
Apriori based Frequent Itemset Mining

A.Meiappane
#1

, P.Ganesh Guru Teja
*2

, Meganathan.I
*3

 Nilavazhagan.K
*4

#1Associate Professor, Manakula Vinayagar Institute of Technology,

Puducherry, India.
1auromei@yahoo.com

*Manakula Vinayagar Institute of Technology

 Puducherry, India.
2guruteja@gmail.com

3megaarjun007@gmail.com
4nilasachin10@gmail.com

Abstract— Tremendous amount of data is getting generated
daily. The storage, retrieval, processing are becoming a great

challenge. In order to process huge data and get preferred results

there is no efficient algorithm and there exists many data mining

algorithms which do consume long time to mine the huge

datasets in order to get the patterns that are interesting to the
user. So we propose an algorithm in this paper to implement the

apriori based frequent itemset mining algorithm. we also has

implemented this algorithm with normal apriori algorithm.

Keywords— Apriori, Big Data, Application, Data mining,

Performance, Association Rule Mining

I. INTRO DUCTIO N

The Apriori a lgorithm [2] is one of famous and well-known

method for min ing frequent itemsets. The algorithm works

within a multip le pass generation, consisting of the joining

and the pruning phases to reduce the number of candidates

before scanning the database for support counting. Many

proposed algorithms such as the FP growth algorithm [7]

and so on have proposed to overcome the weakness of

Apriori algorithm level wise generations and multip le pass

databases scans. Scientists are also trying to parallelize these

frequent itemset min ing algorithms to speed up the min ing

of the ever-increasing sized databases [21].

Parallel min ing first to divides the min ing problem into

smaller ones and then solve sub problems using

homogeneous nodes such that each node may be work

independently and simultaneously. Although parallelizat ion

may improve the mining performance, it also raises several

issues including the partition ing of the input data, the

balancing of the workloads, the format ion of global

informat ion from local nodes, and the minimization of the

communicat ion costs. Deploying the mining methods into a

grid computing environment by decomposing the task into

smaller pieces and dispatching the sub-tasks to grid nodes

may also improve the performance. The assumption of all

grid nodes are fail safe and all tasks can be correctly

completed might be too strong enough in real grid

environments. In general, the potential errors due to failure

nodes increase as the number of grid nodes increases. The

failure of nodes cannot be ignored since erroneous or

incomplete data are introduced. Even worse, the failure may

cause an endless re-execution of all the jobs. Additionally,

the scalability of the grid is limited because running on

hundreds of nodes is prone to error.

To overcome the above problem, the MapReduce

framework [5] has been introduced. MapReduce enables

the distributed processing of huge data on large clusters,

with good scalability and robust fault tolerance. A scale-up

of hundreds or even thousands of nodes can be smoothly

established. Algorithms running in the framework are

described by two major functions, map and reduce. The

input data are partitioned (and possibly replicated) and

stored in a number of nodes. A master node initiates and

schedules the two functions for executions in the nodes.

The map function takes (from its node) the input data as a

<key, value> pair and outputs a list of <key, value> pairs

in a different domain. The reduce function takes the sorted

output of the map function as <key, list-of-values> and

outputs a collection of values. Both functions (i.e. a map

task and a reduce task) can be performed in parallel.

Thus, MapReduce can be an efficient platfo rm for frequent

itemset mining in huge datasets of terabyte or larger scale.

Using the MapReduce framework to parallelize the min ing

task on a cluster of cheap servers might outperform some

serial mining algorithms on a powerful server.

II. RELATED WORKS

Extensive algorithms on frequent itemset min ing have been

proposed for the past decades [2][7]. As the size of the

database increases to terabyte or petabyte scale, even a

powerful computing server may handle the mining well. Thus,

parallel min ing algorithms [3][4][14] are proposed. However,

parallel mining comes out new problems to be solved, such as

workload balancing, data distribution, jobs assignment, and

parameters passing between node etc., many challenges need

to be handled in parallel min ing. To run a min ing task on a

cluster, the database should be split into many sub-databases

and be distributed to nodes. And the job for each node should

also be decided. If the workload for each node is not balance,

the total execution time will be delayed by stragglers. With a

missing setting for parallel mining, many nodes may be idled

and total execution time may be increased.

