

Modeling and Simulation of Routing Packet Using

Dijkstra Algorithm to Achieve the Shortest Routing

Path

Ilo S.F, Igbajar Abraham, Paul Kingsley Okah
Computer Engineering Department Michael Okpara University of Agriculture, Umudike

Electronic and Computer Engineering Nnamdi Azikiwe University, Awka

somtoofrancis@gmail.com, igbajar35@gmail.com

Abstract: For a large number of interconnected

autonomous systems consisting of a distinct domain to

communicate to different nodes to forward information,

routing is a means of doing that, but in order to

determine the shortest routing part we need to examine

and simulate with Djikstra algorithm. Though there are

other algorithm but the advantages of Dijkstra

algorithm is that router computes routes independently

using the same original status data; they do not depend

on the computation of intermediate machines. Because

link status messages propagated unchanged, it is easy to

debug problems. Because routers perform the route

computation locally, it is guaranteed to converge.

Finally, because link status messages only carry

information about the direct connections from a single

router, the size does not depend on the number of

networks in the networks in the internet. Thus, Dijkstra

algorithms scale better than distance vector algorithms.

Keywords: Simulation, Algorithm, Routing, Node,

Dijkstra, Network, Quality of service.

INTRODUCTION

The Routing Algorithm is a process of transmitting

data packets from one point to another in a physical

network. Various routing algorithm schemes differ in

styles and details but the basic functions are similar.

To make a connection between source node and

destination node, an application usually prepares a

flow specification, in which it describes the

characteristics of the traffic, and specifies the QoS

(Quality of Service) requirements for the flow

[Partrdge, 1992]. The task for routing protocol is to

select a path to the destination (either a host or a

router) that is most likely to satisfy the resource

requirements. After that, hop-by-hop negotiation and

resource setup can be carried out.

 The basic problem for this routing algorithm

therefore can be summarized as finding a path in a

network for a given set of constraints. Any routing

algorithm for solving this problem must however

meet the following essential requirements:

 The algorithm must be efficient and be able

to scale to large networks such as the

internet. Ideally, the complexity of the

algorithm should be comparable to current

routing algorithms.

 The algorithm must be able to provide

sufficient information to make quantitative

assessment on resource availability.

 The algorithm must be suitable for current

routing architectures, such as distributed

hop-by-hop routing.

 The algorithm must be suitable for handling

congestion in the network. Taking into

consideration the open loop and closed loop

solutions [Guerin and Gun, 1992].

1.5 SIGNIFICANCE OF THE STUDY

The world is in the era of communication. This will

help the communication industry to improve their

services.

 This will aid the manufacturing firms to

come up with better designs of routers in

future.

 It will encourage research and development

in this area in our 3
rd

 world.

LITERATURE REVIEW

There are different routing algorithms available such

as BELLMAN FORD ALGORITHM which is

decentralized routing algorithm and DIJKSTRA

ALGORITHM which is a global routing algorithm.

In global routing algorithm, each router has a

complete view of the network, whereas in a

decentralized routing algorithm each router has a

local view consisting of its directly attached

neighbors. Out of this Dijkstra algorithm is mostly

preferred as it is faster as compared to any other

algorithm and its implementation is easier. In this

algorithm, router based information that has been

collected from other routers. But for Dijkstra

algorithm, router computes routes independently

using the same original status data; they do not

depend on the computation of intermediate machines.

Thus, Dijkstra algorithms scale better than distance

vector algorithms.

International Journal of Advanced and Innovative Research (2278-7844) / # 133 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 133

mailto:igbajar35@gmail.com

RESEARCH AND IMPLEMENTATION

METHODOLOGY

The Dijkstra routing algorithm that was designed

follows these sequences of a good software

development cycle. Here, search light is on the router

and how it works. The router is just a piece of

equipment that contains the software used to route

packets or messages to their various destinations.

This work will achieve an approach used in the

design called Dijkstra algorithm and attempt to do

some design changes.In order to help achieve this,

the java language development platform was chosen.

This is as a result of the many resources encountered

in exploring the platform. These are some of the

properties of the resources: it is simple, object

oriented, distributed, robust, secure, architecture

neutral, portable, interpreted, high performance,

multithreaded, dynamic.

3.3 Flowcharts

Fig. 3.2: Flowchart Layout

3.4 DESIGN OF THE SYSTEM

1. Read the number of nodes present in the

network.

2. Read the activities between all the nodes.

3. Identity source and destination.

4. Find the distance of all the nodes from the

source.

