Copairable Graphs

Selvam Avadayappan, M. Bhuvaneshwari and R. Sountharya Research Department of Mathematics VHNSN College(Autonomous), Virudhunagar - 626001, India. e-mail: selvam_avadayappan@yahoo.co.in bhuvanakamaraj28@yahoo.com sountharya.5.3@gmail.com.

Abstract - Let G(V,E) be a connected graph. For a vertex v, in V the set of all adjacent vertices of v is called an open neighbourhood of v and is denoted by N(v). The neighbourhood complement of v is denoted by N(v)^c, the set of all non-adjacent vertices of v along with v itself. The closed neighbourhood of v is defined by N[v] = N(v) \cup {v}. Any two adjacent vertices u and v in G is said to be pairable, if N[u] = N[v]. A copairable graph is defined as a graph in which for any vertex $u \in V$, there exists a vertex v in V, such that a vertex w in V is adjacent to u if and only if it is not adjacent to v. In this paper, we study about this new family of graphs.

Keywords: Pairable vertices, pairable graphs, copairable vertices, copairable graphs.

AMS Subject Classification Code (2010): 05C (Primary)

I. Introduction

Throughout this paper, we consider only finite, simple, undirected and connected graphs. For notations and terminology, we follow [4]. Let G(V,E) be a graph of order n. For any vertex $v \in V$, the *open neighbourhood* of v is the set of all vertices adjacent to v and is denoted by N(v). The *neighbourhood complement* of v is denoted by N(v)^c, which is defined as N(v)^c = V(G) - N(v). The *closed neighbourhood* of v is the set of all vertices adjacent to v along with itself and is denoted by N[v], that is N[v] = N(v) \cup {v}. A vertex of degree n-1 is called a *full vertex*. A graph G is said to be *r* - *regular* if degree of every vertex in G is of degree r. *Path* on n vertices is denoted by P_n and *cycle* on n vertices is denoted by C_n.

The *distance* d(u,v) between any two vertices u and v is the length of a shortest path between them. The *eccentricity* [5] e(u) of a vertex u is the distance of a farthest vertex from u. The *radius* rad(G) of G is the minimum eccentricity and the *diameter* diam(G) of G is the maximum eccentricity of the graph G. A vertex u with e(u) = rad(G) is called a *central vertex*. A graph G for which rad(G) = diam(G) is called a *self-centered graph*.

A graph is said to be a *unicyclic graph* if it has exactly one cycle. A *Bistar* $B_{m,n}$ is obtained from $K_{1,m}$ and $K_{1,n}$ by joining the centres of them by means of an edge. Any graph which contains no C_3 as a subgraph is called a *triangle free graph*.

A dominating set [6] is a subset S of the vertex set V such that every vertex is either in S or adjacent to a vertex in S, that is, such that every vertex in V-S is adjacent to at least one vertex in S. A dominating set S is called a *minimum dominating* set if there is no dominating set S' in G such that |S'| < |S|. The *dominating number* γ (G) of G is the number of vertices in a minimum dominating set of G.

The graph S(G), obtained from G, by adding a new vertex w for every vertex $v \in V$ and joining w to all vertices of G adjacent to v, is called the *splitting graph* [7] of G. For example, a graph G and its splitting graph S(G) are shown in Figure 1.

Let G be a graph with vertex set $\{v_1, v_2, ..., v_n\}$. The *cosplitting* graph [2] CS(G) is the graph obtained from G, by adding a new vertex w_i for each vertex v_i and joining w_i to all vertices which are not adjacent to v_i in G. For example, a graph G and its cosplitting graph CS(G) are shown in Figure 2.

Let G be a graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ the 2-splitting graph [1] $S_2(G)$ of G is defined as the graph with vertex set $V(S_2(G)) = \{u_1, u_2, ..., u_n, w_1, w_2, ..., w_n\}$ and edge set $E(S_2(G)) = \{u_i u_j, w_i w_j, u_i w_j / v_i v_j \in E(G), 1 \le i, j \le n\}$. For

example, a graph G and its 2 - splitting graph $S_2(G)$ are shown in Figure 3.

A connected graph G is said to be *neighbourhood highly irregular (NHI)* [8], if any two distinct vertices in the open neighbourhood of v, have distinct closed neighbourhood sets, that is, for any vertex v, if $u, w \in N(v)$, $(u \neq w)$, then $N[u] \neq$ N[w]. For more results on NHI graphs, one can refer [3].

