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Abstract— Tremendous amount of data is getting generated 
daily. The storage, retrieval, processing are becoming a great 

challenge. In order to process huge data and get preferred results 

there is no efficient algorithm and there exists many data mining 

algorithms which do consume long time to mine the huge 

datasets in order to get the patterns that are interesting to the 
user. So we propose an algorithm in this paper to implement the 

apriori based frequent itemset mining algorithm. we also has 

implemented this algorithm with normal apriori algorithm. 
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I. INTRO DUCTIO N 

The Apriori a lgorithm [2] is one of famous and well-known 

method for min ing frequent itemsets. The algorithm works 

within a multip le pass generation, consisting of the joining 

and the pruning phases to reduce the number of candidates 

before scanning the database for support counting. Many 

proposed algorithms such as the FP growth algorithm [7] 

and so on have proposed to overcome the weakness of 

Apriori algorithm level wise generations and multip le pass 

databases scans. Scientists are also trying to parallelize these 

frequent itemset min ing algorithms to speed up the min ing 

of the ever-increasing sized databases [21].  

 

Parallel min ing first to divides the min ing problem into 

smaller ones and then solve sub problems using 

homogeneous nodes such that each node may be work 

independently and simultaneously. Although parallelizat ion 

may  improve the mining performance, it also raises several 

issues including the partition ing of the input data, the 

balancing of the workloads, the format ion of global 

informat ion from local nodes, and the minimization of the 

communicat ion costs. Deploying the mining methods into a 

grid computing environment by decomposing the task into 

smaller pieces and dispatching the sub-tasks to grid nodes 

may  also improve the performance. The assumption of all 

grid nodes are fail safe and all tasks can be correctly 

completed might be too strong enough in real grid  

environments. In general, the potential errors due to failure 

nodes increase as the number of grid nodes increases. The 

failure of nodes cannot be ignored since erroneous or 

incomplete data are introduced. Even worse, the failure may  

cause an endless re-execution of all the jobs. Additionally, 

the scalability of the grid is limited because running on 

hundreds of nodes is prone to error. 

To overcome the above problem, the MapReduce 

framework [5] has been introduced. MapReduce enables 

the distributed processing of huge data on large clusters, 

with good scalability and robust fault tolerance. A  scale-up 

of hundreds or even thousands of nodes can be smoothly 

established. Algorithms running in the framework are 

described by two major functions, map and reduce. The 

input data are partitioned (and possibly replicated) and 

stored in a number of nodes. A master node initiates and 

schedules the two functions for executions in  the nodes. 

The map function takes (from its node) the input data as   a 

<key, value> pair and outputs a list of <key, value> pairs 

in a different domain. The reduce function takes the sorted 

output of the map function as <key, list-of-values> and 

outputs a collection of values. Both functions (i.e. a map  

task and a reduce task) can   be performed in parallel. 

Thus, MapReduce can be an efficient platfo rm for frequent 

itemset mining in huge datasets of terabyte or larger scale. 

Using the MapReduce framework to parallelize the min ing 

task on a cluster of cheap servers might outperform some 

serial mining algorithms on a powerful server. 

 

II. RELATED WORKS  

Extensive algorithms on frequent itemset min ing have been 

proposed for the past decades [2][7]. As the size of the 

database increases to terabyte or petabyte scale, even a 

powerful computing server may handle the mining well. Thus, 

parallel min ing algorithms [3][4][14] are proposed. However, 

parallel mining comes out new problems to be solved, such as 

workload balancing, data distribution, jobs assignment, and 

parameters passing between node etc., many challenges need 

to be handled in parallel min ing. To run a min ing task on a 

cluster, the database should be split into many sub-databases 

and be distributed to nodes. And the job for each node should 

also be decided. If the workload for each node is not balance, 

the total execution time will be delayed by stragglers. With a 

missing setting for parallel mining, many nodes may be idled  

and total execution time may be increased. 
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With the rise of cloud computing, MapReduce [5] becomes 

one of most important technique for cloud computing, it  

hiding the problems like data distribution, fault tolerance, and 

workload balance and users just focus on algorithms. 

