
TF-FIU Tree Based Parallel Mining Algorithm for

Frequent Itemset Using Fi2doop framework
S.Sivaranjani

1
, R.Rajmohan

2
, D.Dinagaran

3
, P.Thirugnanam

4
, MO.Ramkumar

5

Department of Computer Science and Engineering1, 2, 3, 4, 5

IFET College of Engineering1, 2, 3, 4, 5, Villupuram, India

skgr1994@gmail.com, rjmohan89@gmail.com, ddinagaran@gmail.com, thrgnanam@gmail.com

Abstract-Existing parallel mining algorithms for
frequent itemsets lack a mechanism that enables

automatic parallelization, load balancing, data

distribution, and fault tolerance on large clusters.

Frequent Itemsets Mining (FIM) is a core problem in

association rule mining (ARM), sequence mining, and
the like. Speeding up the process of FIM is critical and

indispensable, because FIM consumption accounts for a

significant portion of mining time due to its high

computation and input/ output (I/O) intensity. Frequent

itemsets mining algorithms can be divided into two
categories, namely, Apriori and FP-growth schemes.

Apriori is a classic algorithm using the generate-and-

test process that generates a large number of candidate

itemsets. Apriori has to repeatedly scan an entire

database. Rather than considering Apriori and FP-
growth, we incorporate the TF-FIUT algorithm in the

design of our parallel FIM technique for reducing I/O

overhead and parallelize the traditional FIUT algorithm

for better performance. A pattern mining algorithm

called Fi2Doop is proposed by combining the TF-FIUT
Algorithm and i2 map reduce technique to optimize the

performance of load balancing among the cluster nodes

and avoid conditional pattern bases. Experiments using

real world data demonstrate that our proposed solution

is efficient and scalable.

Index Terms-Frequent items ultrametric

tree,Hadoop clusters,load balance,i2MapReduce.

I. INTRODUCTION

Frequent Itemsets Mining (FIM) [10] is a core

problem in association rule mining (ARM), sequence

mining, and the like. Speeding up the proces s of FIM

is critical and indispensable, because FIM

consumption accounts for a significant portion of

mining time due to its high computation and input/

output (I/O) intensity. When datasets in modern data

mining applications become excessively large,

sequential FIM algorithms running on a single

machine suffer from performance deterioration. To

address this issue, we investigate how to perform

FIM using MapReduce [9]—a widely adopted

programming model for processing big datasets by

exploiting the parallelism among computing nodes of

a cluster. We show how to distribute a large dataset

over the cluster to balance load across all cluster

nodes, thereby optimizing the performance of parallel

FIM.The main contributions of this paper are

summarized as follows.

1) We made a complete overhaul toTF-FIUT (i.e.,

the TF based frequent items ultrametric trees

method), and addressed the performance issues

of parallelizing FIUT.

2) We adopted the parallel frequent itemsets

mining method (i.e., Fi
2
Doop) using the

MapReduce programming model.

3) We proposed a data distribution scheme to

balance load among computing nodes in a

cluster.

4) We further optimized the performance of

Fi
2
Doop and reduced running time of

processing high-dimensional datasets.

5) We conducted extensive experiments using a

wide range of synthetic and real-world datasets,

and we show that Fi
2
Doop is efficient and

scalable on Hadoop clusters.

II. RELATED WORK

A Tree Partitioning Method[1] is proposed for

Memory Management in Association Rule MiningAll

methods of association rule mining require the

frequent sets of items, that occur together sufficiently

often to be the basis of potentially interesting rules, to

be first computed. The cost of this methodology

increases in proportion to the database size, and also

with its density.Densely-populated databases can

give rise to very large numbers of candidates that

must be counted.

Mining Association Rules [2]between Sets of Items

in Large Databases is proposed. A large database of

customer transactions is taken for analysis . Each

transaction consists of items purchased by a customer

in a visit. We present an efficient algorithm that

generates all significant association rules between

items in the database. The algorithm incorporates

buffer management and novel estimation and pruning

techniques. We also present results of applying this

algorithm to sales data obtained from a large retailing

company, which shows the effectiveness of the

algorithm.

Fast Algorithms for mining association rules[3]

consider the problem of discovering association rules

between items in a large database of sales

International Journal of Advanced and Innovative Research (2278-7844) / # 134 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 134

mailto:skgr1994@gmail.com
mailto:rjmohan89@gmail.com
mailto:ddinagaran@gmail.com
mailto:thrgnanam@gmail.com

transactions. They have also presented two new

algorithms for solving this problem that are

fundamentally different from the known algorithms.