5. Select the node whose distance from the

source is the least.

6. Lock the node that has passed i.e. source

node in this case.

7. Find the distance of remaining nodes from

the selected node and repeat steps 5 and 6.

8. List all the selected nodes from source to

destination in the sequence in which they are

generated above to give the optimum path.

Fig. 3.6: Diagram of a network

3.5 SYSTEM DESCRIPTION

The application is made up of the following classes:

The Node class, The Dijkstra class and the Edge

class.

The Node class is actually a structure that contains

the variables used to store information on the

properties of the nodes of the network. Some

important variables include the horizontal and

vertical position of the node , the link to the previous

and succeeding node, the name of the node to

mention but a few.

The Edge class is also a structure containing the

information used to define the edges connecting

different notes. The software uses this information to

visually draw the edges on the screen, the initial

vertex number, the terminal vertex number, the name

of the edge and the distance from the starting edge

are all recorded in this class. No methods are

necessary since all the processing is done in the

Dijkstra class.

3.6 Algorithm for the Dijkstra

The algorithm performs several rules:

Rule1: A graph of the network is built and the

adjacency matrix a [i, j] with the weight of links is

defined. For the case when a direct link between node

Vi and Vj is missing, the weight of the link is

assumed as infinity. The source and the destination

nodes are noted as NS and NT.

Rule2: A status record set is established for every

node with three fields: The first field that shows the

previous node, named "predecessor" field. The

second filed is named "Length" field and it shows the

International Journal of Advanced and Innovative Research (2278-7844) / # 134 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 134

sum of weights from source to that node. The last

field, named "Label" filed, shows the status of the

node. Each node can have one status mode:

"Permanent" or "Tentative".

Rule3: Initialization of the status record set for all

nodes and setting all “Length” to Infinity, and all

"Label" as tentative.

Rule 4: Labeling node NS as t node and marking its

"Label" as "Permanent". When a label changes to

permanent, it never changes again. T node rules as a

current chosen node.

Rule5: For all tentative nodes, directly linked to t

node, status record set is updated.

Rule6: From all the tentative nodes, choose the one

whose weight to NS is less and set it

as t node.

Rule7: If this node is not the destination NT, then, go

to step 5.

Rule8: If this node is NT, then extract its previous

node from status record set and do this

until return to NS. The nodes show the best route

from NS to NV.

DEVELOPMENT OF THE ALGORITHM.

Development of the code used in implementing ideas

start with pseudo code.

Implementing the Dijkstra routing I started with

designing the pseudo

code.

 Pseudo Code:

// Pseudo Code for Implementation of Dijkstra

Routing Algorithm//

class node { /*edge starts from this node*/

} class edge { /*defines the edge, initial

vertex*/

} void rdb() {

 /*reads database into the right nodes and

edges*/

} public void paintNode() {

 /*draws and paints the nodes*/

} public void paintEdge() {

/*draws the edges and paints them*/

} public void mousePressed() {

/*listens for mouse click event*/

} double weight() {

/*calculates for greater edge weights*/

} void append_pre_s() {

 /*this adds starting nodes from where

process starts*/

} void remove_pre_s() {

 /*this removes the starting nodes from the

array*/

} void findPath() {

 step1() /*find the shortest path*/

 step2()

 step3()

 step3() }

RESULT ANALYSIS AND PERFORMANCE

When the program is running he circles with numbers

in them are the nodes or stations or routers. The lines

joining the nodes are the links/ linkages which are

considered as distances between nodes (cables). The

numbers on the linkages are the weights of linkages.

The total cost of going from a starting node to a

target node is written just around the targeted node.

But before the movement starts, it must first listen for

the mouse click. At the click of the mouse it goes

from the start node assumed to be node 0 to node 1. It

first paints the targeted node red and waits to hear the

next click before changing the color to blue. The blue

color indicates that the node has been visited. So it‟s

permanent. We also have the pleasure of changing

the circle nodes to rectangles.

It is also pertinent to understand that Dijkstra routing

algorithm is a global routing algorithm. This means

that each node has the complete router intelligence of

the entire network. The algorithm surveys the entire

network before it can take decision on which route to

take. All the network attributes are considered before

routes are chosen.

Also notice that a blue line is drawn to trace the

shortest path. Below is written the entire analysis of

the result.

STEP 1:

The simulation appears like this fig.4.1a below

waiting for an event to be taken by the user. When

the mouse is clicked node 1 which is the closest to

the node 0 changes to red. As you can see in fig.4.1b.