MapReduce has been widely researched in many areas, such 

as database [1][10], text similarity search [12][19], and data 

mining [8][11]. Moreover, the performance of MapReduce is 

also discussed and many enhancing techniques have been 

proposed [6][9][13]. In this paper,  we also proposed three 

mining algorithms to analyse the impact  on performance of 

different implementations, and summarize a technique for 

enhancing the performance of mining algorithms using 

MapReduce. 

 

III.PREPARATIO N 

1. The Apriori Algorithm 

Three algorithms are proposed to investigate the Apriori-like 
algorithms in the MapReduce paradigm. The Apriori 
algorithm mines all the frequent itemsets in a transactional 

database, where each transaction ti contains a set of items 
called itemset. An  itemset having k items is called a k-
itemset and its length is k . An itemset X is frequent if its 
support, which is the fraction of transactions containing X in 
the database, is at least certain user- specified minimum 
support min_sup. Let Lk denote the frequent itemsets of 
length k and Ck denote the candidate itemsets of length k . 
The Apriori algorithm joins Lk-1 to generate Ck , counts the 

supports of Ck , and determine the Lk in k-th database 
scanning.  The algorithm terminates when no Ck or Lk is 
generated. Note that usually the discovery of frequent 1-
itemsets is accomplished by a simple counting of items in 
the first pass of database scanning (pass -1). Starting from 
pass-2, the hash-trees are used  for arranging Ck to facilitate 
fast support counting. The pruning of candidates using the 

downward closure property is effective for candidates of 
length larger than two, starting from pass-3. 
 
2. The MapReduce Paradigm 
MapReduce [5] is proposed to support distributed 

computing, i.e.  a share nothing architecture, on huge data 

and Hadoop [23] is one of the implementations of the 

MapReduce frameworks. The features of MapReduce 

include the following. First, MapReduce partitions data into 

equal sized blocks with some rep licas and distributes blocks 

evenly to the distributed file systems (such as HDFS [16]) 

automatically so that users are free from the locations and 

the distributions of data. Second, MapReduce re-executes a 

crashed task without re-executions of the other tasks and 

achieves good fault-tolerances. Third, MapReduce increases 

total throughputs by re-assigning un-finished tasks of slower 

or busy nodes to idle nodes (which have accomplished their 

tasks) in a heterogeneous cluster. 

In a MapReduce cluster, one node is designated as the 

master, who schedules tasks for execution among nodes, and 

other nodes are the workers. The master and the workers can 

be located at the same node. Computations in the 

MapReduce framework are d istributed among nodes and are 

described by the map function and the reduce function. 

Programmers address the required computations to be 

executed in parallel by designing map tasks and reduce 

tasks. The map tasks (also the reduce tasks) will be executed 

concurrently by the configured workers. The input data file 

is evenly divided into disjoint chunks and stored in the nodes 

in the distributed file system like GFS or HDFS. Usually, 

workers having input chunks are assigned with map tasks to 

reduce the required data transmissions for input. Map tasks 

and reduce tasks can be assigned to the same worker. 

The master schedules the map tasks and the reduce tasks to 

the configured cluster nodes when a job is init ialized. Each  

map task then reads one block from the file system, and 

outputs the <key, value> pairs specified by the map function. 

Each reduce task receives the sorted <key, value -list> pairs of 

the associated keys. All the pairs of the same key are sent to 

one assigned worker responsible for that key. The reduce task 

performs the operations specified in the reduce function and 

finally outputs the results to a file. Additionally, the combine 

function is specified, usually  at the end of the map task, to 

collect local <key, value> pairs at a map worker to reduce 

communicat ions between map  tasks and reduce tasks. The 

combine function merges the <key, value> pairs of the same 

key in the map worker into one <key, value> pair and finally  

outputs the pair. 

Algorithms in  the MapReduce framework may comprise 

several map-reduce phases. The master can collect the results 

from a map- reduce phase in a file, then schedule workers for 

the next map- reduce phase. The DistributedCache is used 

when the entire content of a file  is to be read by all the map  

workers or reduce workers. Moreover, outputs of both a map 

and a reduce task are written to files so that the failure of a 

map-reduce phase can be recovered from such checkpoints 

without having to re -execute the job from the beginning when 

an error occurs. 

