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Abstract: Due to its high modularity and carry-free 

addition, a redundant binary (RB) representation can be 

used when designing high performance multipliers. The 

conventional RB multiplier requires an additional RB 

partial product (RBPP) row, because an error-correcting 

word (ECW) is generated by both the radix-4 Modified 

Booth encoding (MBE) and the RB encoding. This incurs 

in an additional RBPP accumulation stage for the MBE 

multiplier. In this paper, a new RB modified partial 

product generator (RBMPPG) is proposed; it removes the 

extra ECW and hence, it saves one RBPP accumulation 

stage. Therefore, the proposed RBMPPG generates fewer 

partial product rows than a conventional RB MBE 

multiplier. Simulation results show that the proposed 

RBMPPG based designs significantly improve the area 

and power consumption when the word length of each 

operand in the multiplier is at least 32 bits; these 

reductions over previous NB multiplier designs incur in a 

modest delay increase (approximately 5%). The power-

delay product can be reduced by up to 59% using the 

proposed RB multipliers when compared with existing RB 

multipliers. 

1  INTRODUCTION 

D igital multipliers are widely used in arithmetic units 

of microprocessors, multimedia and digital signal 
processors. Many algorithms and architectures have been 
proposed to design high-speed and low-power multipliers 
[1-13]. A normal binary (NB) multipli-cation by digital 
circuits includes three steps. In the first step, partial 
products are generated; in the second step, all partial 
products are added by a partial product re-duction tree 
until two partial product rows remain. In the third step, the 
two partial product rows are added by a fast carry 
propagation adder. Two methods have been used to 
perform the second step for the partial product reduction. 
A first method uses 4-2 compressors, while a second 
method uses redundant binary (RB) numbers [5-6]. Both 
methods allow the partial product reduction tree to be 
reduced at a rate of 2:1.  

The redundant binary number representation has been 

introduced by Avizienis [1] to perform signed-digit 

arithmetic; the RB number has the capability to be 
represented in different ways. Fast multipliers can be 

designed using redundant binary addition trees [2-3]. The 

redundant binary representation has also been ap-plied to a 

floating-point processor and implemented in VLSI [4]. 

High performance RB multipliers have become popular 

due to the advantageous features, such as high modularity 

and carry-free addition [5-9].  
A RB multiplier consists of a RB partial product 

(RBPP) generator, a RBPP reduction tree and a RB-NB 

converter. A Radix-4 Booth encoding or a modified 

Booth encoding (MBE) is usually used in the partial 

product generator of parallel multipliers to reduce the 

number of partial product rows by half [5-6] [10-13]. A 

RBPP row can be obtained from two adjacent NB partial 

product rows by inverting one of the pair rows [5-6]; an 

N-bit convention-al RB MBE (CRBBE-2) multiplier 

requires _ /4_ RBPP rows. An additional error-correcting 

word (ECW) is also required by both the RB and the 

Booth encoding [5-6] [14]; therefore, the number of 

RBPP accumulation stages (NRBPPAS) required by a 

power-of-two word-length (i.e., 2 -bit) multiplier is given 

by: 
NRBPPAS = _log (  /4 + 1)= n − 1, if _ = 2 (1) 

 
If the additional ECW can be removed, an RBPP accu-

mulation stage is saved, so resulting in improvements of 

complexity and critical path delay for a RB multiplier. 

For example, a conventional 32-bit RB multiplier has 4 

RBPP accumulation stages; if the ECW is removed, 

then the number of RBPP accumulation stages is 

reduced to 3, i.e., the stage count is decreased by 25%. 

Note that the problem of extra ECW does not exist in 

standard signifi-cand size (i.e., 24×24-bit and 54×54-bit) 

RB multipliers as used in floating point-arithmetic units 

[5-6].  
Alternatively, a high-radix Booth encoding technique 

can reduce the number of partial products. However, the 

number of expensive hard multiples (i.e., a multiple that 

is not a power of two and the operation cannot be per-

formed by simple shifting and/or complementation) in-

creases too [14-16]. Besli et al. [16] noticed that some 

hard multiples can be obtained by the differences of two 

sim-ple power-of-two multiplies. A new radix-16 Booth 

en-coding (RBBE-4) technique without ECW has been 

pro-posed in [14]; it avoids the issue of hard multiples. 

A radix-16 RB Booth encoder can be used to overcome 

the hard multiple problem and avoid the extra ECW, but 

at the cost of doubling the number of RBPP rows. 