You notice that the weight is turned to blue.

Fig.4.1 (a) & Fig.4.1 (b): Dijkstra simulations

International Journal of Advanced and Innovative Research (2278-7844) / # 135 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 135

Arc(1)node (1) =0;

STEP 2:

When the mouse is clicked notice what happened.

Node 1 turns blue and considers the yellow painted

nodes. The yellow nodes that come under

consideration are listed below;

Arc(2)node(2)=1;◄

Arc(2)node(5)=3;

Fig.4.2 (a) & Fig.4.2 (b): Dijkstra Simulations

Notice that node 1 has turned blue. When you click

the mouse it compares the weights of the yellow

painted nodes. This is to decide which has the least

weight. Once it does this, node 2 is painted red,

showing it is the node with of least weight. This is

therefore the shorter path of the two. Presented here

are diagram of the simulations.

STEP 3:

When an event is taking, the node 2 changes to blue

with many others turning to yellow nodes. These are

the neighbors under consideration. These nodes are

listed below;

Arc(3)node(3)=1+2=3;

Arc(3)node(7)=1+2=3;

Arc(3)node(6)=1+6=7;

Arc(3)node(5)=1+1=2;◄

Fig.4.3 (a) & Fig.4.3 (b): Dijkstra Simulations

On an event occurring, the program runs a check on

the least of nodes under consideration and decides

which nodes to take. After the check it goes through

route Arc(3)node(5) and paints it red. This shows that

it is the shortest path to its destination. Below is the

simulation diagram.

STEP 4:

When you click the mouse, the node 5 turns to blue

color and start to consider several other nodes. This it

shows by painting these nodes yellow. They are listed

here along with there weights.

Arc(4)node(3)=1+2=3;◄

Arc(4)node(6)=1+1+3=5;

Arc(4)node(9)=1+1+2=4;

Arc(4)node(10)=1+1+1=3;

Arc(4)node(7)=1+2=3;

International Journal of Advanced and Innovative Research (2278-7844) / # 136 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 136

Fig.4.4 (a) & Fig.4.4 (b): Dijkstra Simulations

It runs a check to determine the shortest path, this it

does by comparing the link weight. After which it

paints Arc(4)node(3) red. This shows that it is the

shortest path. The arrow indicates the chosen linkage.

STEP 5:

Clicking the mouse, the node 3 turns blue and several

nodes come under consideration. These nodes are;

Arc(5)node(4)→1+2+3=6;

Arc(5)node(8)→1+2+1=4;

Arc(5)node(7)→1+2=3;◄

Arc(5)node(6)→1+1+3=5;

Arc(5)node(9)→1+1+2=4;

Arc(5)node(10)→1+1+1=3;

Fig.4.5 (a) & Fig.4.5 (b): Dijkstra Simulation

The node 7 is painted red showing that it is the

shortest path.

STEP 6:

The node 7 is turned blue alongside its weight value

and considers other neighboring nodes which are

listed below.

Arc(6)node(4)=1+2+3=6;

Arc(6)node(8)=1+2+1=4;

Arc(6)node(12)=1+2+2=5;

Arc(6)node(11)=1+2+3=6;

Arc(6)node(6)=1+2+1=4;

Arc(6)node(10)=1+1+1=3;◄

Arc(6)node(9)=1+1+2=4;

Fig.4.6 (a) & Fig.4.6 (b): Dijkstra simulations

The sequence continues like others.

STEP 7:

The node 10 turns blue with its weight value and its

link while considering other nodes that are painted

yellow.

Arc(7)node(4)=1+2+3=6;

Arc(7)node(12)=1+2+2=5;

Arc(7)node(11)=1+1+1+2=5;

Arc(7)node(15)=1+1+1+5=8;

Arc(7)node(14)=1+1+1+1=4;

Arc(7)node(6)=1+2+1=4;◄

Arc(7)node(9)=1+1+2=4;

International Journal of Advanced and Innovative Research (2278-7844) / # 137 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 137

Fig.4.7 (a) & Fig.4.7 (b): Dijkstra Simulations

Notice that when the weights are the same it chooses

any.

