-adders, 3 full-

adders and 18 compressors are needed in the reduction

circuitry of an 8×8Dadda multiplier.
In this paper, four cases are considered for designing an

approximate multiplier.

Figure 9. Reduction circuitry of an 8×8Dadda multiplier, (a) using

Design 1 compressors, (b) using Design 2 compressors

• In the first case (Multiplier 1), Design 1 is used for all 4-2

compressors in Figure 9(a).

• In the second case (Multiplier 2), Design 2 is used for the

4-2 compressors. Since Design 2 does not have cin and

cout, the reduction circuitry of this multiplier requires a
lower number of compressors (Figure 9(b)). Multiplier 2
uses 6 half-adders, 1 full-adder and 17 compressors.

• In the third case (Multiplier 3), Design 1 is used for the

compressors in then-1 least significant columns. The other

n most significant columns in the reduction circuitry use

exact 4-2 compressors.

International Journal of Advanced and Innovative Research (2278-7844) / # 200 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 200

• In the fourth case (Multiplier 4), Design 2 and exact 4-2

compressors are used in then-1 least significant columns

and then most significant columns in the reduction

circuitry respectively.
The objectives of the first two approximate designs are to

reduce the delay and power consumption compared with an

exact multiplier; however, a high error distance is expected.

The next two approximate multipliers (i.e. Multipliers 3 and 4)

are proposed to decrease the error distance. The delay in these

designs is determined by the exact compressors that are in the

critical path; therefore, there is no improvement in delay for

these approximate designs compared with an exact multiplier.

However, it is expected that the utilization of approximate

compressors in the least significant columns will decrease the

power consumption and transistor count (as measure of circuit

complexity). While the first two proposed multipliers have

better performance in terms of delay and power consumption,

the error distances in the third and fourth designs are expected

to be significantly lower.

V. SIMULATION RESULTS

In this section, he designs of the two approximate

compressors (Section III) and the four approximate multipliers

(Section IV) are simulated using HSPICE. Predictive

Technology Models (PTMs) at different CMOS feature sizes

(32 nm, 22 nm and 16 nm) are utilized in the HSPICE

simulation.

A. Approximate Compressors

The two approximate compressors of this paper and the best

low-power exact compressor of [8] (implemented by using

XOR-XNOR gates) are simulated at a 1 GHz frequency; a fan-

out of 4 is utilized in all simulations. The simulation results of

the delay, power consumption and power-delay product (PDP)

are given in Table IV by using the PTMs at 32 nm, 22 nm and

16 nm.

TABLE IV
SIMULATION RESULTS (@32 NM)

 Design Delay(ps) Power(μW) PDP(aJ)

 @32 nm
 Exact Design [8] 60.36 2.98 180
 Design 1 58.32 1.27 74
 Design 2 44.35 1.14 50
 @22 nm

 Exact Design [8] 55.82 1.50 84
 Design 1 56.79 0.62 35
 Design 2 41.69 0.58 24
 @16 nm

 Exact Design [8] 47.59 0.95 45
 Design 1 37.16 0.39 14
 Design 2 24.44 0.36 9

As expected, the second proposed design (Design 2) has the

best delay, power consumption and PDP; these improvements

are irrespective of feature size. This approximate design is

62% faster than the exact compressor at 16 nm CMOS

technology and 44% faster on average for the three feature

sizes considered. Moreover on average, Design 2 is also 35%

faster than Design 1. The two proposed approximate designs

achieve significant improvement in terms of power

consumption; on average at different feature sizes, the power

consumption of Design 1 is 57% less than the exact

compressor, while Design 2 has a power consumption that is

60% less than the exact design of [8].
Table V compares these designs in terms of number of

transistors, as a measure of circuit complexity. The exact

compressor [8] uses 10 transistors to implement each XOR*

gate, 6 transistors to implement the XOR gate and 8 transistors

to implement each MUX gate [8]; therefore, the exact

compressor utilizes 52 transistors. A 50% improvement in

circuit complexity is accomplished by Design 2, as reflected

by the lower number of transistors. This is expected because

the second approximate design has no cin and cout with only 4

inputs and 2 outputs (the exact compressor has 5 inputs and 3

outputs).

TABLE V
COMPARISON OF NUMBER OF TRANSISTORS

 Design Number of transistors
 Exact Design [8] 52
 Design 1 28
 Design 2 26

B. Approximate Multipliers

The four proposed approximate multipliers are simulated for

n=8. The delay, power consumption and number of transistors

are investigated for these approximate designs as well as the

exact multiplier. A comparison of the error distance (as

measure of reliability [1]) of the proposed multipliers with

other approximate multipliers is also pursued.