There-fore, the number of radix-16 RBPP rows is the 

same as in the radix-4 MBE. However, the RBPP 

generator based on a radix-16 Booth encoding has a 

complex circuit struc-ture and a lower speed compared 

with the MBE partial product generator [10] when 

requiring the same number of partial products.  
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This paper focuses on the RBPP generator for design 
[8-10] to speed up the partial product reduction tree and 

decrease power dissipation. Optimized designs of 4-2 

exact  

compressors have been proposed in [8, 11 - 16]. [17] 

[18] have also considered compression for approximate 

multiplication. In [17], an approximate signed multiplier 

has been proposed for use in arithmetic data value 

speculation (AVDS); multiplication is performed using 

the Baugh-Wooley algorithm. However, no new design 

is proposed for the compressors for the inexact 

computation. Designs of approximate compressors have 

been proposed in [18]; however, these designs do not 

target multiplication. It should be noted that the 

approach of [7] improves over [17] [18] by utilizing a 

simplified multiplier block that is amenable to 

approximate multiplication.  
Initially in this paper, two novel approximate 4-2 

compressors are proposed and analyzed. It is shown that 

these simplified compressors have better delay and 

power consumption than the optimized (exact) 4-2 

compressor designs found in the technical literature [8]. 

These approximate compressors are then used in the 

restoration module of a Dadda multiplier; four different 

schemes are proposed for inexact multiplication. 

Extensive simulation results are provided at circuit-level 

for figures of merit, such as delay, transistor count, 

power dissipation, error rate and normalized error 

distance under CMOS feature sizes of 32, 22 and 16 nm. 

The application of these multipliers to image processing 

is then presented. The results of two examples of 

multiplication of two images are reported; these results 

show that the third and fourth approximate multipliers 

yield an output product image that has a very high 

quality and resemblance to the image generated by an 

exact multiplier, i.e. excellent values for the average 

NED and the Peak Signal-to-Noise Ratio (PSNR) are 

found (for the PSNR more than 50db). The analysis and 

simulation results show that the proposed approximate 

designs for both the compressor and the multiplier are 

viable candidates for inexact computing.  
This paper is organized as follows. Section 2 is a 

review of existing schemes for (exact) compressors. The 

two new designs of an approximate 4-2 compressor are 

presented in Section 3.Multiplication and four different 

approximate multipliers are proposed in Section 4. 

Simulation results for the approximate compressors and 

multipliers are provided in Section 5. The application of 

the proposed approximate multipliers to image 

processing is presented in Section 6. Section 7 

concludes the manuscript. 

 

 

 
II.  EXACT COMPRESSORS 
 

The main goal of either multi-operand carry-save 

addition or parallel multiplication is to reduce n 

numbers to two numbers; therefore, n-2 compressors (or 

n-2 counters) have been widely used in computer 

arithmetic. An-2 compressor (Figure 1) is usually a slice 

of a circuit that reduces n numbers to two numbers 

when properly replicated. In slice i of the circuit, the n-2 

compressor receives n bits in position i and one or more 

carry bits from the positions to the right, such as i – 1 or 

i – 2. It produces two output bits in positions i and i + 1 

and one or more carry bits into the higher positions, 

such as i + 1 
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or i + 2.For the correct operation of the circuit shown in 

Figure 1, the following inequality must be satisfied  
…  3 2   4   8   …  (1) 

 
 
 
 
 
 
 
 
 
 

 
Figure 1.Schematic diagram of n-2 compressors in a multi operand 

addition circuit [13] 
 

Where denotes the number of carry bits from slice ito 

slice i+ j.  
A widely used structure for compression is the 4-2 

compressor; a 4-2 compressor (Figure 2) can be 

implemented 
with a carry bit between adjacent slices ( 

as c 
). The carry bit 

 

from the position to the right is denoted while the carry 
 

1 in
1  

bit into the higher position is denoted as cout. The two 
output bits in positions i and i + 1are also referred to as 
the sum and carry respectively. 
 
 
 
 

 
 
 
 
 
 

 
Figure2.4-2 compressor 

 
The following equations give the outputs of the 4-2 

compressor, while Table 1 shows its truth table.  

 
1 2 

2 

3 4 

2 1 

   (2) 
 

    (3) 
 

1
The 

 1 3 1    (4)  

common  implementation of  a    
 

 4-2  compressor  is 
 

2 3  4  1 2 3 4 4  
 

accomplished by utilizing two full-adder (FA) cells 

(Figure 3) [8]. Different designs have been proposed in 

the literature for 4-2 compressor [8, 11-16].  
Figure 4 shows the optimized design of an exact4-2 

compressor based on the so-called XOR-XNOR gates 

[8]; a XOR-XNOR gate simultaneously generates the 

XOR and XNOR output signals. The design of [8] 

consists of three XOR-XNOR (denoted by XOR
*
) gates, 

one XOR and two 2-1 MUXes. The critical path of this 

design has a delay of 3 , where is the unitary delay 

through any gate in the design. 
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performance improvement compared to an exact compressor 

with respect to delay, number of transistors and power 

consumption. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Implementation of 4-2 Compressor 
 