For any two distinct vertices u and v in G, u is said to be *pairable* [1] with v if N[u] = N[v] in G. A vertex in G is called a *pairable vertex* if it is pairable with a vertex in G. Clearly any two pairable vertices are adjacent and have the same degree. A connected graph G of order at least 2 is said to be a *pairable graph*, if every vertex of G is pairable. For example, K_n is a pairable graph of order n for any $n \ge 2$. It has been proved in [1], that a graph G is NHI if and only if it contains no pairable vertices. This forces that pairable graphs are not NHI.

A *1-factor* is a 1 – regular spanning subgraph of G. A 1 – factor F in a pairable graph is said to be a *pairing 1 –factor* if $E(F) = \{uv \in E(G) / u \text{ is pairable with } v \text{ in } G\}$. For example, a pairable graph G, a pairing 1- factor (shown in bold lines) are given in Figure 4.

Figure 4

Result 1[1] Let G be a pairable graph of order 2n, $n \ge 1$. Then G - F is a 2 – splitting graph if and only if F is a pairing 1 – factor.

In this paper, we introduce a new concept of copairable vertices and copairable graphs. For any two adjacent vertices u and v in G, u is said to be copairable with v if $N(u) = N(v)^c$. A vertex in G is said to be *copairable vertex* if it is copairable with a vertex in G. The set of all copairable vertices of G is denoted by CP(G).

A connected graph G of order at least 2 is said to be a *copairable graph* if every vertex of G is copairable. For example, $K_{n,m}$ is a copairable graph of order m+n for any n,m \geq 1. This proves the existence of copairable graphs of given order $n \geq 2$.

In this paper, we obtain a few results on copairable graphs.

II. Main Results

Define a relation ρ on CP(G) by $u \rho v$ if and only if N(u) = N(v)^c. Then clearly ρ is symmetric on CP(G).

The following facts can be easily verified for copairable graphs:

Fact 1 For any graph G, CP(G) cannot be a singleton set.

Fact 2 Any full vertex in a graph G is copairable with a pendant vertex.

Fact 3 Let G be a graph for which $CP(G) \neq \phi$ and $\Delta(G) = n-1$, then G contains only one full vertex.

For, if G contains two full vertices u and v, then neither u nor v is a copairable vertex, since $\delta(G) \ge 2$. In addition if a non full vertex w is copairable with a vertex x, then $N(w) \cap N(x)$ contains both u and v, which is a contradiction. Therefore, G contains only one full vertex.

Fact 4 The central vertices of a bistar are copairable vertices.

Fact 5 For a path P_n , $CP(P_n) \neq \phi$ if and only if $2 \le n \le 4$.

Fact 6 A copairable graph has a full vertex if and only if $G \cong K_{1,n}$.

Fact 7 If CP(G) $\neq \phi$, for a graph G, then γ (G) ≤ 2 .

Fact 8 If copairable vertices exist in a graph G, then $diam(G) \le 3$ and $rad(G) \le 2$.

For, let u and v be two copairable vertices in a graph G. Then $N(u) \cup N(v) = V(G)$ and so the eccentricity of u and v is at most 2. But the eccentricity of any vertex other than u and v is at most 3. Then diam(G) \leq 3 and rad(G) \leq 2.

Fact 9 A copairable graph with $\Delta(G) \neq n-1$ is self-centered with radius 2.

For, let G be a copairable graph in which $\Delta(G) \neq n-1$. Then G contains no full vertex. Therefore $e(v) \geq 2$ for any vertex v in G. Also by Fact 8, if u is a copairable vertex, then $e(u) \leq 2$. But in G every vertex is copairable and hence $e(v) \leq 2$ for any vertex v in G. This forces that e(v) = 2 for any vertex v in G. Thus G is self centered with radius 2.

Fact 10 A copairable graph G is a tree if and only if G is a star.

For, let G be a copairable graph which is a tree. Then G contains at least two pendant vertices. By Fact 2, pendant vertex is copairable with a full vertex. But a tree contains a full vertex if and only if it is a star. Therefore G is a star. And the converse is obvious.

The following theorems establish some properties of copairable vertices in a graph G.

Theorem 1 Let $G \not\cong K_{1,n}$ be any graph with copairable vertices u and v. If uv is a bridge, then u and v are the only central vertices of G.