International Journal of Advanced and Innovative Research (2278-7844) / # 372 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 372

mailto:4nilasachin10@gmail.com

With the rise of cloud computing, MapReduce [5] becomes

one of most important technique for cloud computing, it

hiding the problems like data distribution, fault tolerance, and

workload balance and users just focus on algorithms.

MapReduce has been widely researched in many areas, such

as database [1][10], text similarity search [12][19], and data

mining [8][11]. Moreover, the performance of MapReduce is

also discussed and many enhancing techniques have been

proposed [6][9][13]. In this paper, we also proposed three

mining algorithms to analyse the impact on performance of

different implementations, and summarize a technique for

enhancing the performance of mining algorithms using

MapReduce.

III.PREPARATIO N

1. The Apriori Algorithm

Three algorithms are proposed to investigate the Apriori-like
algorithms in the MapReduce paradigm. The Apriori
algorithm mines all the frequent itemsets in a transactional

database, where each transaction ti contains a set of items
called itemset. An itemset having k items is called a k-
itemset and its length is k . An itemset X is frequent if its
support, which is the fraction of transactions containing X in
the database, is at least certain user- specified minimum
support min_sup. Let Lk denote the frequent itemsets of
length k and Ck denote the candidate itemsets of length k .
The Apriori algorithm joins Lk-1 to generate Ck , counts the

supports of Ck , and determine the Lk in k-th database
scanning. The algorithm terminates when no Ck or Lk is
generated. Note that usually the discovery of frequent 1-
itemsets is accomplished by a simple counting of items in
the first pass of database scanning (pass -1). Starting from
pass-2, the hash-trees are used for arranging Ck to facilitate
fast support counting. The pruning of candidates using the

downward closure property is effective for candidates of
length larger than two, starting from pass-3.

2. The MapReduce Paradigm
MapReduce [5] is proposed to support distributed

computing, i.e. a share nothing architecture, on huge data

and Hadoop [23] is one of the implementations of the

MapReduce frameworks. The features of MapReduce

include the following. First, MapReduce partitions data into

equal sized blocks with some rep licas and distributes blocks

evenly to the distributed file systems (such as HDFS [16])

automatically so that users are free from the locations and

the distributions of data. Second, MapReduce re-executes a

crashed task without re-executions of the other tasks and

achieves good fault-tolerances. Third, MapReduce increases

total throughputs by re-assigning un-finished tasks of slower

or busy nodes to idle nodes (which have accomplished their

tasks) in a heterogeneous cluster.

In a MapReduce cluster, one node is designated as the

master, who schedules tasks for execution among nodes, and

other nodes are the workers. The master and the workers can

be located at the same node. Computations in the

MapReduce framework are d istributed among nodes and are

described by the map function and the reduce function.

Programmers address the required computations to be

executed in parallel by designing map tasks and reduce

tasks. The map tasks (also the reduce tasks) will be executed

concurrently by the configured workers. The input data file

is evenly divided into disjoint chunks and stored in the nodes

in the distributed file system like GFS or HDFS. Usually,

workers having input chunks are assigned with map tasks to

reduce the required data transmissions for input. Map tasks

and reduce tasks can be assigned to the same worker.

The master schedules the map tasks and the reduce tasks to

the configured cluster nodes when a job is init ialized. Each

map task then reads one block from the file system, and

outputs the <key, value> pairs specified by the map function.

Each reduce task receives the sorted <key, value -list> pairs of

the associated keys. All the pairs of the same key are sent to

one assigned worker responsible for that key. The reduce task

performs the operations specified in the reduce function and

finally outputs the results to a file. Additionally, the combine

function is specified, usually at the end of the map task, to

collect local <key, value> pairs at a map worker to reduce

communicat ions between map tasks and reduce tasks. The

combine function merges the <key, value> pairs of the same

key in the map worker into one <key, value> pair and finally

outputs the pair.

Algorithms in the MapReduce framework may comprise

several map-reduce phases. The master can collect the results

from a map- reduce phase in a file, then schedule workers for

the next map- reduce phase. The DistributedCache is used

when the entire content of a file is to be read by all the map

workers or reduce workers. Moreover, outputs of both a map

and a reduce task are written to files so that the failure of a

map-reduce phase can be recovered from such checkpoints

without having to re -execute the job from the beginning when

an error occurs.