TABLE I  
TRUTH TABLE OF 4-2 COMPRESSOR  

 cin X4 X3 X2 X1 cout carry sum 
 0 0 0 0 0 0 0 0 
 0 0 0 0 1 0 0 1 
 0 0 0 1 0 0 0 1 
 0 0 0 1 1 1 0 0 
 0 0 1 0 0 0 0 1 
 0 0 1 0 1 1 0 0 
 0 0 1 1 0 1 0 0 
 0 0 1 1 1 1 0 1 
 0 1 0 0 0 0 0 1 
 0 1 0 0 1 0 1 0 
 0 1 0 1 0 0 1 0 
 0 1 0 1 1 1 0 1 
 0 1 1 0 0 0 1 0 
 0 1 1 0 1 1 0 1 
 0 1 1 1 0 1 0 1 
 0 1 1 1 1 1 1 0 
 1 0 0 0 0 0 0 1 
 1 0 0 0 1 0 1 0 
 1 0 0 1 0 0 1 0 
 1 0 0 1 1 1 0 1 
 1 0 1 0 0 0 1 0 
 1 0 1 0 1 1 0 1 
 1 0 1 1 0 1 0 1 
 1 0 1 1 1 1 1 0 
 1 1 0 0 0 0 1 0 
 1 1 0 0 1 0 1 1 
 1 1 0 1 0 0 1 1 
 1 1 0 1 1 1 1 0 
 1 1 1 0 0 0 1 1 
 1 1 1 0 1 1 1 0 
 1 1 1 1 0 1 1 0 
 1 1 1 1 1 1 1 1 
         

 

 
III.  PROPOSED APPROXIMATE COMPRESSORS  

In this section, two designs of an approximate compressor 

are proposed. Intuitively to design an approximate 4-2 

compressor, it is possible to substitute the exact full-adder 

cells in Figure3 by an approximate full-adder cell (such as the 

first design proposed in [2]). However, this is not very 

efficient, because it produces at least 17 incorrect results out 

of 32 possible outputs, i.e. the error rate of this inexact 

compressor is more than 53% (where the error rate is given 

by the ratio of the number of erroneous outputs over the total 

number of outputs). Two different designs are proposed next 

to reduce the error rate; these designs offer significant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure4. Optimized 4-2 compressor of [8] 
 
A.  Design 1  

As shown in Table I, the carry output in an exact 

compressor has the same value of the input cin in 24 out of 32 

states. Therefore, an approximate design must consider this 

feature. In Design 1, the carry is simplified to cin by changing 

the value of the other 8 outputs. 
 

(5) 
 

Since the Carry output has the higher weight of a binary bit, 

an erroneous value of this signal will produce a difference 

value of two in the output. For example, if the input pattern is 

“01001” (row 10 of Table II), the correct output is “010” that 

is equal to 2. By simplifying the carry output to cin, the 

approximate compressor will generate the “000” pattern at the 

output (i.e. a value of 0). This substantial difference may not 

be acceptable; however, it can be compensated or reduced by 

simplifying the cout and sum signals. In particular, the 

simplification of sum to a value of 0 (second half of Table II) 

reduces the difference between the approximate and the exact 

outputs as well as the complexity of its design. Also, the 

presence of some errors in the sum signal will results in a 

reductions of the delay of producing the approximate sum and 

the overall delay of the design (because it is on the critical 

path).  
1  2  3  4 (6) 

 

 
In the last step, the change of the value of cout in some 

states, may reduce the error distance provided by approximate  
carry and sum and also more simplification in the proposed 

design.  
1 2  3 4 (7) 

 

 

International Journal of Advanced and Innovative Research (2278-7844) / # 198 / Volume 5 Issue 5

   © 2016 IJAIR. All Rights Reserved                                                                            198



 
B.  Design 2  

Although the above mentioned simplifications of carry and 

sum increase the error rate in the proposed approximate 

compressor, its design complexity and therefore the power 

consumption are considerably decreased. This can be realized 

by comparing (2)-(4) and (5)-(7).Table II shows the truth table 

of the first proposed approximate compressor. It also shows 

the difference between the inexact output of the proposed 

approximate compressor and the output of the exact 

compressor. As shown in Table II, the proposed design has 12 

incorrect outputs out of 32 outputs (thus yielding an error rate 

of 37.5%). This is less than the error rate using the best 

approximate full-adder cell of [2]. 
 

TABLE II  
TRUTH TABLE OF THE FIRSTAPPROXIMATE 4-2 COMPRESSOR 

cin X4 X3 X2 X1 cout’ carry’ sum' Difference 
0 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 0 1 0 
0 0 0 1 0 0 0 1 0 
0 0 0 1 1 0 0 1 -1 
0 0 1 0 0 0 0 1 0 
0 0 1 0 1 1 0 0 0 
0 0 1 1 0 1 0 0 0 
0 0 1 1 1 1 0 1 0 
0 1 0 0 0 0 0 1 0 
0 1 0 0 1 1 0 0 0 
0 1 0 1 0 1 0 0 0 
0 1 0 1 1 1 0 1 0 
0 1 1 0 0 0 0 1 -1 
0 1 1 0 1 1 0 1 0 
0 1 1 1 0 1 0 1 0 
0 1 1 1 1 1 0 1 -1 
1 0 0 0 0 0 1 0 1 
1 0 0 0 1 0 1 0 0 
1 0 0 1 0 0 1 0 0 
1 0 0 1 1 0 1 0 -1 
1 0 1 0 0 0 1 0 0 
1 0 1 0 1 1 1 0 1 
1 0 1 1 0 1 1 0 1 
1 0 1 1 1 1 1 0 0 
1 1 0 0 0 0 1 0 0 
1 1 0 0 1 1 1 0 1 
1 1 0 1 0 1 1 0 1 
1 1 0 1 1 1 1 0 0 
1 1 1 0 0 0 1 0 -1 
1 1 1 0 1 1 1 0 0 
1 1 1 1 0 1 1 0 0 
1 1 1 1 1 1 1 0 -1 