• Delay

The delay of the reduction circuitry (second module) of a
Dadda multiplier is dependent on the number of reduction

stages and the delay of each stage. In Multipliers 1 and 2, the

approximate compressors are used in all columns; therefore,

the delay of the stages is equal to the delay of the approximate

compressors. However, in Multipliers 3 and 4, the delay of the

stages is equal to the delay of the exact compressors. So, the

use of these approximate compressors in the n/2 LSBs cause

no improvement in terms of delay compared to an exact

multiplier. The delay improvement in the reduction circuitry

of each multiplier (at 32 nm CMOS technology) compared to

an exact adder is shown in Table VI.

TABLE VI
DELAY IMPROVEMENT IN REDUCTION CIRCUITRY

 Design Improvement (%)
 Multiplier 1 3.38
 Multiplier 2 26.52
 Multiplier 3 0
 Multiplier 4 0

• Power Consumption

The power consumption of each multiplier is determined by

the number and type of compressors used. Multipliers 1 and 2

use only approximate compressors so they have power

consumption lower than Multipliers 3 and 4. Table VII shows

International Journal of Advanced and Innovative Research (2278-7844) / # 201 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 201

the power consumption improvement of each multiplier at 32

nm feature size with respect to an exact adder; this confirms

that an approximate multiplier in the reduction circuitry will

result in a considerable power saving.

TABLE VII
POWER CONSUMPTION IMPROVEMENT IN REDUCTION CIRCUITRY

Design Improvement (%)
Multiplier 1 52.49
Multiplier 2 58.58
Multiplier 3 17.50
Multiplier 4 26.15

• Transistor Count

The transistor count is used in this paper as metric of circuit

complexity. The first two approximate multipliers have a

lower transistor count compared with Multipliers 3 and 4.

Table VIII shows the transistor count improvement of the

reduction circuitry of each multiplier compared to an exact

adder.

TABLE VIII
TRANSISTOR COUNT IMPROVEMENT IN REDUCTION CIRCUITRY

each input. Therefore the average NED is equivalent to the

NED defined in [1]. The maximum high (low) NED is also

defined as the largest absolute value of NED for the case in

which the erroneous result is more (less) than the exact result.

Table X shows the average NED, the maximum high and low

NEDs and the number of correct results (or outputs) of

approximate multipliers for n=8. The number of correct

outputs out of the total outputs represents the probability of

correctness for each design. Based on Table X, the probability

of correctness in Multiplier 1 is 0.16% (103 out of 65025)

while the probability of correctness in Multiplier 4 is 14.3%

(9320 out of 65025). Since the proposed approximate

compressors produce erroneous results for all-zero input

patterns (row 1 in Tables II and III), the proposed approximate

multipliers will generate an erroneous result if at least one of

the inputs is zero. However, in these cases (511 cases for n=8)

the multiplier can produce correct result by adding a circuit for

detecting the zero-valued inputs. Therefore, the zero-valued

input patterns are not considered further in the simulation to

investigate the proposed multipliers for a fair comparison.

Design Improvement (%)
Multiplier 1 42.11
Multiplier 2 48.15
Multiplier 3 14.03
Multiplier 4 22.42

• Error Distance

Four additional approximate multipliers are simulated to

compare the error distance. The multiplier (Multiplier 5)

proposed in [7] is simulated for n=8. The truncated multiplier

with constant correction [5] (Multiplier 6) and the truncated

multiplier with variable correction [6] (Multiplier 7) are also

simulated for n=8 and k=1. A further approximate multiplier

(Multiplier 8) is simulated to investigate the impact of using

the proposed approximate compressors compared with other

approximate compressors. This 8×8 Dadda multiplier uses 4-2

compressors made of two approximate full-adders (Figure 3).

The first full-adder design proposed in [2] is used in this

approximate multiplier. Table IX summarizes the eight

approximate multipliers assessed in this manuscript, i.e. the

four proposed designs and the other four approximate

multipliers together with their salient features.