IV. PROPOSED ALGORITHMS

The fundamentals of parallelizing the Apriori algorithm in the

MapReduce framework is to design the map and the reduce

functions for candidate generations and support counting. The

first proposed algorithm, Single Pass Counting, finds out

frequent k-itemsets at k-th pass of database scanning in a map-

reduce phase. The second proposed algorithm, Fixed Passes

Combined-counting, finds out frequent k-, (k+1)-, …, and

(k+m)-itemsets in a map-reduce phase. In this paper, FPC

discovers frequent k-, (k+1)-, and (k+2)-itemsets. The third

proposed algorithm, Dynamic Passes Combined-counting ,

considers the workloads of nodes and finds out as many

frequent itemsets of various lengths as possible in a map-

reduce phase. For convenience, a map task is called a mapper,

and a reduce task is called a reducer in the following context.

In general, the number of mappers is larger than the number of

reducers in MapReduce. With the size o f cluster increasing,

the more mappers can be used for processing data, and the

problem can be div ided into smaller granularity. In all of our

algorithms, each mapper calculates counts of each candidate

International Journal of Advanced and Innovative Research (2278-7844) / # 373 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 373

from its own partition, and then each candidate and

corresponding count are output. After map phase, candidates

and its counts are collected and summed in reduce phase to

obtain partial frequent itemsets. By using count distribution

between map phase and reduce phase, the communicat ion cost

can be decreased as much as possible. Since frequent 1-

itemsets are found in pass-1 by simple counting of items.

Phase-1 of all the three algorithms is the same, as shown in

Figure 1. The mapper outputs <item, 1> pairs for each item

contained in the transaction. The reducer collects all the

support counts of an item and outputs the <item, count> pairs

as a frequent 1-itemset to the file L1 when the count is no less

than the min imum support count. At first, different map-

reduce functions are designed to characterize the features of

the three algorithms, starting from pass -2. The huge number

of C2 in common executions, however, may overload nodes

of map functions if candidates of length larger than two are

combined for support counting. Thus , the same phase-2 is

applied to all the three algorithms. Figure 2 shows phase-2 of

the proposed algorithms. The apriori-gen () function, subset()

function, and the hash-trees in Figure 2 are the same as those

in Apriori [2]. In fact, the reduce function in phase- 2 is the

same for all subsequent phases in all the three algorithms.

In phase-k (k t 2) of SPC, each mapper first reads Lk-1 from

the DistributedCache to generate Ck in a hash tree. It then
performs the support counting and outputs the <itemset,
count> pairs as a frequent k-itemset to the file Lk if the count

passes the min imum threshold. Note that the combine function
in Hadoop MapReduce framework is invoked for all the
mappers in all the proposed algorithms to reduce the
communicat ions between mappers and reducers. Recall that
the input data is evenly divided into disjoint chunks in Hadoop
so that each mapper can reads only part of the whole database.

We use an example to illustrate the executions of SPC as

follows. A database of six transactions, min_sup = 33%, three

mappers, and two reducers are shown in Figure 4. In phase-1,

the mapper handles transaction t1 by outputting <A, 1>, <B,

1>, and <C, 1> pairs, and handles transaction t2 by

outputting <A, 1> and <C, 1> pairs. The combine function

then is invoked to sum up the counts and outputs frequent 2-

itemsets into L2. Similarly, phase-3 of SPC is invoked, <C D

E, 2> is outputted, and SPC terminates

 10B

Being a level-wised algorithm, SPC iterates k times of the

map- reduce phase when the maximum length of the frequent

itemsets is k . The number of candidates often is small so that

the utilization of the workers is low in the last few phases.

The scheduling of mappers and reducers becomes an

overhead in comparison to the workload of a worker for these

phases. Moreover, the number of database scans required is

the number of map -reduce phases performed in SPC. Thus,

the cost of database loading in the beginning of each phase is

relatively high if only few candidates are counted in a phase.

Therefore, FPC combines candidates from several phases in

SPC and performs the support counting in a single map-

reduce phase. Counts, and outputs <A, 2>, <B, 1>, and <C,

2> finally. The reducer sums up the counts associated with

each key (i.e. item-id) and outputs items having counts at

least 2 into L1.