         

 
(5)-(7) are the logic expressions for the outputs of the first 

design of the approximate 4-2 compressor proposed in this 

manuscript.  
The gate level structure of the first proposed design (Figure 

6) shows that the critical path of this compressor has still a 

delay of 3 , so it is the same as for the exact compressor of 

Figure 5. However, the propagation delay through the gates of 

this design is lower than the one for the exact compressor. For 

example, the propagation delay in the XOR* gate that 

generates both the XOR and XNOR signals in [8], is higher 

than the delay through a XNOR gate of the proposed design. 

Therefore, the critical path delay in the proposed design is 

lower than in the exact design and moreover, the total number 

of gates in the proposed design is significantly less than that in 

the optimized exact compressor of [8]. 

 
A second design of an approximate compressor is proposed 

to further increase performance as well as reducing the error 

rate. Since the carry and cout outputs have the same weight, 

the proposed equations for the approximate carry and cout in 

the previous part can be interchanged. In this new design, 

carry uses the right hand side of (7) and cout is always equal to  
cin; since cin is zero in the first stage, cout and cin will be zero 

in all stages. So, cin and cout can be ignored in the hardware 
design. Figure 7shows the block diagram of this approximate  
4-2 compressor and the expressions below describe its outputs.  

1 2 3 4 (9)(8) 

1 2  3 4   
 
 
 
 
 
 
 
 

Figure 6. Gate level implementation of Design 1 
 
 
 
 
 
 
 
 
 
 

 
Figure7. Approximate 4-2 compressor, Design 2 

 
Note that (9) is the same as (7) and (8) is the same as (6) for 

cin= 0. Figure 8 shows the gate level implementation of the 

second proposed design. The delay of the critical path of this 

approximate design is 2 , so it is 1 less than the previous 

designs; moreover, a further reduction in the number of gates 

is accomplished. 
 
 
 
 
 
 
 
 

Figure 8. Gate level implementation of Design 2 
 

Table III shows the truth table of the second approximate 

design for a 4-2 compressor; this Table also shows the 

difference between the exact decimal value of the addition of 

the inputs and the decimal value of the outputs produced by 

the approximate compressor. For example when all inputs are 
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1, the decimal value of the addition of the inputs is 4. 

However, the approximate compressor produces a 1 for the 

carry and sum. The decimal value of the outputs in this case is 

3; Table II shows that the difference is -1. 
 
 

TABLE III  
TRUTH TABLE OF SECOND PROPOSED 4-2 COMPRESSOR 

 X4 X3 X2 X1 carry’ sum' difference 
 0 0 0 0 0 1 1 
 0 0 0 1 0 1 0 
 0 0 1 0 0 1 0 
 0 0 1 1 0 1 -1 
 0 1 0 0 0 1 0 
 0 1 0 1 1 0 0 
 0 1 1 0 1 0 0 
 0 1 1 1 1 1 0 
 1 0 0 0 0 1 0 
 1 0 0 1 1 0 0 
 1 0 1 0 1 0 0 
 1 0 1 1 1 1 0 
 1 1 0 0 0 1 -1 
 1 1 0 1 1 1 0 
 1 1 1 0 1 1 0 
 1 1 1 1 1 1 -1 
        

 
This design has therefore 4 incorrect outputs out of 16 

outputs, so its error rate is now reduced to 25%. This is a very 

positive feature, because it shows that on a probabilistic basis, 

the imprecision of the proposed design is smaller than the 

other available schemes. 
 
IV.  MULTIPLICATION  

In this section, the impact of using the proposed 

compressors for multiplication is investigated. A fast (exact) 

multiplier is usually composed of three parts (or modules) [8].  
• Partial product generation.   
• A Carry Save Adder (CSA) tree to reduce the partial 

products’ matrix to an addition of only two operands   
• A Carry Propagation Adder (CPA) for the final 

computation of the binary result.   
In the design of a multiplier, the second module plays a 

pivotal role in terms of delay, power consumption and circuit 

complexity. Compressors have been widely used [9, 10] to 

speed up the CSA tree and decrease its power dissipation, so 

to achieve fast and low-power operation. The use of 

approximate compressors in the CSA tree of a multiplier 

results in an approximate multiplier.  
A 8×8 unsigned Dadda tree multiplier is considered to 

assess the impact of using the proposed compressors in 

approximate multipliers. The proposed multiplier uses in the 

first part AND gates to generate all partial products. In the 

second part, the approximate compressors proposed in the 

previous section are utilized in the CSA tree to reduce the 

partial products. The last part is an exact CPA to compute the 

final binary result. Figure 9(a) shows the reduction circuitry of 

an exact multiplier for n=8. In this figure, the reduction part 

uses half-adders, full-adders and 4-2 compressors; each partial 

product bit is represented by a dot. In the first stage, 2 half-

adders, 2 full-adders and 8 compressors are utilized to reduce 

 
the partial products into at most four rows. In the second or 

final stage, 1 half-adder, 1 full-adder and 10 compressors are 

used to compute the two final rows of partial products. 

