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1. INTRODUCTION
Recently V. Kokilavani and P.R. Kavitha [12]
defined the concept of ypag-closed sets and studied
some of their properties.

The aim of this paper is to introduce a new type of
function is called Yag-open and quasi Yag-closed
functions, quasi Yag-open and quasi Yag-closed
functions. Also, we obtain its characterizations and
its basic properties and we study a new type of
weak separation axioms, namely Yyag-T,, Yag-T;,
Yag - T, and separation properties obtained by
utilizing Yag-closed sets.

2. PRELIMIERIES
Definition: 2.1 Let (X, 1) be a topological space. A
subset A of the space X is said to be

0] semi open set [2] if Accl(int(A)).

(i) a-open set [4] if Acint(cl(int(A))).
The complements of the above mentioned sets are
called their respective closed sets. The -closure
of a subset A of a space (X, 1) is the intersection of
all y-closed sets that contain A and is denoted by
Ycl(A). The y-interior of a subset A of a space (X,
T) is the union of all y-open sets contained in A
and is denoted by yYint(A).

Definition: 2.2 A subset A of a space X is Yag-
closed if ycl(A) € U whenever A c U and U is
ag -open in X . The family of all yag -closed
subsets of the space X is denoted by YagC (X).

Definition: 2.3 The intersection of all }pag-closed
sets containing a set A is called ypag-closure of A
and is denoted by pag- CI(A). A set A is pag-
closed set if and only if Yag- CL(A) = A.

Definition: 2.4 The union of all iag-open sets
contained in A is called Y ag-interior of A is
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denoted by Yag- Int(A). A set A is Yag-open sets
if and only if pag- Int(4) = A.

A function f: (X, 7)—=(Y, o) is called
@ g-continuous[2] if f~1(V) is a g-closed in
(X, ) for every closed set V of (Y, o).
(i) a-continuous[15] if f~(V) is a a-closed
in (X, t) for every closed set V of
(Y, o).
(iii) ag-continuous[6] if f~(V) is a ag-closed
in (X, t) for every closed set V of
(Y, o).
(iv) Yag-continuous[6] if fF~1(V) is a Yag -
closed in (X, 1) for every closed set V of
(Y, o).
(V) a-irresolute[10] if f~1(V) is a a-open set
in (X, 7) for every a-open set V of
(Y, o).
(vi) a-quotient map[10] if f is a-continuous
and f~1(V)is open set in (X, T) implies
V is an a-open set in (Y, o).
(vii) Weakly continuous[9] if for each point
X€eX and each open set VY containing
f(x), there exists an open set U c X
containing x such that f(U)<cl(V).

3. Quasi Yag-open functions
We introduce a new definition as follows:

Definition: 3.1 A function f: X - Y is said to be
quasi Yag-open if the image of every ypag-open
setin X isopeninY.

It is evident that, the concepts quasi pag-openness
and yYag-continuity coincide if the function is a
bijection.

Theorem:3.2 A function f: X — Y is quasi Yag-
open if and only if for every subset U of X,

f@ag — Int(U)) < Int(f (V).

Proof: Let f be a quasi Yag-function. Now, we
have Int(U) c U and pag-Int(U) is a
Yag-open set. Hence, we obtain that f (Yag —
Int(U)) c f(U). As f(pag — Int(U)) is open,
f@Wag — Int(U)) c Int(f(U) ). Conversely,
assume that U is a yag-open set in X. Then,
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fWU) = f(Yag —Int(U)) c Int(f(U) ) but
Int(f(U)) c f(U) Consequently, f(U) =
Int(f(U))

and hence f is quasi Yag-open.

Theorem:3.3 A function f:X - Y is quasi
pag-open, then Yag-Int(f~1(G)) c f~1(Int(G))
for every subset G of Y.