Empirical evaluation shows that these algorithms

outperform the known algorithms by factors ranging

from three for small problems to more than an order

of magnitude for large problems and also show how

the best features of the two proposed algorithms can

be combined into a hybrid algorithm, called

AprioriHybrid. Scale-up experiments show that

AprioriHybrid scales linearly with the number of

transactions. AprioriHybrid also has excellent scale-

up properties with respect to the transaction size and

the number of items in the database.

Algorithms for Computing Association Rules using a

Partial-Support Tree [8]New algorithms for the

extraction of association rules from binary databases.

Most existing methods operate by generating

―candidate‖ sets, representing combinations of

attributes which may be associated, and then testing

the database to establish the degree of association.

This may involve multiple database passes, and is

also likely to encounter problems when dealing with

―dense‖ data due to the increase in the number of sets

under consideration. Our method uses a single pass of

the database to perform a partial computation of

support for all sets encountered in the database,

storing this in the form of a set enumeration tree. We

describe algorithms for generating this tree and for

using it to generate association rules.

An Efficient Algorithm of Frequent Itemsets Mining

Based on MapReduce [4]Mainstream parallel

algorithms for mining frequent itemsets (patterns)

were designed by implementing FP-Growth or

Apriori algorithms on MapReduce (MR) framework.

Existing MR FP-Growth algorithms cannot distribute

data equally among nodes, and MR Apriori

algorithms utilize multiple map/reduce procedures

and generate too many key-value pairs with value of

1; these disadvantages hinder their performance. This

paper proposes an algorithm FIMMR: it firstly mines

local frequent itemsets for each data chunk as

candidates, applies prune strategies to the candidates,

and then identifies global frequent itemsets from

candidates. Experimental results show that the time

efficiency of FIMMR outperforms PFP and SPC

significantly; and under small minimum support

threshold, FIMMR can achieve one order of

magnitude improvement than the other two

algorithms; meanwhile, the speedup of FIMMR is

also satisfactory.

III. TF-FIU TREE BASED AND

PARALLELIZE

In light of the MapReduce programming model, we

design a parallel TF based frequent itemsets mining

algorithm called Fi
2
Doop. The design goal of

Fi
2
Doop is to build a mechanism that enables

automatic parallelization, load balancing, and data

distribution for parallel mining of frequent itemsets

on large clusters.After the root is labeled as null, an

itemsetP1, p2, . . . , pm of frequent items is inserted

as a path connected by edges (p1, p2), (p2, p3), . . . ,

(pm−1, pm)without repeating nodes, beginning with

child p1 of the root and ending with leaf pm in the

tree.

An FIU-tree is constructed by inserting all itemsets

asits paths; each itemset contains the same number of

frequentitems. Thus, all of the FIU-tree leaves are

identical height. Each leaf in the FIU-tree is

composed of two fields:named item-name and count.

The count of an item-name is the number of

transactions containing the itemset that is the

sequence in a path ending with the itemname. A non-

leaf node in the FIU-tree contains two fields: named

item-name and node-link. A node-link is a pointer

linking to child nodes in the FIU-tree T. The

following algorithm is used for TF-FIU tree
generation.

1: function ALGORITHM 1(A): TF-FIUT(D, n)

2: h-itemsets = k-itemsets generation(D, MinSup);

3:for k = M down to
1
do

4: k-TF-FIU-tree = k-TF-FIU-tree generation (h

itemsets);

5: frequent k-itemsets Lk = frequent k-itemsets

generation (k-TF-FIUtree);

6:end for

7: end function

8: function ALGORITHM 1(B): K-FIU-TREE

GENERATION ((h-itemsets))

9: Create the root of a k-TF-FIU-tree, and label it as

null (temporary 0 th root)

10: for all (k + 1 ≤ h ≤ M) do

11: decompose each h-itemset into all possible k-

itemsets, and union original k-itemsets;

12: for all (k-itemset) do

13: ··· build k-TF-FIU-tree(); here, pseudo code is

omitted;

14: end for

15: end for

Algorithm TF-FIUT

International Journal of Advanced and Innovative Research (2278-7844) / # 135 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 135

IV. MAPREDUCE FRAME WORK

MapReduce [5] is a promising parallel and scalable

programmingmodel for data-intensive applications

and scientific analysis which is depicted in Fig 1. A

MapReduce program expresses a large distributed

computation as a sequence of parallel operations on

datasets of key/value pairs. A MapReduce

computation has two phases, namely, the Map and

Reduce phases. The Map phase splits the input data

into a large number of fragments, which are evenly

distributed to Map tasks across the nodes of a cluster

to process Hadoop one of the most popular

MapReduceimplementations isrunning on clusters

where Hadoop distributed file system (HDFS) stores

data to provide high aggregateI/O bandwidth. At the

heart of HDFS is a single NameNode—a master

server that manages the file system namespace and

regulates access to files. The Hadoop runtime system

establishes two processes called JobTracker and

TaskTracker. JobTracker is responsible for assigning

and scheduling tasks; each TaskTracker handles Map

or Reduce tasks assigned by JobTracker.