Therefore, two stages of reduction and 3 half-adders, 3 full-

adders and 18 compressors are needed in the reduction 

circuitry of an 8×8Dadda multiplier.  
In this paper, four cases are considered for designing an 

approximate multiplier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Reduction circuitry of an 8×8Dadda multiplier, (a) using 

Design 1 compressors, (b) using Design 2 compressors 
 
• In the first case (Multiplier 1), Design 1 is used for all 4-2 

compressors in Figure 9(a).  

• In the second case (Multiplier 2), Design 2 is used for the 

4-2 compressors. Since Design 2 does not have cin and 

cout, the reduction circuitry of this multiplier requires a 
lower number of compressors (Figure 9(b)). Multiplier 2 
uses 6 half-adders, 1 full-adder and 17 compressors.   

• In the third case (Multiplier 3), Design 1 is used for the 

compressors in then-1 least significant columns. The other 

n most significant columns in the reduction circuitry use 

exact 4-2 compressors.  
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• In the fourth case (Multiplier 4), Design 2 and exact 4-2 

compressors are used in then-1 least significant columns 

and then most significant columns in the reduction  

circuitry respectively.  
The objectives of the first two approximate designs are to 

reduce the delay and power consumption compared with an 

exact multiplier; however, a high error distance is expected. 

The next two approximate multipliers (i.e. Multipliers 3 and 4) 

are proposed to decrease the error distance. The delay in these 

designs is determined by the exact compressors that are in the 

critical path; therefore, there is no improvement in delay for 

these approximate designs compared with an exact multiplier. 

However, it is expected that the utilization of approximate 

compressors in the least significant columns will decrease the 

power consumption and transistor count (as measure of circuit 

complexity). While the first two proposed multipliers have 

better performance in terms of delay and power consumption, 

the error distances in the third and fourth designs are expected 

to be significantly lower. 
 
V.  SIMULATION RESULTS  

In this section, he designs of the two approximate 

compressors (Section III) and the four approximate multipliers 

(Section IV) are simulated using HSPICE. Predictive 

Technology Models (PTMs) at different CMOS feature sizes 

(32 nm, 22 nm and 16 nm) are utilized in the HSPICE 

simulation. 
 
A.  Approximate Compressors  

The two approximate compressors of this paper and the best 

low-power exact compressor of [8] (implemented by using 

XOR-XNOR gates) are simulated at a 1 GHz frequency; a fan-

out of 4 is utilized in all simulations. The simulation results of 

the delay, power consumption and power-delay product (PDP) 

are given in Table IV by using the PTMs at 32 nm, 22 nm and 

16 nm. 
 

TABLE IV  
SIMULATION RESULTS (@32 NM)  

 Design Delay(ps) Power(μW) PDP(aJ) 
     

  @32 nm   
 Exact Design [8] 60.36 2.98 180 
 Design 1 58.32 1.27 74 
 Design 2 44.35 1.14 50 
  @22 nm   

 Exact Design [8] 55.82 1.50 84 
 Design 1 56.79 0.62 35 
 Design 2 41.69 0.58 24 
  @16 nm   

 Exact Design [8] 47.59 0.95 45 
 Design 1 37.16 0.39 14 
 Design 2 24.44 0.36 9 
     

 
As expected, the second proposed design (Design 2) has the 

best delay, power consumption and PDP; these improvements 

are irrespective of feature size. This approximate design is 

62% faster than the exact compressor at 16 nm CMOS 

technology and 44% faster on average for the three feature 

sizes considered. Moreover on average, Design 2 is also 35% 

faster than Design 1. The two proposed approximate designs 

 
achieve significant improvement in terms of power 

consumption; on average at different feature sizes, the power 

consumption of Design 1 is 57% less than the exact 

compressor, while Design 2 has a power consumption that is 

60% less than the exact design of [8]. 
Table V compares these designs in terms of number of 

transistors, as a measure of circuit complexity. The exact 

compressor [8] uses 10 transistors to implement each XOR* 

gate, 6 transistors to implement the XOR gate and 8 transistors 

to implement each MUX gate [8]; therefore, the exact 

compressor utilizes 52 transistors. A 50% improvement in 

circuit complexity is accomplished by Design 2, as reflected 

by the lower number of transistors. This is expected because 

the second approximate design has no cin and cout with only 4 

inputs and 2 outputs (the exact compressor has 5 inputs and 3 

outputs). 
 

TABLE V  
COMPARISON OF NUMBER OF TRANSISTORS  

 Design Number of transistors 
 Exact Design [8] 52 
 Design 1 28 
 Design 2 26 
   

 
B.  Approximate Multipliers  

The four proposed approximate multipliers are simulated for 

n=8. The delay, power consumption and number of transistors 

are investigated for these approximate designs as well as the 

exact multiplier. A comparison of the error distance (as 

measure of reliability [1]) of the proposed multipliers with 

other approximate multipliers is also pursued. 
 