STEP 8:

The node 6 turns blue alongside its weight and link as

it considers other yellow painted nodes. The list is

here below;

Arc(8)node(4)=1+2+3=6; Arc(8)node(8)=1+2+1=4;

Arc(8)node(12)=1+2+2=5;

Arc(8)node(11)=1+1+1+2=5;

Arc(8)node(15)=1+1+1+5=8;

Arc(8)node(14)=1+1+1+1=4;

Arc(8)node(9)=1+1+2=4; ◄

Fig.4.8 (a) & Fig.4.8 (b): Dijkstra Simulations

STEP 9:

The node 9 turns blue and starts to consider the

neighboring yellow painted nodes. The list of these

yellow painted nodes is here;

Arc(9)node(4)=1+2+3=6; Arc(9)node(8)=1+2+1=4;

◄

Arc(9)node(12)=1+2+2=5;

Arc(10)node(11)=1+1+1+2=5;

Arc(9)node(15)=1+1+1+5=8;

Arc(9)node(14)=1+1+1+1=4;

Arc(9)node(13)=1+1+2+4=8;

Fig.4.9 (a) & Fig.4.9 (b): Dijkstra Simulations

STEP 10:

The node 8 turns blue an begins to consider other

neighboring nodes.

Arc(10)node(4)=1+2+3=6;

Arc(10)node(12)=1+2+2=5;

Arc(10)node(11)=1+1+1+2=5

Arc(10)node(15)=1+1+1+5=8;

Arc(10)node(14)=1+1+1+1=4; ◄

Arc(10)node(13)=1+1+2+4=8;

Fig.4.10 (a) & Fig.4.10 (b): Dijkstra Simulations

STEP 11:

The node 14 turns blue showing that it is the shortest

path. The program begins to take a look at the

surrounding nodes to determine the link with the least

weight.

Arc(11)node(4)=1+2+3=6;

Arc(11)node(12)=1+2+2=5;

Arc(11)node(11)=1+1+1+2=5; ◄

Arc(11)node(15)=1+1+1+5=8;

Arc(11)node(13)=1+1+2+4=8;

International Journal of Advanced and Innovative Research (2278-7844) / # 138 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 138

Fig.4.11 (a) & Fig.4.11 (b): Dijkstra Simulations

STEP 12:

The node 11 turns blue and paints the nodes under

consideration yellow. They are;

Arc(12)node(4)=1+2+3=6;

Arc(12)node(12)=1+2+2=5; ◄

Arc(12)node(16)=1+1+1+2+3=8;

Arc(12)node(15)=1+1+1+1+1=5;

Arc(12)node(13)=1+1+1+1+2=6;

Fig.4.12 (a) & Fig.4.12 (b): Dijkstra Simulations

STEP 13:

The node 12 changes to blue and starts to consider

other surrounding nodes. As usual it is to check the

shortest path.

Arc(13)node(4)=1+2+3=6;

Arc(13)node(16

)=1++2+2+1=6;

Arc(13)node(15)=1+1+1+1+1=5; ◄

Arc(13)node(13)=1+1+1+1+2=6;

Fig.4.13 (a) & Fig.4.13 (b): Dijkstra Simulations

STEP 14:

The node 15 turns to blue and turns the neighboring

nodes under consideration yellow. Notice that the

link and the weight also turn blue.

Arc(14)node(4)=1+2+3=6; ◄

Arc(14)node(16)=1++2+2+1=6;

Arc(14)node(13)=1+1+1+1+2=6;

Fig.4.14 (a) & Fig.4.14 (b): Dijkstra Simulations

STEP 15:

The node 4 turns blue and starts to consider the

neighboring nodes for decision taking.

Arc(15)node(16)=1++2+2+1=6;

Arc(15)node(13)=1+1+1+1+2=6; ◄

International Journal of Advanced and Innovative Research (2278-7844) / # 139 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 139

Fig.4.15 (a) & Fig.4.15 (b): Dijkstra Simulations

STEP 16:

The node 13 turns blue and considers the only

remaining node.

Arc(16)node(16)=1++2+2+1=6; ◄

Fig.4.16 (a) & Fig.4.16 (b): Dijkstra Simulations

STEP 17:

The node 16 turns blue.

Fig.4.17 (a) & Fig.4.17 (b): Dijkstra Simulations

All the network stations or nodes have been visited as

result all the nodes turn blue. We can choose any

node in the network and start the simulation all over

again.

The graphical representation of this Dijkstra

algorithm is given at the appendix using the matlab

codes. The result of this report shows that this

algorithm stands load on the network by looking for

the alternate route to a particular destination. It takes

into consideration the congestion on the network. The

performance is powerful.