Fig.1 System Architecture

The decompose() function of the third MapReduce

job accomplishes the decomposition process. If the

length of an itemset is m, the time complexity of

decomposing the itemset is O(2m). Thus, the

decomposition cost is exponentially proportional to

the itemsets length step toward balancing load among

data nodes of a Hadoop cluster is to quantitatively

measure the total computing load of processing local

itemsets and optimization approach to boost the

speed of processing high-dimensional data. The flow

of map reduce framework is depicted in fig 2.

Fig.2 Flow diagram

V. MAP REDUCE BASED FI
2
DOOP

 I

2
MapReduce [6], a novel incremental processing

extension to MapReduce, the most widely used

framework for mining bigdata is used in our model.

We adopt the i2MapReduce, an extension to

MapReduce that supports fine-grain incremental

processing for both one- step and iterative

computation as shown in fig 3. Fine-grain

incremental processing is done using MRBG-Store.

General-purpose iterative computation with modest

extension is used to MapReduce API. Incremental

processing for iterative computation is also adapted.

Fig.3 I2 MapReduce

The design issues of Fi
2
Doopbuilt on the MapReduce

framework. Recall that the intermediate results

provided by the mappers in the third MapReduce job

areused to construct TF-FIU trees. The first

MapReduce job is responsible for creating all

frequent one-itemsets. A transaction database is

partitioned intomultiple input files stored by the

HDFS across data nodes of a Hadoop cluster. After

performing the combination operation, each reducer

emits key/value pairs, where the key is the number of

each itemset and the value is each itemset and its

count. The third MapReduce job is highly scalable,

because the decomposition procedure of each mapper

is independent of the other mappers. In other words,

the multiple mappers can perform the decomposition

process in parallel.

HDFS Dataset Node

N

1

N

2
N

Name

node

Trigger

Iteratin
g

Jo

b

Frequent O/P Data

integration
s

JVM

International Journal of Advanced and Innovative Research (2278-7844) / # 136 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 136

Fig.2 MapReduce based fi2Doop

VI. EXPERIMENTAL DESIGN

We evaluate the performance of Fi
2
Doop on our in-

house Hadoop cluster equipped with 16 data nodes.

Each node has an Intel Core i3 3.0 GHz processor, 4

GB MB main memory, and runs on the Ubuntu 15.10

operating system, on which Java JDK 8 and Hadoop

2.7.2 are installed. All the data nodes in the cluster

have Gigabit Ethernet using networkinterface cards

connected to Gigabit ports on the switch; the nodes

can communicate with one another the secure shell

protocol. We use the default Hadoop parameter

configurations to set the replication factor and the

number of Map and Reduce tasks.

To evaluate the performance of the proposed

Fi
2
Doop, we use both synthetic and real-world

datasets in our experiments.

1) Synthetic Dataset: We generated a series of

synthetic datasets (i.e., the D1000W datasets) using

the IBM quest market-basket synthetic data

generator, which can be configured to create a wide

range of datasets to meet the needs of various test

requirements [7]. The number of items in each

D1000W dataset is set to 1000 (represents the

number of varieties of goods);

2) Celestial Spectral Dataset: We apply Fi
2
Doop to

implement a parallel data mining application for

celestial spectral data. We use the real-world

celestial spectral dataset to evaluate speedup, load-

balancing performance, as well as the impact of

minimum support. The celestial spectral dataset

used in our experiments has 5000000 transactions

and 44 dimensions.

A. MINIMUM SUPPORT

Minimum support plays an important role in mining

frequent itemsets. We increase minimum support

thresholds from 0.001% to 0.004% with an increment

of 0.0005%, thereby evaluating the impact of

minimum support of our proposed algorithm using
both celestial spectral and synthetic datasets.

Fig.3(a) Synthetic Dataset

Fig.3(b) Celestial Dataset

Fig. 3(a)–(b) shows the execution times of the

algorithms on synthetic datasets and celestial spectral

dataset, respectively. It is evident from these

experimental results that the performance of

Fi
2
Doopis improved in the case of high-dimensional

datasets.

B. Load Balancing

Fig.4 shows the impact of workload balance metric

on running time measured in the unit of 100 sec.