• Delay   

The delay of the reduction circuitry (second module) of a   
Dadda multiplier is dependent on the number of reduction 

stages and the delay of each stage. In Multipliers 1 and 2, the 

approximate compressors are used in all columns; therefore, 

the delay of the stages is equal to the delay of the approximate 

compressors. However, in Multipliers 3 and 4, the delay of the 

stages is equal to the delay of the exact compressors. So, the 

use of these approximate compressors in the n/2 LSBs cause 

no improvement in terms of delay compared to an exact 

multiplier. The delay improvement in the reduction circuitry 

of each multiplier (at 32 nm CMOS technology) compared to 

an exact adder is shown in Table VI. 
 

TABLE VI  
DELAY IMPROVEMENT IN REDUCTION CIRCUITRY  

 Design Improvement (%) 
 Multiplier 1 3.38 
 Multiplier 2 26.52 
 Multiplier 3 0 
 Multiplier 4 0 
   

 
• Power Consumption  

The power consumption of each multiplier is determined by 

the number and type of compressors used. Multipliers 1 and 2 

use only approximate compressors so they have power 

consumption lower than Multipliers 3 and 4. Table VII shows 
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the power consumption improvement of each multiplier at 32 

nm feature size with respect to an exact adder; this confirms 

that an approximate multiplier in the reduction circuitry will 

result in a considerable power saving. 
 

TABLE VII  
POWER CONSUMPTION IMPROVEMENT IN REDUCTION CIRCUITRY  

Design Improvement (%) 
Multiplier 1 52.49 
Multiplier 2 58.58 
Multiplier 3 17.50 
Multiplier 4 26.15 

  

 
• Transistor Count  

The transistor count is used in this paper as metric of circuit 

complexity. The first two approximate multipliers have a 

lower transistor count compared with Multipliers 3 and 4. 

Table VIII shows the transistor count improvement of the 

reduction circuitry of each multiplier compared to an exact 

adder. 
 

TABLE VIII  
TRANSISTOR COUNT IMPROVEMENT IN REDUCTION CIRCUITRY 

 
each input. Therefore the average NED is equivalent to the 

NED defined in [1]. The maximum high (low) NED is also 

defined as the largest absolute value of NED for the case in 

which the erroneous result is more (less) than the exact result. 

Table X shows the average NED, the maximum high and low 

NEDs and the number of correct results (or outputs) of 

approximate multipliers for n=8. The number of correct 

outputs out of the total outputs represents the probability of 

correctness for each design. Based on Table X, the probability 

of correctness in Multiplier 1 is 0.16% (103 out of 65025) 

while the probability of correctness in Multiplier 4 is 14.3% 

(9320 out of 65025). Since the proposed approximate 

compressors produce erroneous results for all-zero input 

patterns (row 1 in Tables II and III), the proposed approximate 

multipliers will generate an erroneous result if at least one of 

the inputs is zero. However, in these cases (511 cases for n=8) 

the multiplier can produce correct result by adding a circuit for 

detecting the zero-valued inputs. Therefore, the zero-valued 

input patterns are not considered further in the simulation to 

investigate the proposed multipliers for a fair comparison. 
 

Design Improvement (%) 
Multiplier 1 42.11 
Multiplier 2 48.15 
Multiplier 3 14.03 
Multiplier 4 22.42 

  

 
• Error Distance  

Four additional approximate multipliers are simulated to 

compare the error distance. The multiplier (Multiplier 5) 

proposed in [7] is simulated for n=8. The truncated multiplier 

with constant correction [5] (Multiplier 6) and the truncated 

multiplier with variable correction [6] (Multiplier 7) are also 

simulated for n=8 and k=1. A further approximate multiplier 

(Multiplier 8) is simulated to investigate the impact of using 

the proposed approximate compressors compared with other 

approximate compressors. This 8×8 Dadda multiplier uses 4-2 

compressors made of two approximate full-adders (Figure 3). 

The first full-adder design proposed in [2] is used in this 

approximate multiplier. Table IX summarizes the eight 

approximate multipliers assessed in this manuscript, i.e. the 

four proposed designs and the other four approximate 

multipliers together with their salient features. 
 