In phase-2, as shown in Figure 5, each mapper reads L1 and

generates C2 in a hash tree. The mapper Map-3, for example,
reads t5 but outputs nothing, then reads t6 and outputs <C

D,1>, <C E, 1>, and <D E, 1> for the reducers. The reducer
sums up the

The FPC algorithm is shown in Figure 7 and the map-reduce

phase in the FPC algorithm is shown in Figure 6. Phase-1 and

phase-2 of FPC are the same as that of SPC. Starting from

phase-3, FPC combines candidates from a fixed number of

database passes for support counting in a map-reduce phase.

In this paper, the fixed number is three so that candidates of

every three consecutive lengths are counted in one phase.

Thus, FPC counts the supports of C3, C4, and C5 in phase-3,

that of C6, C7, and C8 in phase-4, and so on. As shown in

Figure 6, the mapper reads Lk-1 from DistributedCache to

generate Ck . Ck+1 and Ck+2 are generated using Ck and

Ck+1, respectively. These candidates are then placed in a

prefix-tree fo r support counting. The reduce function in fact is

the same as that in SPC. Therefore, in comparison to SPC,

FPC reduces the number of map-reduce phases required and

has better utilizations of the workers in the last few database

passes. The number of database scans consequently is reduced.

Nevertheless, the number of candidates from combined

passes may overload the workers, especially when the number

of passes to be combined is fixed. The number of candidates

generated at earlier passes, such as C3, can be too large to be

combined with candidates of longer length. The reduction in

database passes turns out to increase the number of false-

positive candidates that overloads the mapper. The resulting

performance of FPC would be worse than that of SPC. An

example is shown in the experimental result in Figure 11(b).

The weakness of FPC thus is the inability to prune candidates

due to fixed combined counting without flexib ility. Therefore,

algorithm DPC is proposed to dynamically determine the

candidates to be merged in a map- reduce phase.

International Journal of Advanced and Innovative Research (2278-7844) / # 374 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 374

IV. PERFORMANCE EVALUATION

Extensive experiments were conducted to assess the

performance of the proposed algorithms. A ll the experiments

were performed in a Hadoop 0.21.0 cluster of four nodes,

where each node contains an Intel Pentium Dual Core E6500

2.93GHz CPU, 4GB RAM, and a 500GB hard disk running

Ubuntu 15.04. All of the experiments were configured with 7

map tasks and 1 reduce task. All of the three algorithms are

implemented in Java and the JDK version is 1.6.0_23.

Both real and synthetic datasets were used in the experiments.

Real datasets BMS-POS and BMS-WebView-1 from FIMI

were used [22]. The synthetic datasets were generated by the

IBM dataset generator. The number of distinct items (|N|) is

10,000 and the average length of transactions (|T|) is 10. The

results of experiments using different settings of |T|, |N|, and

|I| are consistent.

V.CONCLUS ION

We have proposed the algorithm named Aprio ri algorithm

based on frequent pattern min ing using the mapreduce

programming model, investigate the performance of the

Apriori-like algorithms in a MapReduce framework in this

paper. It is a simple conversion of the serial Apriori algorithm

into the distributed MapReduce version. SPC finds the

frequent k-itemsets in k-th database scan (map-reduce phase),

using mappers to generate candidates’ supports and reducers

to collect global supports. FPC improves SPC by using a

mapper to count the candidate k-, (k+1)-, and (k+2)-itemsets

altogether in a map-reduce phase. Consequently, FPC

effectively reduces the number of map-reduce phases.

Nevertheless, the performance of FPC might be worse when

too many false-positive candidates are collected fo r counting

by mappers. DPC is proposed to strike a balance between

reducing the number of map-reduce phases (by combin ing

variable-length candidates) and increasing the number of

pruned candidates. DPC dynamically collects candidates of

variable lengths for counting by mappers according to the

number of candidates and the execution time of prev ious map-

reduce phases.

REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D.J. Abadi, A. Rasin, and

A. Silberschatz: HadoopDB: An Architectural Hybrid of

MapReduce and DBMS Technologies for Analytical Workloads.