A

B

Fig.4.18 (a): Shortest path from A to B

Using A as the source node and B as the targeted

node, the shortest path between them is shown by the

thick dotted line. Calculating the cost is shown

below:

node(1)=1, node(5)=1, node(10)=1;

totalCost=1+1+1=3;

Checking all other links to the same target will

confirm this.

The illustration below shows a source node at C and

the destination node at D. the total cost of weight of

linkage i.e. the shortest path is calculated thus;

node(1)=1, node(2)=2, node(7)=2, node(12)=1;

totalCost=1+2+2+1=6;

going through several linkages to the target node will

waist time. This can be proven by running a check on

the simulated network.

C

D

Fig.4.19 (a): Shortest path from C to D

International Journal of Advanced and Innovative Research (2278-7844) / # 140 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 140

4.2 Comparison of Results

E.W. Dijkstra came up with the algorithm in 1959.

His algorithm is a global type routing algorithm. As a

result each node has the capacity to survey the entire

network before a decision is made on the shortest

path to route information. It picks a starting node and

from there picks any route and follows it till the end.

If there is link failure, the entire network is redrawn

and a new route picked. If it goes through to the end,

it stores the cost or weight in an array. It comes back

and picks another route. This will go on until all the

routes are covered. It will now finally compare to

determine which route is most efficient. Going by

this little analysis, it is hereby shown that with the

Dijkstra algorithm it will take a lot of time to route

datagram from source to destination. Consequently,

time is of great essence in communication.

The improvement that was done in this work is by the

use of what is known as priority queue. This enables

each node to actually prioritize some nodes. This it

does by considering the nearest neighboring nodes to

find the one of least cost. With each movement to

different node comes this comparison. That is exactly

what this work is doing. It continues this until it goes

through to the end. Where there is a link failure it

assigns infinity to the link weight and finds the

nearest shortest path to its destination. It does not

redraw the entire network and does not pick route one

after another. The efficiency of this improved

algorithm is much better as the time of routing is

greatly reduced to barest minimum.

The Dijkstra routing algorithm does not make use of

the priority queue system. This system was

introduced in this research to improve the working of

this novel Dijkstra routing algorithm.

CONCLUSION AND RECOMMENDATION

In today‟s world, networking plays an important role

in communication between autonomous computers.

For this many hardware devices and software

algorithms have been designed. So far, the traditional

system used for the communication were the hub

networking system and many other hardware

applications present in the market, but as they operate

on electricity, it may lead to the failure of device due

to some malfunctioning in the hardware circuitry.

Dijkstra Algorithm has been incorporated in „java‟,

which provides easy understandability and hence its

chances of failure is negligible.. However, we have

implemented the Dijkstra Algorithm in such a way

that under the context of link failure it will provide

the next shortest path from the available alternate

paths that has been calculated along with the

Optimum Path itself. As a result there is no need to

execute the algorithm again.

Adaptive routing with constantly updated information

is helpful in avoiding congested routes. Quality of

service, quantity of service and speed are the three

most important performance measures for any

routing algorithm.

REFERENCES
Scheduling algorithms for multiprogramming in a hard real

time environment and access control in fast packet-

switched networks - Guerin, Gun - 1992.

Partridge, Craig, 1992 "A proposed flow Specification".

RFC 1363. Pinto. A., Valente, R., Aguilar, R., Oliveira.

J.L., 2000. "Managing QoS over IP". Internal Report.

D. yates J. Kuros , D Towaley and M. Hlochyl. “on per-to

per session End to end delay distribution and the call

admission problem for real time application with Qos

requirements; in proceeding of SIGCOMM 93, 1993

Zheng wang and jon crowscoft routing algorithm for

supporting resources reservation, dept of computer science,

university college London, 1992

S, shenker D clark, L zhang A service model for an

integrated services internet; internet draft, available for

anonymous ftp at ds.intermic.net; internet-drafts/daft-

shenker-realtime-model.00.txt October 1993

Richard Bellman; on a routing problem, quarterly of

applied mathematics 16, 1958 william Byrd Press , INC,

Richmond , VIrgina

R Guerin and L Gun A unified Approach to Bandwith

Allocation And access control in fast packet-switch

networks 1992

wallpaper April 2016 Oxford Cotswolds Guernsey Channel

Islands Thames ...

Prof. Andrews' Publications - The University of Texas at
Austin

users.ece.utexas.edu/~jandrews/publications.php

I no longer maintain all my publications on this webpage.

Please ... J. G. Andrews, "A Tractable Framework for

Coverage and Outage in Heterogeneous Cellular ...