TABLE IX  
APPROXIMATE MULTIPLIERS AND THEIR FEATURES  

Design Feature  
Multiplier 1 Design 1 in all columns 

Multiplier 2 Design 2 in all columns 
Multiplier 3 Design 1 in LSBs and exact compressor in MSBs 
Multiplier 4 Design 2 in LSBs and exact compressor in MSBs 
Multiplier 5 [7] Approximate 2x2 multiplier blocks  
Multiplier 6 [5] Truncated multiplier with constant correction 

Multiplier 7 [6] Truncated multiplier with variable correction 

Multiplier 8 Compressors made of approximate FAs [2] 
 

The normalized error distance (NED) is used to compare 

these approximate multipliers. In [1], the NED is defined as 

the average error distance over all inputs, normalized by the 

maximum possible error. In this paper the NED is defined for 

 
TABLEX  

NED FOR N = 8 

Design 
Average Max High Max Low correct outputs 

 

NED NED NED (out of 65025)  

 
 

Multiplier 1 0.6065×10
-1 0.1593 0.1375 103 

 

Multiplier 2 0.5352×10
-1 0.1278 0.1329 458 

 

Multiplier 3 0.9199×10
-3 0.3199×10

-2 0.2707×10
-2 5888 

 

Multiplier 4 0.7827×10
-3 0.1845×10

-2 0.3076×10
-2 9320 

 

Multiplier 5 [7] 0.1400×10
-1 0 0.2222 34400 

 

Multiplier 6 [5] 0.1609×10
-2 0.3937×10

-2 0.9858×10
-2 0 

 

Multiplier 7 [6] 0.1146×10
-2 0.3060×10

-2 0.4045×10
-2 769 

 

Multiplier 8 0.1049 0.2263 0.1207 8 
 

 
Based on Table X, Multiplier 4 has the lowest average NED 

among all approximate multipliers. The average NED of 

Multiplier 4 is 18 times better than Multiplier 5, 2 times better 

than Multiplier 6 and 1.5 times better than Multiplier 7. 

Multiplier 5 has the highest number of correct outputs. It has 

also the lowest maximum high NED. As the approximate 

output is always less than the exact output, the maximum high 

NED is 0 for this design; however, it has the worst maximum 

low NED among all considered designs.  
A plot of the NED distribution is also generated (Figure 10) 

to compare the performance of the approximate multipliers. 

The range of the product in a 8×8 multiplier is between 0 and 

65025 (unsigned values). All possible outputs are categorized 

in 127 intervals; in the first interval the output is between 0 

and 512, in the second interval the output is between 513 and 

1024 and so on. In the last interval the output is between 

64513 and 65025. The average NED of each interval is then 

computed for the approximate multiplier. Figures 10a and 10b 

show that for Multipliers 1 and 2, the average NED increases 

only at very large or very small product values, i.e. these 

approximate multiplier incur on average in a small error in 

output compared to the exact calculation. 
 

VI.  APPLICATION: IMAGE PROCESSING  
In this section the application of the proposed approximate 

 
multipliers to image processing is illustrated. A multiplier is 

used to multiply two images on a pixel by pixel basis, thus 

blending the two images into a single output image. 
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Figure 11 shows two examples: both input images and the 

resulting output image are provided. A program has been 

developed in C# .net and simulated in Microsoft Visual Studio 

2010 using the 8 approximate multipliers at n=8. Figures 12 

and 13 show the outputs for the two examples.  
The average NED and the Peak Signal-to-Noise Ratio 

(PSNR) that is based on the Mean Squared Error (MSE) are 

computed to assess the quality of the output image and 

compare it with the output image generated by an exact 

multiplier. The equations for the MSE and PSNR are given in 

(10) and (11); in (10), m and p are the image dimensions and 

I(i,j) and K(i,j) are the exact and obtained values of each pixel 

respectively. In (11), MAXI represents the maximum value of 

each pixel.  

MSE 

 

∑  ∑ 

 

, , 

(10)    
 

  (11)  
   

PSNR 10 MSE   
 

 
 
 
 
 
 
 
 
 
 
 

Figure11. Image multiplication (a) example 1, (b) example 2 (both using 

an exact multiplier) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure12. Image multiplication results for example 1, (a) Multiplier 1, (b) 

Multiplier 2, (c) Multiplier 3, (d) Multiplier 4, (e) Multiplier 5, (f) 

Multiplier 6, (g) Multiplier 7, (h) Multiplier 8. 
 
 
 
 

 
Figure10.Average  NED  distribution  in  8×8  approximate  multipliers.  (a)  
Multiplier 1, (b) Multiplier 2, (c) Multiplier 3, (d) Multiplier 4 
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Figure13. Image multiplication results for example2, (a) Multiplier 1, (b) 

Multiplier 2, (c) Multiplier 3, (d) Multiplier 4, (e) Multiplier 5, (f) 

Multiplier 6, (g) Multiplier 7, (h) Multiplier 8 
 

TABLE XI  
PSNR AND AVERAGE NED FOR FIRST EXAMPLE 

 Design PSNR (dB) Average NED( × 10 -2 )  

     

 Multiplier 1 25.3 4.4     
 

 Multiplier 2 26.3 3.7     
 

 Multiplier 3 53.9 0.10     
 

 Multiplier 4 53.2 0.12     
 

 Multiplier 5 [7] 26.3 2.3     
 

 Multiplier 6 [5] 48.3 0.28     
 

 Multiplier 7 [6] 52.3 0.15     
 

 Multiplier 8 21.2 7.6     
 

         

  TABLE XII      
 

 PSNR AND AVERAGE NED FOR SECOND EXAMPLE   
 

         

 Design PSNR (dB) Average NED( × 10 -2 )  

     

 Multiplier 1 25.1 4.5     
 

 Multiplier 2 25.8 4.1     
 

 Multiplier 3 54.2 0.096     
 

 Multiplier 4 54.9 0.083     
 

 Multiplier 5 [7] 35.7 0.72     
 

 Multiplier 6 [5] 52.4 0.14     
 

 Multiplier 7 [6] 53.5 0.11     
 

 Multiplier 8 18.7 10.4     
 

         

 
Tables XI and XII show that the PSNRs of the output 

images generated by Multipliers 3 and 4, are nearly 50 dB, a 

value that is acceptable for most applications. Consistently, 

Multiplier 1 has the worst PSNR among 4 proposed designs. 