Proof: Let G be any arbitrary subset of Y.
Then, Yag-Int(f~1(G)) is a Yag-open set in X
and f

is quasi Yag -open, then f(Yag -
Int(f~1(6))) c Int(f (f"1(G))) < Int(G). Thus,
Yag-

Int(f71(®) < fUnt(6).

Recall that a subset S is called a Yag -
neighbourhood of a point x of X if there exists a
Yag-

open set U suchthat x € U c S.

Theorem:3.4 For a function f:X - Y, the
following are equivalent :

(i)f is quasi pag-open;

(i)For each subset U of X , f(pag —

Int(U)) < Int(f(U))

(iii)For each x€X and each vYag -
neighbourhood U of x in X, there exists a
neighbourhood f (U)

of f(x) in Y such that Vc f(U).

Proof: (1) = (2): It follows from Theorem
3.2.

(2) = (3): Let x € X and U be an arbitrary
Ypag-neighbourhood U of x in X. Then there exists
a
Yag-open set VV in X such that x € V < U. Then
by (ii), we have f(V) = f(Yag-Int(V)) c
Int(f(V)) and hence f(V)=Int(f(V))
Therefore, it follows that f(V) is open in Y such

that f(x) € fF(V) < F(U).

(3) = (1): Let U be an arbitrary yag-open set in
X. Then for each y € f(U), by (iii) there exists a
neighbourhood V,, of y in Y such that V, c f(U).
As 1, is a neighbourhood of y, there

exists an open set W, inY such thaty € W, c ..
Thus f(U) = U{W,:y € f(U)} whichisan open
set in Y .This implies that fis quasi pag -open
function.

Theorem:3.5 A function f: X - Y is quasi Yag-
open if and only if for any subset B of Y and for
any pag -closed set F of X containing f~1(B),
there exists a closed set G of Y containing B such
that f~1(G) c F.
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Proof: Suppose f is Yag-open. Let B cY and F
be a pag-closed set of X containing f~1(B). Now
put G =Y — f(X —F). Itisclear that f~1(G) c F
implies B © G. Since f is quasi Yag -open, we
obtain G as a closed set of Y. Moreover, we have
f1(G) cF.

Conversely, let U be a yYag-open set of X and put
B =Y\f(U). Then X\U is a pag-closed set in set
in X containing f~!(B). By hypothesis, there
exists a closed set F of Y such that B c F and
f~Y(F) € X\U. Hence, we obtain f(U) c Y\F.
On the other hand, it follows that B c F, Y\F c
Y\B = f(U). Thus, we obtain f(U) = Y\F which
is open and hence f is a quasi }ag-open function.

Theorem:3.6 A function f: X —» Y is quasi pag-
open if and only if f~Y(Cl(B)) c Yag -
Cl(f~(B))

for every subset B of Y.

Proof: Suppose that f is quasi Yag-open. For any
subset B of Y, f7Y(B) c yag - CI(f~1(B) ).
Therefore by theorem 3.5, there exists a closed set
F in Y such that B cF and f~Y(F) c Yag -
ClL(f~(B)). Therefore, we obtain f~1(CI(B)) c
fH(F) < Yag-Cl(f1(B)).

Conversely, let B c Y and f be a yag-closed of X
containing f~1(B). Put W = Cly(B), then we have
BcW and W is closed and f~*(W) c Yag —
ClI(f~Y(B)) c F.Then by theorem 3.5, f is quasi

Yag-open.

Lemma: 3.7 Let f:X - Y and g:Y = Z be two
functions and g o f: X — Z is quasi Yag-open. If g
is continuous injective, then f is quasi pag-open.

Proof: Let U be a yag -open set in X. Then
(g ° f)(U) is open in Z since g o f is quasi Yag-
open. Again g is an injective continuous function,
fW) =f"1(gof)WU)is open in Y. This shows
that f is quasi pag-open.