TABLE IX
APPROXIMATE MULTIPLIERS AND THEIR FEATURES

Design Feature
Multiplier 1 Design 1 in all columns

Multiplier 2 Design 2 in all columns
Multiplier 3 Design 1 in LSBs and exact compressor in MSBs
Multiplier 4 Design 2 in LSBs and exact compressor in MSBs
Multiplier 5 [7] Approximate 2x2 multiplier blocks
Multiplier 6 [5] Truncated multiplier with constant correction

Multiplier 7 [6] Truncated multiplier with variable correction

Multiplier 8 Compressors made of approximate FAs [2]

The normalized error distance (NED) is used to compare

these approximate multipliers. In [1], the NED is defined as

the average error distance over all inputs, normalized by the

maximum possible error. In this paper the NED is defined for

TABLEX

NED FOR N = 8

Design
Average Max High Max Low correct outputs

NED NED NED (out of 65025)

Multiplier 1 0.6065×10
-1 0.1593 0.1375 103

Multiplier 2 0.5352×10
-1 0.1278 0.1329 458

Multiplier 3 0.9199×10
-3 0.3199×10

-2 0.2707×10
-2 5888

Multiplier 4 0.7827×10
-3 0.1845×10

-2 0.3076×10
-2 9320

Multiplier 5 [7] 0.1400×10
-1 0 0.2222 34400

Multiplier 6 [5] 0.1609×10
-2 0.3937×10

-2 0.9858×10
-2 0

Multiplier 7 [6] 0.1146×10
-2 0.3060×10

-2 0.4045×10
-2 769

Multiplier 8 0.1049 0.2263 0.1207 8

Based on Table X, Multiplier 4 has the lowest average NED

among all approximate multipliers. The average NED of

Multiplier 4 is 18 times better than Multiplier 5, 2 times better

than Multiplier 6 and 1.5 times better than Multiplier 7.

Multiplier 5 has the highest number of correct outputs. It has

also the lowest maximum high NED. As the approximate

output is always less than the exact output, the maximum high

NED is 0 for this design; however, it has the worst maximum

low NED among all considered designs.
A plot of the NED distribution is also generated (Figure 10)

to compare the performance of the approximate multipliers.

The range of the product in a 8×8 multiplier is between 0 and

65025 (unsigned values). All possible outputs are categorized

in 127 intervals; in the first interval the output is between 0

and 512, in the second interval the output is between 513 and

1024 and so on. In the last interval the output is between

64513 and 65025. The average NED of each interval is then

computed for the approximate multiplier. Figures 10a and 10b

show that for Multipliers 1 and 2, the average NED increases

only at very large or very small product values, i.e. these

approximate multiplier incur on average in a small error in

output compared to the exact calculation.

VI. APPLICATION: IMAGE PROCESSING
In this section the application of the proposed approximate

multipliers to image processing is illustrated. A multiplier is

used to multiply two images on a pixel by pixel basis, thus

blending the two images into a single output image.

International Journal of Advanced and Innovative Research (2278-7844) / # 202 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 202

Figure 11 shows two examples: both input images and the

resulting output image are provided. A program has been

developed in C# .net and simulated in Microsoft Visual Studio

2010 using the 8 approximate multipliers at n=8. Figures 12

and 13 show the outputs for the two examples.
The average NED and the Peak Signal-to-Noise Ratio

(PSNR) that is based on the Mean Squared Error (MSE) are

computed to assess the quality of the output image and

compare it with the output image generated by an exact

multiplier. The equations for the MSE and PSNR are given in

(10) and (11); in (10), m and p are the image dimensions and

I(i,j) and K(i,j) are the exact and obtained values of each pixel

respectively. In (11), MAXI represents the maximum value of

each pixel.

MSE

∑ ∑

, ,

(10)

 (11)

PSNR 10 MSE

Figure11. Image multiplication (a) example 1, (b) example 2 (both using

an exact multiplier)

Figure12. Image multiplication results for example 1, (a) Multiplier 1, (b)

Multiplier 2, (c) Multiplier 3, (d) Multiplier 4, (e) Multiplier 5, (f)

Multiplier 6, (g) Multiplier 7, (h) Multiplier 8.

Figure10.Average NED distribution in 8×8 approximate multipliers. (a)
Multiplier 1, (b) Multiplier 2, (c) Multiplier 3, (d) Multiplier 4

International Journal of Advanced and Innovative Research (2278-7844) / # 203 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 203

Figure13. Image multiplication results for example2, (a) Multiplier 1, (b)

Multiplier 2, (c) Multiplier 3, (d) Multiplier 4, (e) Multiplier 5, (f)

Multiplier 6, (g) Multiplier 7, (h) Multiplier 8

TABLE XI
PSNR AND AVERAGE NED FOR FIRST EXAMPLE

 Design PSNR (dB) Average NED(× 10 -2)