As discussed previously, the proposed approximate multipliers 

have a higher error distance for very large and very small 

input values in the product operands. Therefore the pixels that 

have high RGB (Red-Green-Blue) model values (such as of a 

white color) or small RGB model values (such as those of a 

black color), show a larger inaccuracy than other pixels due to 

the approximate nature of the compressors. However, the error 

distance of Multipliers3 and 4 still remains very low. 
 
VII.  CONCLUSION  

Inexact computing is an emerging paradigm for 

computation at nanoscale. Computer arithmetic offers 

significant operational advantages for inexact computing; an 

extensive literature exists on approximate adders. However, 

this paper has initially focused on compression as used in a 

multiplier; to the best knowledge of the authors, no work has 

been reported on this topic.  
This paper has presented the novel designs of two 

approximate 4-2 compressors. These approximate 

 
compressors are utilized in the reduction module of four 

approximate multipliers. The approximate compressors show a 

significant reduction in transistor count, power consumption 

and delay compared with an exact design.  
• In terms of transistor count, the first design has a 46% 

improvement, while the second design has a 50% 

improvement.  

• In terms of power consumption, the first design has a 57% 

improvement and the second design has a 60% 

improvement on average for CMOS implementation at 

feature sizes of 32, 22 and 16 nm.   
• In  terms  of  delay,  the  second  design  has  a  44%   

improvement compared to the exact compressor and 35% 

improvement compared to the first design on average at 

different CMOS feature sizes of 32, 22 and 16 nm. 
Four different approximate schemes have been proposed in 

this paper to investigate the performance of the approximate 

compressors for the aforementioned metrics for inexact 

multiplication. The approximate compressors have been 

utilized in the reduction module of a Dadda multiplier. The 

following conclusions can be drawn from the simulation 

results presented in this manuscript.  
• The first and second proposed multipliers show a 

significant improvement in terms of power consumption 

and transistor count compared to an exact multiplier.  

• The first and second multipliers have larger average 

NEDs (and thus, larger PSNRs), while the second 

multiplier that uses the second proposed approximate 

compressor for all bits, has the best delay.   
• With relatively modest reductions in transistor count and 

power consumption, the third and fourth proposed 

multipliers have very low average NED values, thus   
presenting the best tradeoff for energy with accuracy. 

Moreover, the application of these approximate multipliers  
to image processing has confirmed that two of the proposed 

designs achieve a PSNR of nearly 50dB in the output 

generated by multiplying two input images, thus viable for 

most applications.  
Table XIII compares the four proposed approximate design 

with four other approximate designs found in the technical 

literature by ranking them under various metrics. Multiplier 4 

is overall the best design with respect to all figures of merit for 

approximate multiplication as well as the two PSNR 

examples. Multiplier 5 has the best performance in terms of 

Max High NED and number of correct outputs; however, its 

rather poor performance for the other figures of merit causes 

its ranking to be in the middle once the PSNR examples are 

considered. Multiplier 3 is the second best design among the 

schemes considered in this manuscript. It offers overall good 

performance in most metrics of Table XIII. Current and future 

research addresses the tradeoffs of the different figures of 

merit in the proposed designs to establish conditions by which 

combined metrics can be attained. Moreover, physical designs 

of the approximate multipliers are being pursued to further 

confirm the analysis presented in this paper.  
In conclusion, this paper has shown that by an appropriate 

design of an approximate compressor, multipliers can be 

designed for inexact computing; these multipliers offer 

significant advantages in terms of both circuit-level and error 
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figures of merit. Although not discussed and beyond the scope 

of this manuscript, the proposed designs may also be useful in 

other arithmetic circuits for applications in which inexact 

computing can be used. The provision of an error indicator (as 

required for other applications) is a topic of current 

investigation. 
 

TABLE XIII  
RANKING OF APPROXIMATE MULTIPLIERS  

 Design Average NED Max High NED Max Low NED Correct Outputs PSNR example 1 PSNR example 2 
 Multiplier 1 7 7 7 6 7 7 
 Multiplier 2 6 6 6 5 5 6 
 Multiplier 3 2 4 1 3 1 2 
 Multiplier 4 1 2 2 2 2 1 
 Multiplier 5 [7] 5 1 8 1 5 5 
 Multiplier 6 [5] 4 5 4 8 4 4 
 Multiplier 7 [6] 3 3 3 4 3 3 
 Multiplier 8 8 8 5 7 8 8 
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