 

IV. PROPOSED ALGORITHMS 

The fundamentals of parallelizing  the Apriori algorithm in  the 

MapReduce framework is to design the map and the reduce 

functions for candidate generations and support counting.  The 

first proposed algorithm, Single Pass Counting, finds out 

frequent k-itemsets at k-th pass of database scanning in a map- 

reduce phase. The second proposed algorithm, Fixed Passes 

Combined-counting, finds out frequent k-, (k+1)-, …, and 

(k+m)-itemsets in a map-reduce phase. In this paper, FPC 

discovers frequent k-, (k+1)-, and (k+2)-itemsets. The third 

proposed algorithm, Dynamic Passes Combined-counting , 

considers the workloads of nodes and finds out as many 

frequent itemsets of various lengths as possible in a map-

reduce phase. For convenience, a map task is called a mapper, 

and a reduce task is called a reducer in the following context. 

In general, the number of mappers is larger than the number of 

reducers in MapReduce. With the size o f cluster increasing, 

the more mappers can be used for processing data, and the 

problem can be div ided into smaller granularity. In all of our 

algorithms, each mapper calculates counts of each candidate 
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from its own partition, and then each candidate and 

corresponding count are output. After map phase, candidates 

and its counts are collected and summed in reduce phase to 

obtain partial frequent itemsets.  By using count distribution 

between map phase and reduce phase, the communicat ion cost 

can be decreased as much as possible. Since frequent 1-

itemsets are found in pass-1 by simple counting of items. 

Phase-1 of all the three algorithms is the same, as shown in 

Figure 1. The mapper outputs <item, 1> pairs for each item 

contained in the transaction. The reducer collects all the 

support counts of an item and outputs the <item, count> pairs 

as a frequent 1-itemset to the file  L1 when the count is no less 

than the min imum support count. At first, different map-

reduce functions are designed to characterize the features of 

the three algorithms, starting from pass -2. The huge number 

of C2 in common executions, however, may overload nodes 

of map functions if candidates  of  length larger than two are 

combined for support counting.  Thus , the same phase-2 is 

applied to all the three algorithms. Figure 2 shows phase-2 of 

the proposed algorithms. The apriori-gen () function, subset() 

function, and the hash-trees in Figure 2 are the same as those 

in Apriori [2]. In fact, the reduce function in phase- 2 is the 

same for all subsequent phases in all the three algorithms. 

 
 

In phase-k (k t 2) of SPC, each mapper first reads Lk-1 from 

the DistributedCache to generate Ck in a hash tree. It then 
performs the support counting and outputs the <itemset, 
count> pairs as a frequent k-itemset to the file Lk if the count 

passes the min imum threshold. Note that the combine function 
in Hadoop MapReduce framework is invoked for all the 
mappers in all the proposed algorithms to reduce the 
communicat ions between mappers and reducers. Recall that 
the input data is evenly divided into disjoint chunks in Hadoop 
so that each mapper can reads only part of the whole database. 

We use an example to illustrate the executions of SPC as 

follows. A database of six transactions, min_sup = 33%, three 

mappers, and two reducers are shown in Figure 4. In phase-1, 

the mapper handles transaction t1  by outputting <A, 1>, <B, 

1>,   and <C, 1> pairs, and handles transaction t2  by 

outputting <A, 1>  and <C, 1> pairs. The combine function 

then is invoked to sum up the counts and outputs frequent 2-

itemsets into L2. Similarly, phase-3 of SPC is invoked, <C D 

E, 2> is outputted, and SPC terminates  

 10B 

Being a level-wised algorithm, SPC iterates k times of the 

map- reduce phase when the maximum length of the frequent 

itemsets is k . The number of candidates often is small so that 

the utilization of the workers is low in the last few phases. 

The scheduling of mappers and reducers becomes an 

overhead in comparison to the workload of a worker for these 

phases. Moreover, the number of database scans required is 

the number of map -reduce phases performed in SPC. Thus, 

the cost of database loading in the beginning of each phase is 

relatively high if only few candidates are counted in a phase. 

Therefore, FPC combines candidates from several phases in 

SPC and performs the support counting in a single map-

reduce phase. Counts, and outputs <A, 2>, <B, 1>, and <C, 

2> finally. The reducer sums up the counts associated with 

each key (i.e. item-id) and outputs items having counts at 

least 2 into L1. 