 Multiplier 1 25.3 4.4

 Multiplier 2 26.3 3.7

 Multiplier 3 53.9 0.10

 Multiplier 4 53.2 0.12

 Multiplier 5 [7] 26.3 2.3

 Multiplier 6 [5] 48.3 0.28

 Multiplier 7 [6] 52.3 0.15

 Multiplier 8 21.2 7.6

 TABLE XII

 PSNR AND AVERAGE NED FOR SECOND EXAMPLE

 Design PSNR (dB) Average NED(× 10 -2)

 Multiplier 1 25.1 4.5

 Multiplier 2 25.8 4.1

 Multiplier 3 54.2 0.096

 Multiplier 4 54.9 0.083

 Multiplier 5 [7] 35.7 0.72

 Multiplier 6 [5] 52.4 0.14

 Multiplier 7 [6] 53.5 0.11

 Multiplier 8 18.7 10.4

Tables XI and XII show that the PSNRs of the output

images generated by Multipliers 3 and 4, are nearly 50 dB, a

value that is acceptable for most applications. Consistently,

Multiplier 1 has the worst PSNR among 4 proposed designs.

As discussed previously, the proposed approximate multipliers

have a higher error distance for very large and very small

input values in the product operands. Therefore the pixels that

have high RGB (Red-Green-Blue) model values (such as of a

white color) or small RGB model values (such as those of a

black color), show a larger inaccuracy than other pixels due to

the approximate nature of the compressors. However, the error

distance of Multipliers3 and 4 still remains very low.

VII. CONCLUSION

Inexact computing is an emerging paradigm for

computation at nanoscale. Computer arithmetic offers

significant operational advantages for inexact computing; an

extensive literature exists on approximate adders. However,

this paper has initially focused on compression as used in a

multiplier; to the best knowledge of the authors, no work has

been reported on this topic.
This paper has presented the novel designs of two

approximate 4-2 compressors. These approximate

compressors are utilized in the reduction module of four

approximate multipliers. The approximate compressors show a

significant reduction in transistor count, power consumption

and delay compared with an exact design.
• In terms of transistor count, the first design has a 46%

improvement, while the second design has a 50%

improvement.

• In terms of power consumption, the first design has a 57%

improvement and the second design has a 60%

improvement on average for CMOS implementation at

feature sizes of 32, 22 and 16 nm.
• In terms of delay, the second design has a 44%

improvement compared to the exact compressor and 35%

improvement compared to the first design on average at

different CMOS feature sizes of 32, 22 and 16 nm.
Four different approximate schemes have been proposed in

this paper to investigate the performance of the approximate

compressors for the aforementioned metrics for inexact

multiplication. The approximate compressors have been

utilized in the reduction module of a Dadda multiplier. The

following conclusions can be drawn from the simulation

results presented in this manuscript.
• The first and second proposed multipliers show a

significant improvement in terms of power consumption

and transistor count compared to an exact multiplier.

• The first and second multipliers have larger average

NEDs (and thus, larger PSNRs), while the second

multiplier that uses the second proposed approximate

compressor for all bits, has the best delay.
• With relatively modest reductions in transistor count and

power consumption, the third and fourth proposed

multipliers have very low average NED values, thus
presenting the best tradeoff for energy with accuracy.

Moreover, the application of these approximate multipliers
to image processing has confirmed that two of the proposed

designs achieve a PSNR of nearly 50dB in the output

generated by multiplying two input images, thus viable for

most applications.
Table XIII compares the four proposed approximate design

with four other approximate designs found in the technical

literature by ranking them under various metrics. Multiplier 4

is overall the best design with respect to all figures of merit for

approximate multiplication as well as the two PSNR

examples. Multiplier 5 has the best performance in terms of

Max High NED and number of correct outputs; however, its

rather poor performance for the other figures of merit causes

its ranking to be in the middle once the PSNR examples are

considered. Multiplier 3 is the second best design among the

schemes considered in this manuscript. It offers overall good

performance in most metrics of Table XIII. Current and future

research addresses the tradeoffs of the different figures of

merit in the proposed designs to establish conditions by which

combined metrics can be attained. Moreover, physical designs

of the approximate multipliers are being pursued to further

confirm the analysis presented in this paper.
In conclusion, this paper has shown that by an appropriate

design of an approximate compressor, multipliers can be

designed for inexact computing; these multipliers offer

significant advantages in terms of both circuit-level and error

International Journal of Advanced and Innovative Research (2278-7844) / # 204 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 204

figures of merit. Although not discussed and beyond the scope

of this manuscript, the proposed designs may also be useful in

other arithmetic circuits for applications in which inexact

computing can be used. The provision of an error indicator (as

required for other applications) is a topic of current

investigation.