Proof Let G be a graph with copairable vertices u and v. Assume that uv is a bridge. Since $G \not\cong K_{1,n}$ by Fact 9, rad(G) = 2. If G contains an edge joining a neighbour of u and v, then uv lies on a cycle, which is a contradiction. Hence eccentricity of any vertex other than u and v is 3. Therefore every edge of G other than uv belongs to either < N(u) > and < N(v) >. Since G contains no full vertex, neither u nor v is a pendant vertex. Every neighbour of u is at distance three to every neighbour of v and e(u) = e(v) = 2. Hence u and v are the only central vertices of G.

Theorem 2 Pairable graph G is copairable if and only if $G \cong K_2$.

Proof Let G be a pairable graph which is copairable. Suppose $G \not\cong K_2$. Let u be a pairable vertex in G. Then there is a vertex v in G such that N[u] = N[v]. Then every neighbour of u is also a neighbour of v. Hence for any w ∈ N(v), we have v ∈ N(u) ∩ N(w), that is, there does not exist a vertex w ∈ N(v) such that N(u) ∩ N(w) = ϕ , since v ∈ N(u) ∩ N(w). Hence u is copairable with v alone. This is possible only when G \cong K₂. And the converse is obvious.

Let $C_r(v)$ denote the cycle $v_1v_2...v_rv_1$ of order r with a fixed vertex $v=v_1$ and let $C_r(v)(m_1,m_2,...m_r)$, where $m_i \ge 0$, be the graph obtained from $C_r(v)$ by identifying the central vertex of the star K_{1,m_i} with the vertex v_i of $C_r(v)$, for $1 \le i \le r$. Note that we take $K_{1,0}$ as K_1 vacuously. Let $C'_3(v)(m_1,m_2)$, $m_i \ge 0$, be the graph obtained from $C_3(v)$ by identifying the vertex of

degree m_1+1 in B_{m_1,m_2} at v. For example, $C_3(v)(2,3,0)$ and $C'_3(v)(2,3)$ are shown in Figure 5.

Theorem 3 Let G be any graph with CP(G) $\neq \phi$. Then G is unicyclic if and only if G \cong C₄(v)(m₁,m₂,0,0) for m₁,m₂ ≥ 0 or C'₃(v)(m₁,m₂) for m₂ ≥ 0 .

Proof Let G be any unicyclic graph with copairable vertices u and v.

Case (i) Suppose the edge uv lies in the unique cycle. Since u and v have no common neighbour and every vertex of G is a neighbour of u or v, the unique cycle is of length 4. Since G is unicyclic there is no edge between any two neighbours of u and that of v. The resultant graph is isomorphic to $C_4(v)(m_1,m_2,0,0)$ for $m_1,m_2 \ge 0$.

Case (ii) Suppose the edge uv is not in the unique cycle. Then uv is a bridge. Now either N(u) contains every vertex of the unicycle or N(v) contains every vertex of the unicycle. Since every edge in N(u) or N(v) induces C₃ in G, we conclude that $<N(u)> \cup <N(v)>$ contains at most one edge. The resultant graph is isomorphic to C'₃(v)(m₁,m₂) for m₂ ≥ 0 . The converse is obvious.

Corollary 4 C_4 is the unique unicyclic copairable graph.

Proof Let G be unicyclic copairable graph. Then by previous theorem, CP(G) \cong C₄(v)(m₁,m₂,0,0) for m₁,m₂ ≥ 0 or C'₃(v)(m₁,m₂) for m₂ ≥ 0. In the above graph, CP(G) = V(G) if and only if G \cong C₄. Hence C₄ is the only unique unicyclic copairable graph.

Theorem 5 If u is a copairable vertex in G, then u cannot be a copairable vertex of \overline{G} .

Proof Let u be a copairable vertex in G. Then there exists a vertex $v \in V(G)$ such that $N(u) = N(v)^c$ in G. Assume that $u \in CP(\overline{G})$. Clearly $uv \notin E(\overline{G})$. Then there exists a vertex w in \overline{G} such that $N(u) = N(w)^c$ in \overline{G} . Hence $uw \in E(\overline{G})$ and $w \notin N(u)$ in G. Then $w \in N(v)$ which implies that $vw \notin E(\overline{G})$. Now $v \notin N$

 $\overline{G}(\mathbf{u}) \cup \mathbf{N}_{\overline{G}}(\mathbf{w})$ which is a contradiction. Therefore u cannot be a copairable vertex of \overline{G} .

Corollary 6 If G is a copairable graph, then G is not a copairable graph. \blacksquare

Let P(G) denote the set of paendant vertices of G.