4. Quasi Ppag-closed functions

Definition:4.1 A function f: X —» Y is said to be
quasi Yag-closed if the image of each Yag-closed
Setin X isclosed in Y.
Clearly, every quasi pag-closed function is closed
as well as Yag-closed.

Remark: 4.2 Every pag -closed (resp. closed)
function need not be quasi Yag-closed as shown
by the following example.

Example: 43 Let X=Y={ab,c} , 7=

{X,¢,{a,b}} and o = {Y, ®,{a}, {b,c}}. Define a
function f: (X,7) » (Y,0) by f(a) = b, f(b) =c
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and f(c) =a. Then clearly f is pag-closed as
well as closed but not quasi Yag-closed.

Theorem: 4.4 Let X and Y be topological spaces.
Then the function g: X - Y is a quasi Yag-closed
if and only if g(X) is closed inY and g(V)\g(X\
V) is open in g(X) whenever V is pag-open in X.

Proof: Necessity: Suppose g:X — Y is a quasi
Yag-closed function. Since X is pag-closed, g(X)
is closed in Y and g(M\gX\V)=gl)n
gO\gX\V) is open in g(X) when V is pag -
open in X.

Sufficiency: Suppose g(X) is closed in Y,
gM\g(X\V) is open in g(X) when V is pag -
open in X, and let C be closed in X. Then g(C) =

gON(gX\C)\g(C)) is closed in g(X) and
hence, closed in Y.

Corollary: 4.5 Let X and Y be topological spaces
and let g: X = Y be ayag-continuous quasi Yag-
closed surjective function. Then the topology on Y
is {g(M)\g(X\V):V is Ypag-openin X}.

Proof: Let W be open inY. Then g~*(W) is Yag-
openinX,and g(g *(WN\g(X\g~*(W)) =W,
Hence, all open sets in Y are of the form g(V)\
gX\V), Vis Yag-open in X. On the other hand,
all sets of the form g(V)\g(X\V), V is Yag-open
in X, are openinY.

5. Separation axioms

In this section we introduce and study weak
separation axioms such as Yyag-T,, Yag-T,, pag-
T, spaces and obtain some of their properties.

Definition: 5.1 A topological space X is said to be
Yag-T, space if for each pair of distinct points x
and y of X, there exists a ag-open set containing
one point but not the other.

Theorem: 5.2 A topological space X is a Ypag-T,-
space if and only if ypag-closures of distinct points
are distinct.

Proof: Let x and y be distinct points of X. Since X
is Pag-T,- space, there exists a Yag-open set G
such that x € G and y ¢ G. Consequently, X — G is
a Yag -closed set containing y but not x. But
YagCl(A){y} is the intersection of all Yag-closed
sets containing y. Hence y € YagCl{y}

But x € YagCl(A){y} as x € X — G . Therefore,
YagCl(A){x} # PagCl(A){y}.

Conversely, let YagCl(A){x} # YagCl(A){y}
for x #y. Then there exists at least one point
z€X such that ze€yYagCl(A){x} but z¢

YagCl(A){y} . We claim x & ypagCl(A){y} ,
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because if x € YagCl(A){y} then {x}c
YagCl(A){y} implies YagCl(A){x} c
YagCl(A){y}. So z € YagCl(A){y}, which is a
contradiction. Hence x ¢ ypagCl(A){y} , which
implies x € X —yYagCl(A){y}, which is a Yag-
open set containing x but not y. Hence X is yag-
T,- space.

Theorem: 5.3 If f: X — Y is a bijection strongly
Yag-open and X is Yag-T,- space, then Y is also
Yag-T,- space.

Proof: Let y, and y, be two distinct points of Y.
Since f is bijective there exist distinct points x,;
and x, of X such that f(x;) = y; and f(x;) = y,.
Since X is Yag-T,- space there exists a Yag-open
set G such that x; € G and x, € G . Therefore
y1=f(x) € f(G) and y, = f(x2) € f(G). Since
f being strongly yag-open function, f(G) is pag-
open in Y. Thus, there exists a Yag-open set f(G)
inY such that y, € f(G) and y, € f(G). Therefore
Y is Ypag-T,- space.