Publications - University of St Andrews

https://www.st-andrews.ac.uk/intrel/publications/

University of St Andrews crest on white background ... The

School of International Relations produces a variety of

publications which promote the research of ...

Ilo S.F, Igbajar Abraham, Enhancing network connectivity

and Data security in Institutions with Remote Campuses,

Using Virtual Private Network; International Journal of

Advanced and Innovative Research (2278-7844) / # 91 /

Volume 4 Issue 10 2015

L zhang s s deering D Estrin S shenker and D zappala , a

new resource reser vation protocol sept 1993

Patridge c , A proposed flow specification RFC RFC Jully

1992

International Journal of Advanced and Innovative Research (2278-7844) / # 141 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 141

http://users.ece.utexas.edu/~jandrews/publications.php
http://users.ece.utexas.edu/~jandrews/publications.php
https://www.st-andrews.ac.uk/intrel/publications/

Nwachukwu-Nwokeafor K.C, Igbajar Abraham, Design of

a Secured Online Voting System for electoral Process;

IJISET - International Journal of Innovative Science,

Engineering & Technology, Vol. 2 Issue 12, December

2015. www.ijiset.com, ISSN 2348 – 7968,

Alberto Leon-Garcia and Indra Widjaja communication

networks, Fundamental concepts and key architectures,.

Dijstra , E. W , (1959) “ A note on two problems in

connexion with Graphs” Mathemarik, vol 1, pp269-271.

Darren L, Spohn- data networks Design (2nd Edition),

1993,

D.P. bertsekas, optimal routing and flow control methods

for communication networks in analysis and optimization

of systems, A . bensoussan and J.L Lions, Eds, New york:

Springre-Verlag, 1982.pp615-643

D. Bertsekas, R, Gallager, “Gallager, “Data networks”,

prentice-hall , 1992.

Charles E, perkins Adhoc networrking Addison wesley,

woo1, ISBN 0201-309

A, parekh A, A Generalised proccessor sharing approach to

flow control in integrated services networks. PhD thesis,

Laboratory for information and decision systems

massachusetts institute of technology , 1992

Christian Huitema. Routing Internet, 2nd Edition , practice

hall, upper saddle River, 2000

C perkins, E Belding-Royer and S. Das Adhoc on demand

Distance Vector (AODV) Routing RFC 3561,IETF

Network working group, july 2003, category Experimental.

A Demers, S Keshav, and S shenker, analysis and

simulation of a fair queueing algorithm. In journal of

intrnetworking; ; research and experience 1, pp 3-26, 1990.

Changyong zhang , A novel mathematical model for the

unique shortest path routhing problem . Department of

mathematics , university of califonia 2005.

C Hendrick . routing Information protocol RFC 1058,

networking group June, 1998

Andrew S. Tancenbarum, computer Networks, Fourth

Edition. Pentice Hall International, Upper saddle river,

19996. ISB 0-13-394248-1,4

H. schulzrime, j kurose and D, Towsley. Congession

control for real time traffic 1990

J.M jaffie and f Moss, a responsive distributed routing

algoritm for computer networks july 1982

D. Clark, S Shenker and L Zhang “ supporting real-time

applications in integrated servings packet Network,

architecture and mechanism , 1992

George C, sacket & Christopher Y, Mertz- ATM and

multiprotocol networking 1997

G. meyer and s sherry triggered extensions to RIP to

support Demand Circuits, RFC 2091, IETF Network

working group January 1997

Chris D Clark - Publications - ResearchGate

https://www.researchgate.net/profile/Chris_Clark3/publica

tions

... and research. Connect, collaborate and discover

scientific publications, jobs and conferences. All for free. ...

Martin Margold · Chris R. Stokes · Chris D. Clark.

David Clark's Selected Publications - UCL Computer

Science

www0.cs.ucl.ac.uk/staff/D.Clark/pubs/

M. Boreale, D. Clark, and D. Gorla A Semiring-based

Trace Semantics for Processes with Applications to

Information Leakage. Mathematical Structures in ..

D, Clack and V Jacobon, Flexible and Efficient Resource

management for Datagram Networks, presentation slides

1991.

International Journal of Advanced and Innovative Research (2278-7844) / # 142 / Volume 5 Issue 5

 © 2016 IJAIR. All Rights Reserved 142

https://www.researchgate.net/profile/Chris_Clark3/publications
http://www0.cs.ucl.ac.uk/staff/D.Clark/pubs/
http://www0.cs.ucl.ac.uk/staff/D.Clark/pubs/