Lemma 7 Let G be a graph for which $CP(G) \neq \phi$, $\delta(G) = 1$ and $\Delta(G) = n-1$. Then G contains only one full vertex v and $CP(G) = \{v\} \cup P(G)$.

Proof Let G be a graph for which CP(G) ≠ ϕ , δ (G) = 1 and Δ (G) = n-1. Then by Fact 3, G contains only one full vertex v. If u is a pendant vertex in G, then N(u) \cup N(v) = V(G) and N(u) \cap N(v) = ϕ . Thus any pendant vertex is copairable with v. Conversely, let w be a vertex in G such that 1 < d(w) < n-1. If w is copairable with a vertex x in G, then 1< d(x) < n-1. But N(w) \cap N(x) contains the vertex v, which is a contradiction. Therefore, w is not a copairable vertex. Hence CP(G) = {v} \cup P(G).

Theorem 8 Let G be a graph with $\delta(G) > 1$. If CP(G) $\neq \phi$, then $\gamma(G) = 2$.

Proof Let G be a graph with no pendant vertices. Let CP(G) ≠ ϕ . Let u and v be two copairable vertices of G. Then u and v have no common neighbour. By Fact 6, Δ (G) < n-1, then γ (G) ≠1. If u is copairable with v, then N(u) \cup N(v) = V(G) and thus S = {u,v} is a minimal dominating set of G. Hence γ (G) = 2.

Note that the converse of the above theorem need not be true. For example, the graph G shown in Figure 6 has $\gamma(G) = 2$ but $CP(G) = \phi$.

Theorem 9 Let G be any triangle free n - regular graph of order 2n. Then G is a copairable graph.

Proof Let G be any triangle free n - regular graph of order 2n. Let u and v be any two adjacent vertices in G. Since G is a

triangle free graph, then $N(u) \cap N(v) = \phi$. Also $|N(u) \cup N(v)| = |N(u)| + |N(v)| - |N(u) \cap N(v)| = n + n - 0 = 2n = |V(G)|$. Therefore $N(u) \cup N(v) = V(G)$. Hence u and v are copairable.

Note that the converse of the above theorem need not be true. For example, the complete bipartite graph $K_{m,n}$, $m \neq n$ is a copairable graph but it is not regular.

Theorem 10 Every graph G is an induced subgraph of a graph H in which copairable vertices are the central vertices.

Proof Let G be a graph. If G itself has copairable vertices as central vertices, then there is nothing to prove. Suppose not, construct a graph H with vertex set $V(H) = V(G) \cup \{u,v,w\}$ and the edge set $E(H) = E(G) \cup \{uv,vw,uu_i \mid u_i \in V(G)\}$. By our construction, G is an induced subgraph of H. Clearly u and v are the only copairable vertices in H with eccentricity 2. All other vertices are of eccentricity 3 in H. Hence u and v are the only central vertices of H. For example, a graph G and a graph H in which G is an induced subgraph and copairable vertices are central vertices are shown in Figure 7.

Theorem 11 Any copairable graph other than star has C_4 as an induced subgraph.

Proof Let $G \not\cong K_{1,n}$ be a copairable graph. Let u be a copairable vertex which is copairable with v in G. If d(u) = 1, then v is a full vertex. Therefore, by Fact 6, $G \cong K_{1,n}$ which is a contradiction. Since every vertex of G is copairable, none of them can be a pendant vertex and so $\delta(G) \ge 2$. Then there exist two vertices w $\neq v$ and $x \neq u$ in G such that $w \in N(u)$, $x \in N(v)$. Since $u, v \in CP(G)$, $x \notin N(u)$ and $w \notin N(v)$.

Case (*i*) w is copairable with u in G. But u is copairable with v and so, N(w) = N(v). This forces that $x \in N(w)$. Now $N(u) \cap N(v) = \phi$. Therefore vw, ux $\notin E(G)$. Hence the subgraph induced by the vertices u, w, x and v is C₄.

Case (ii) w is not copairable with u. Then assume that w is copairable with $y \neq u$. Therefore $N(w) = N(y)^c$. Then $y \notin N(u)$, since if $y \in N(u)$, then $N(y) \cap N(w) = \{u\} \neq \phi$. Hence uy $\notin E(G)$. Since u is copairable with a vertex v in G, $y \in N(v)$. Now the subgraph induced by the vertices u, v, w and y is C₄. Hence the theorem.