Definition: 5.4 A topological space X is said to be
Yag-T,-space if for any pair of distinct points x
and y, there exists a Yag-open sets G and H such
thatx e G,y ¢ Gandx € H,y € H.

Theorem: 5.5 A topological space X is Yag-T; -
space if and only if singletons are Y ag-closed sets.

Proof: Let X be a pag-T;-space and x € X. Let
y € X — {x}. Then for x # y, thre exists Yag-open
set U, such that y € U, and x & U,, . Consequently,
yeEU,cX—{x}. That is X —{x} =U{U,:y €
X — {x}}}, which is pag-open set. Hence {x} is
Yag-closed set.

Conversely, suppose {x} is Yagclosed set for every
x€X. Letxand y e X with x #y. Now x =y
implies y € X — {x}. Hence X — {x} is Yag-open
set containing y but not x. Similarly, X — {y} is
Pag-open set containing x but not y. Therefore X
is Yag-T; space.

Theorem: 5.6 The property being Yag-T; space is
preserved under bijection and strongly Yag-
open function.

Proof: Let f:X — Y be bijection and strongly
Yag-open function. Let X be a ag-T;-space and
y1, ¥, be any two distinct points of Y. Since f is
bijective there exist distinct points x; x, of X

such that y; = f(x;) and y, = f(x;) . Now X
being a Yag-T;-space, there exist Yag-open sets
G and H such that x, €G , x, & G and x; &€ H,
x, € H . Therefore vi =f(x1) € f(G) but
y2 = fxz) & f(G) and y, = f(x,) € f(H) and
y1 = f(x1) € f(H). Now f being strongly
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Yag-open, f(G) and f(H) are Yag-open subsets
of Y such that y, € f(G) buty, ¢ f(G) and

vy, € f(H) and y, € f(H). Hence Y is yag-T;-
space.

Theorem: 5.7 Let f: X — Y be bijective and Yag-
open function. If X is ag-T; and T, -space,
then Y is yag-T; -space.

Proof: Lety; y, be any two distinct points of Y.
Since f is bijective there exist distinct points  x;,
x, of X such that y; = f(x;) and y, = f(x,). Now
X being a Yag-T;-space, there exist

Yag-open sets G and H such thatx, € G, x, € G
and x, € H, x, € H. Therefore

y1=f(x1) € f(G) but y, = f(x;) € f(G) and
y2 = f(xy) € f(H)and y; = f(x;) € f(H).

Now X is Tyq4 -space which implies G and H are
open sets in X and f is Yag-open function,

f(G) and f(H) are Yag-open subsets of Y. Thus
there exist Yag-open sets such that

y1 € f(G) but y, & f(G) and y, € f(H) and
y1 € f(H).HenceY is Yag-T,-space.

Theorem: 5.8 If f:X > Y is yYag -continuous
injection and Y is T; then X is Yag-T;-space.

Proof: Let f:X = Y be ppag-continuous injection
and Y is T;. For any two distinct points x;,

x, of X there exist distinct points y, y, of Y such
that y; = f(x;) and y, = f(x,). Since Y

is T, -space, there exists open sets U and V in Y
suchthaty, e U,y, ¢ Uand y, € V,

y, EV. That is x; € f~*(U), x, & f~Y(V) and
X, € AV, x, & fY(U) . Since f is Yag -
continuous f~1(U), f~1(V) are yag-open sets in
X. Thus, for two distinct points x; x, of X there
exist Yag-open sets f~1(U) and f~1(V) such that
x €EfTU) , x €FH(V) and x, € FTH(V)
x, & f~1(U). Therefore X is Yag-T,space.

Theorem: 5.9 If f:X >Y is pag -irresolute
injective function and Y is Y ag-T;-space then X is
Yag-T, space.