In: Proceedings of the VLDB Endowment (PVLDB), 2(1): 922-

933, 2009
[2] R. Agrawal and R. Srikant: Fast Algorithms for Mining

Association Rules in Large Databases. In: Proceedings of the

Twentieth International Conference on Very Large Databases

(VLDB), pp. 487-499, 1994

[3] R. Agrawal and J.C. Shafer: Parallel Mining of Association
Rules, In: IEEE Transactions on Knowledge and Data Engineering

(TKDE), 8(6): 962-969, 1996

[4] S. Cong, J. Han, J. Hoeflinger, and D. Padua: A Sampling-

based Framework for Parallel Data Mining. In: Proceedings of the

ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pp. 255-265, 2005

[5] J. Dean and S. Ghemawat: Mapreduce: 6LPS OL¿ HG 'DWD

Processing on Large Clusters. In: Proceedings of the Sixth

Symposium on Operating System Design and Implementation
(OSDI), pp. 137-150, 2004

[6] J. Dean and S. Ghemawat: MapReduce: A Flexible Data

Processing Tool. In: Communications of the ACM (CACM),

53(1):72-77, 2010

[7] J. Han, J. Pei, and Y. Yin: Mining Frequent Patterns without
Candidate Generation. In: Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, 29(2):1-12, 2000

[8] J.-W. Huang, S.-C. Lin, and M.-S. Chen: DPSP: Distributed

Progressive Sequential Pattern Mining on the Cloud. In:

Proceedings of the 14th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), pp. 27- 34, 2010

[9] D. Jiang, B.C. Ooi, L. Shi, and S. Wu: The Performance of

MapReduce: An In-depth Study. In: Proceedings of the VLDB

Endowment (PVLDB), 3(1): 472-483, 2010

[10] J.L. Johnson: SQL in the Clouds. In: Computing in Science
and Engineering, 11(4):12-28, 2009

[11] H. Li, Y. Wang, D. Zhang, M. Zhang, and E.Y. Chang: PFP:

Parallel FP-Growth for Query Recommendation. In

Proceedings of the 2008 ACM Conference on Recommender

Systems, pp. 107-114, 2008
[12] R. Li, L. Ju, Z. Peng, Z. Yu, and C. Wang: Batch Text

Similarity Search with MapReduce. In: Proceedings of the 13th

Asia-Pacific Web Conference on Web Technologies and

Applications, pp. 412-423, 2011

[13] R. McCreadie, C. Macdonald, and I. Ounis: MapReduce
Indexing Strategies: Studying Scalability and Efficiency. In:

Information Processing and Management, pp. 1-16, 2011

[14] A. Mueller: Fast Sequential and Parallel Algorithms for

Association Rule Mining: A Comparison. In: Tech. Report CS-

TR-3515, University of Maryland, College Park, Md., 1995
[15] A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S.

Madden, and M. Stonebraker: A Comparison of Approaches to

Large Scale Data Analysis. In: Proceedings of SIGMOD, pp. 165-

178, 2009

[16] T. Shintani and M. Kitsuregawa: Hash Based Parallel
Algorithms for Mining Association Rules. In: Proceedings of the

Fourth International Conference on Parallel and Distributed

Information Systems, pp. 19-31, 1996

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler: The
Hadoop Distributed File System. In: Proceedings of the Mass

Storage Systems and Technologies (MSST), pp. 1-10, 2010
[18] M. Stonebraker, D.J. Abadi, D.J. DeWitt, S. Madden, E.

Paulson, A. Pavlo, and A. Rasin: MapReduce and Parallel

DBMSs: Friends or Foes? In: Communications of the ACM

(CACM), 53(1):64-71, 2010

[19] R. Vernica, M. J. Carey, C. Li: Efficient Parallel Set -
Similarity Joins Using MapReduce. In: Proceedings of SIGMOD,

pp. 495-506, 2010

[20] K.-M. Yu, J. Zhou, T.-P. Hong, and J.-L. Zhou: A Load-

Balanced Distributed Parallel Mining Algorithm, Expert Systems

with Applications, 37(3):2459-2464, 2009
[21] M. J. Zaki: Parallel and Distributed Association Mining: A

Survey. In: IEEE Concurrency, 7(4):14-25, 1999

[22] Z. Zheng, R. Kohavi, and L. Mason: Real world performance

of association rule algorithms. In: ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, August
2001, pp. 401-406, 2001.

International Journal of Advanced and Innovative Research (2278-7844) / # 375 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 375