TABLE XIII
RANKING OF APPROXIMATE MULTIPLIERS

 Design Average NED Max High NED Max Low NED Correct Outputs PSNR example 1 PSNR example 2
 Multiplier 1 7 7 7 6 7 7
 Multiplier 2 6 6 6 5 5 6
 Multiplier 3 2 4 1 3 1 2
 Multiplier 4 1 2 2 2 2 1
 Multiplier 5 [7] 5 1 8 1 5 5
 Multiplier 6 [5] 4 5 4 8 4 4
 Multiplier 7 [6] 3 3 3 4 3 3
 Multiplier 8 8 8 5 7 8 8

REFERENCES

[1] J. Liang, J. Han, F. Lombardi,

“New Metrics for the Reliability of Approximate and

Probabilistic Adders,” IEEE Transactions on

Computers,vol. 63, no. 9, pp. 1760 - 1771, 2013.

[2] V. Gupta, D. Mohapatra, S. P.

Park, A. Raghunathan, K. Roy, “IMPACT: IMPrecise

adders for low-power approximate computing,”

Low Power Electronics and Design (ISLPED) 2011

International Symposium on. 1-3 Aug. 2011.

[3] S. Cheemalavagu, P. Korkmaz,

K.V. Palem, B.E.S. Akgul, and L.N. Chakrapani, “A

probabilistic CMOS switch and its realization by

exploiting noise,” in Proc. IFIP-VLSI SoC, Perth,

Western Australia, Oct. 2005.

[4] H.R. Mahdiani, A. Ahmadi, S.M.

Fakhraie, C. Lucas, “Bio-Inspired Imprecise

Computational Blocks for Efficient VLSI

Implementation of Soft-Computing Applications,”

IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 57, no. 4, pp. 850-862, April 2010.
[5] M. J. Schulte and E. E.

Swartzlander, Jr., “Truncated multiplication with

correction constant,” VLSI Signal Processing VI, pp.

388–396, 1993.

[6] E. J. King and E. E. Swartzlander, Jr., “Data dependent

truncated scheme for parallel multiplication,” in

Proceedings of the Thirty First Asilomar Conference

on Signals, Circuits and Systems, pp. 1178–1182,

1998.
[7] P. Kulkarni, P. Gupta, and MD

Ercegovac, “Trading accuracy for power in a

multiplier architecture”, Journal of Low Power

Electronics, vol. 7, no. 4, pp. 490--501, 2011.
[8] C. Chang, J. Gu, M. Zhang, “Ultra

Low-Voltage Low- Power CMOS 4-2 and 5-2

Compressors for Fast Arithmetic Circuits,” IEEE

Transactions on Circuits & Systems, Vol. 51, No. 10,

pp. 1985-1997, Oct. 2004.
[9] D. Radhakrishnan and A. P.

Preethy, “Low-power CMOS pass logic 4-2

compressor for high-speed multiplication,” in Proc.

43rd IEEE Midwest Symp. Circuits Syst., vol. 3, 2000,

pp. 1296–1298.

[10] Z. Wang, G. A. Jullien, and W.

C. Miller, “A new design technique for column

compression multipliers,” IEEE Trans. Comput., vol.

44, pp. 962–970, Aug. 1995.
[11] J. Gu, C. H. Chang, “Ultra Low-

voltage, low-power 4-2 compressor for high speed

multiplications,” in Proc. 36th IEEE Int. Symp.

Circuits Systems, Bangkok, Thailand, May 2003.
[12] M. Margala and N. G. Durdle,

“Low-power low-voltage 4-2 compressors for VLSI

applications,” in Proc. IEEE Alessandro Volta

Memorial Workshop Low-Power Design, 1999, pp.

84–90.
[13] B. Parhami, “Computer

Arithmetic: Algorithms and Hardware Designs,” 2nd

edition, Oxford University Press, New York, 2010.

[14] K. Prasad and K. K. Parhi,

“Low-power 4-2 and 5-2 compressors,” in

Proc. of the 35th Asilomar Conf. on Signals, Systems

and Computers, vol. 1, 2001, pp. 129–133.

[15] Ercegovac, Miloš D., and Tomas

Lang. Digital arithmetic. Elsevier, 2003.

[16] Baran, Dursun, Mustafa Aktan,

and Vojin G. Oklobdzija. "Energy efficient

implementation of parallel CMOS multipliers with

improved compressors."Proc. of the 16th ACM/IEEE

international symposium on Low power electronics

and design. ACM, 2010.

International Journal of Advanced and Innovative Research (2278-7844) / # 205 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 205