International Journal of Advanced and Innovative Research (2278-7844) / # 137 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 137

Fig 4 celestial spectral dataset

In this group of experiments , we measure Fi
2
Doop

workload balance metric on a low- and high-

dimensional datasets. In the case of high-dimensional

dataset, we test our algorithms using the celestial

spectral dataset. Recall that our analysis shows that

the load balancing mechanism of the third

MapReduce job substantially improves the

performance of Fi
2
Doop.

C. Speedup

We evaluate the speedup performance of Fi
2
Doop by

increasing the number of data nodes in the test

Hadoop cluster from 10 to 35 with an increment of 5.

Fig. 5 reveals the speedup of the three schemes as a

function of the number of data nodes in the Hadoop

cluster.

Fig.5 Load balancing performance of Fi2doop

The experimental results illustrated in Fig5 shows

that the reduced amount of itemsets being handled by

each node, increases communication overhead
between mappers and reducers.

D. Scalability

In this group of experiments, we evaluate the

scalability of Fi
2
Doop when the size of input dataset

grows dramatically Fig. 6 clearly reveals that the

overall execution time of Fi
2
Doop goes up when the

input data size is sharply enlarged.

Fig.6 Scalability of Fi2Doop

VII. CONCLUSION

To solve the scalability and load balancing challenges

in the existing parallel mining algorithms for frequent

itemsets, we applied the MapReduce programming

model to develop a parallel TF based frequent

itemsets mining algorithm called Fi
2
Doop. Fi

2
Doop

incorporates the TF based frequent items ultrametric

tree or TF-FIU-tree rather than conventional FP trees,

thereby achieving compressed storage and avoiding

the necessity to build conditional pattern bases.

Fi
2
Doop seamlessly integrates three MapReduce jobs

to accomplish parallel mining of frequent itemsets.

We introduced a metric to measure the load balance

of Fi
2
Doop. As a future research direction, we will

apply this metric to investigate advanced load

balance strategies in the context of Fi
2
Doop.

References
[1] S. Ahmed, F. Coenen, and P.H. Leng: A Tree

Partitioning Method for Memory Management in

Association Rule Mining. In Proc. of Data

Warehousing and Knowledge Discovery, 6th
International Conference (DaWaK 2004), Lecture

Notes in Computer Science 3181, pp. 331–340,

Springer-Verlag 2004.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining

Association Rules between Sets of Items in Large
Databases. In Proc. of the 1993 ACM SIGMOD

Conference on Management of Data, Washington DC,

pp. 207–216 1993.

[3] R. Agrawal and R. Srikant. Fast Algorithms for

mining association rules. In Proc. VLDB’94, pp. 487–
499 1994.

[4] K.Jayasri, R.Rajmohan, D.Dinagaran, ―Analyzing the

query performances of description logic based service

matching using Hadoop‖,International Conference on

Smart Technologies and Management for Computing,
Communication, Controls, Energy and Materials

(ICSTM), DOI:10.1109/ICSTM.2015.7225382, pp. 1-

7, May, 2015.

International Journal of Advanced and Innovative Research (2278-7844) / # 138 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 138

[5] F. N. Afrati, J. D. Ullman, ―Optimizing Multiway

Joins in a Map-Reduce Environment‖, IEEE

Transactions on Knowledge and Data Engineering,
DOI: 10.1109/TKDE.2011.47, pp. 1282 – 1298, July,

2011.

[6] Yanfengzhang, Shimin Chen, Qiang Wang,

―i2MapReduce: Incremental MapReduce for Mining

Evolving Big Data‖, IEEE transaction on Knowledge
and Data engineering, Vol. 27, No.7,

DOI:10.1109/TKDE.2015.2397438, July 2015.

[7] L. Cristofor. (2001). Artool Project[J]. [Online].

Available:http://www.cs.umb.edu/laur/ARtool/,

accessed Oct. 19, 2012.
[8] G. Goulbourne, F. Coenen, and P. Leng. Algorithms

for Computing Association Rules using a Partial-

Support Tree. Journal of Knowledge-Based

Systems pp. 141–149, 13 2000.

[9] J.Dean and S.Ghemawat, ―Mapreduce:Simplified data
processing on large clusters‖, in Proc. 6th Conf. Symp.

Opera. Syst. Des. Implementation, 2004, p.10.

[10] D.Chen et al., ―Tree partition based parallel frequent

pattern mining on shared memory systems‖, in Proc.

20th IEEE Int. Parallel Distribution Process. Symp.
{1PDPS}, Rhodes Island Greece, 2006, pp. 1-8.

International Journal of Advanced and Innovative Research (2278-7844) / # 139 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 139