In phase-2, as shown in Figure 5, each mapper reads L1 and 

generates C2 in a hash tree. The mapper Map-3, for example,  
reads t5  but outputs nothing, then reads t6  and outputs <C 

D,1>, <C E, 1>, and <D E, 1> for the reducers. The reducer 
sums up the 

The FPC algorithm is shown in Figure 7 and the map-reduce 

phase in the FPC algorithm is shown in Figure 6. Phase-1 and 

phase-2 of FPC are the same as that of SPC. Starting from 

phase-3, FPC combines candidates from a fixed number of 

database passes for support counting in a map-reduce phase. 

In this paper, the  fixed number is three so that candidates of 

every three consecutive lengths are counted in one phase. 

Thus, FPC counts the supports   of C3, C4, and C5 in phase-3, 

that of C6, C7, and C8 in phase-4, and so on. As shown in 

Figure 6, the mapper reads Lk-1 from DistributedCache to 

generate Ck . Ck+1 and Ck+2  are  generated using Ck and 

Ck+1, respectively. These candidates are then placed  in a 

prefix-tree fo r support counting. The reduce function in fact is 

the same as that in  SPC. Therefore, in comparison to SPC, 

FPC reduces the number of map-reduce phases required and 

has better utilizations of the workers  in the last few database 

passes. The number of database scans consequently is  reduced. 

Nevertheless, the number of candidates from combined 

passes may overload the workers, especially when the number 

of passes to be combined is fixed. The number of candidates 

generated at earlier passes, such as C3, can be too large to be 

combined with candidates of longer length. The reduction in 

database passes turns out to increase the number of false-

positive candidates that overloads the mapper. The resulting 

performance of FPC would  be worse than that of SPC. An 

example is shown in the experimental result in Figure 11(b). 

The weakness of FPC thus is the inability to prune candidates 

due to fixed combined counting without flexib ility. Therefore, 

algorithm DPC is proposed to dynamically determine the 

candidates to be merged in a map- reduce phase. 
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IV. PERFORMANCE EVALUATION 

Extensive experiments were conducted to assess the 

performance of the proposed algorithms. A ll the experiments 

were performed in a Hadoop 0.21.0 cluster of four nodes, 

where each node contains an Intel Pentium Dual Core E6500 

2.93GHz CPU, 4GB RAM, and a 500GB hard disk running 

Ubuntu 15.04. All of the experiments were configured with 7 

map tasks and 1 reduce task. All of the three algorithms are 

implemented in Java and the JDK version is 1.6.0_23. 

Both real and synthetic datasets were used in the experiments. 

Real datasets BMS-POS and BMS-WebView-1 from FIMI 

were used [22]. The synthetic datasets were generated by the 

IBM dataset generator. The number of distinct items (|N|) is 

10,000 and the average length of transactions (|T|) is 10. The 

results of experiments using different settings of |T|, |N|, and 

|I| are consistent. 

 

V.CONCLUS ION 

We have proposed the algorithm named Aprio ri algorithm 

based on frequent pattern min ing using the mapreduce 

programming model, investigate the performance of the 

Apriori-like algorithms in  a MapReduce framework in this 

paper. It  is a  simple conversion of the serial Apriori algorithm 

into the distributed MapReduce version. SPC finds the 

frequent k-itemsets in k-th database scan (map-reduce phase), 

using mappers to generate candidates’ supports and  reducers 

to  collect  global  supports.  FPC improves SPC by using a 

mapper to count the candidate k-, (k+1)-, and (k+2)-itemsets 

altogether in a map-reduce phase. Consequently, FPC 

effectively reduces the number of map-reduce phases. 

Nevertheless, the performance of FPC might be worse when 

too many false-positive candidates are collected fo r counting 

by mappers. DPC is proposed to strike a balance between 

reducing the number of map-reduce phases (by combin ing 

variable-length candidates) and increasing the number of 

pruned candidates. DPC dynamically collects candidates of 

variable lengths for counting by mappers according to the 

number of candidates and the execution time of prev ious map-

reduce phases.  
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