Theorem 12 If a graph G is copairable, then $CP(G) \subseteq CP(S(G))$ and CP(G) = CP(S(G)) if and only if $\Delta(G) = n-1$ and $\delta(G) = 1$.

Proof Let G be a copairable graph. Let V(G) = {v₁,v₂,...,v_n} and V(S(G)) = {v₁,v₂,...,v_n;w₁,w₂,...,w_n} such that N(w_i) = V(G) \cap N(v_i) for i = 1,2,...n. Let v_i and v_j be any two copairable vertices in G. Then N(v_i) = N(v_j)^c in G. It is easy to note that N(v_i) = N(v_j)^c in S(G). Therefore, CP(G) ⊆ CP(S(G)). Let u,v ∈ CP(S(G)). Since the newly added vertices in the splitting graph are independent, we have u and v both cannot be newly added vertices. We have already seen that if u,v ∈ V(G), then u,v ∈ CP(G). Without loss of generality, let u be a newly added vertex in S(G) and v be a vertex in G. We claim that v is a full vertex. If v is not a full vertex, then there exists a vertex v_j ∈ V(G) such that vv_j ∉ E(G) and vw_j ∉ E(G). But uv ∈ E(G) and hence u ≠ w_j. But the newly added vertices are independent. Therefore, w_j ∉ N(u). Now N(u) ∪ N(v_j) ≠ V(G). This is a contradiction. Hence v is a full vertex. It follows that u is a pendant vertex.

References

[1] Selvam Avadayappan and M.Bhuvaneshwari, *Pairable graphs*, International Journal of Innovative Science, Engineering & Technology, Vol.1 Issue 5, July 2014, 23-31.

[2] Selvam Avdayappan and M.Bhuvaneshwari, *Cosplitting and coregular graphs*, International Journal of Mathematics and Soft Computing Vol.5 (2015), 57-64.

[3] Selvam Avadayappan and P.Santhi, *Some results on neighbourhood highly irregular graphs*, Ars combinatoria 98(2011), pp. 399-414.

[4] R.Balakrishnan and K.Ranganathan, <u>A Text Book of graph</u> <u>Theory</u>, Springer-Verlag, New York, Inc(1999). Therefore, G must contain a pendant vertex so that S(G) contains a corresponding newly added vertex which is a pendant vertex. Hence CP(G) = CP(S(G)). And the converse is obvious.

Theorem 13 If a graph G is copairable, then $CP(G) \subseteq CP(CS(G))$ and CS(G) is copairable if and only if v is an isolated vertex.

Proof Let G be a copairable graph. Let $V(G) = \{v_1, v_2, ..., v_n\}$ and $V(CS(G)) = \{v_1, v_2, ..., v_n; w_1, w_2, ..., w_n\}$ such that $N(w_i) =$ $N(v_i)^{c} \cap V(G)$ for i = 1, 2, ..., n. Let v_i and v_j be any two copairable vertices in G. Then $N(v_i) = N(v_i)^c$ in G. It is easy to note that $N(v_i) = N(v_i)^c$ in CS(G). Therefore, CP(G) \subseteq CP(CS(G)). Let $u, v \in CP(CS(G))$. Since the newly added vertices in the cosplitting graph are independent, then u and v both cannot be newly added vertices. We have already seen that if u and v are in V(G), then they are in CP(G). Let u' be a newly added vertex corresponding to some vertex $u \in V(G)$. We claim that v is an isolated vertex. Suppose not, then there exists a vertex w in CS(G) such that $vw \in E(G)$. Then $w \in N(u')$. Otherwise, $w \in N(u) \cap N(v)$ which is a contradiction. Now if the newly added vertex corresponding to w is w', then w' $\notin N(u)$ \cup N(v) which is a contradiction. Hence v is an isolated vertex in G. And the converse is obvious.

[5] F.Buckley and F.Harary, <u>Distance in Graphs</u>, Addison-Wesley Reading, 1990.

[6] T.W. Haynes, S.T. Hedetneimi and P.J. Slater, <u>Fundamentals</u> of domination in graphs, Marcel Dekker Inc., New York, (1998).

[7] Sampath Kumar.E, Walikar.H.B, *On the Splitting graph of a graph*, (1980), J.Karnatak Uni. Sci 25: 13.

[8] V.Swaminathan and A.Subramanian, *Neighbourhood highly irregular graphs*, International Journal of Management and Systems, 8(2): 227-231, May-August 2002.