Proof: Let x; x, be pair of distinct points in X.
Since f is injective, there exist distinct points

y1, ¥, of Y such that y; = f(x;) and y, = f(x,).
Since Y is Yag-T;-space, there exists pag-

open sets U and V in Y such that y, e U, y, ¢ U
andy, € V,y, € V. Thatis, x; € f~1(U),

x @ f7H(V) and x, € fTH(V) o xp € fTH(U)
Since f is Yag- irresolute f~1(U), f~1(V) are
Yag-open sets in X. Thus, for two distinct points
x1, X, of X there exist Yag-open sets £ ~1(U)

and f~1(V) such that x; € f~X(U), x; & f~1(V)
and x, € f7Y(V), x, & f~1(U) . Therefore X is
Yag-T,;-space.
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Definition: 5.10 A topological space X is said to be
Yag-T, space if for any pair of distinct points x
and y, there exists disjoint Yag-open sets G and H
such thatx € G,and y € H.

Theorem: 5.11 If f:X - Y is yYag -continuous
injection and Y is T, then X is Yag-T, space.

Proof: Let f: X — Y be Yag-continuous injection
and Y is T,. For any two distinct points x; x,

of X there exist distinct points y; y, of Y such that
y: =f(x) and y, = f(x,) . Since Y is T, -
space, there exists distinct open sets U and V in Y
suchthaty, € U, y, € V. Thatis x; € f~*(U),
and x, € f"1(V) . Since f is Yag -continuous
YW, f~1(V) are Yag-open sets in X. Further f
is injective, fWNHNFIW)=FfUNV)=
f~1(¢) = ¢. Thus, for two distinct points x;

x, of X there exist disjoint yag-open sets f~1(U)
and £~1(V) such that x; € f~*(U) and

X, € f1(V). Therefore X is Yag-T, -space.

Theorem: 5.12 If f:X - Y is pag -irresolute
injective function and Y is and Y ag-T,-space then
X is Yag-T,-space.

Proof: Let x; x, be pair of distinct points in X.
Since f is injective there exist distinct points y; y,
of Y such that y; = f(x;) and y, = f(x;). Since Y
is Yag-T,-space there exists Yag-open sets U and
Vin Y such that y, €U, y, €V. That is x; €
fYU) and x, € f~Y(V). Since f is Yag -
irresolute injective f~1(U), f~1(V) are Yag-open
sets in X.Thus, for two distinct points x; x, of X
there exist Yag-open sets f~1(U) and f~1(V) such
that x, € F~1(U) and x, € f~1(V). Therefore X
is Yag-T,-space.

Theorem: 5.13 In any topological space the
following are equivalent:

(1) X is pag-T,-space,

(2) For each x # y, there exists a pag-open
set U such that x € U and y € yagCl(U),

(3) For each x € X, {x} =n {yagCl(U): U is
apag-opensetin X and x € U}.

Proof: (1)=(2): Assume (1) holds. Let x € X and
x # y, then there exist disjoint Y ag-open sets
UandV such thatx € Uandy € V. Clearly, X -V
is Yag-closed set. Since U NV = ¢,

UcX—V. Therefore pagCl(U) c YagCl(X —
V)=X—-V.Nowy & X —V implies

y & YagCl(U).

(2)=(3): For each x # y, there exists a pag-open
set U such that x € U and y & ypagCL(U).

Soy én {YagCl(U): U is a pag-open set in X and
x €U} ={x}.
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(3)=(1): Let x,y € X and x = y. By hypothesis
there exists a Yag-open set U such that x € U

and YagCl(U. This implies there exists a Ppag-
closed set V such that y & V. Therefore

y € X —Vand X —V isypag-open set. Thus, there
exist two disjoint ipag-open sets U and

X —Vsuchthatx € Uandy € X — V. Therefore X
is Yag-T,-space.
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