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Abstract-Existing parallel mining algorithms for 
frequent itemsets lack a mechanism that enables 

automatic parallelization, load balancing, data 

distribution, and fault tolerance on large clusters. 

Frequent Itemsets Mining (FIM) is a core problem in 

association rule mining (ARM), sequence mining, and 
the like. Speeding up the process of FIM is critical and 

indispensable, because FIM consumption accounts for a 

significant portion of mining time due to its high 

computation and input/ output (I/O) intensity. Frequent 

itemsets mining algorithms can be divided into two 
categories, namely, Apriori and FP-growth schemes. 

Apriori is a classic algorithm using the generate-and-

test process that generates a large number of candidate 

itemsets. Apriori has to repeatedly scan an entire 

database. Rather than considering Apriori and FP-
growth, we incorporate the TF-FIUT algorithm in the 

design of our parallel FIM technique for reducing I/O 

overhead and parallelize the traditional FIUT algorithm 

for better performance. A pattern mining algorithm 

called Fi2Doop is proposed by combining the TF-FIUT 
Algorithm and i2 map reduce technique to optimize the 

performance of load balancing among the cluster nodes 

and avoid conditional pattern bases. Experiments using 

real world data demonstrate that our proposed solution 

is efficient and scalable. 

Index Terms-Frequent items ultrametric 

tree,Hadoop clusters,load balance,i2MapReduce. 

I. INTRODUCTION 

Frequent Itemsets Mining (FIM) [10] is a core 

problem in association rule mining (ARM), sequence 

mining, and the like. Speeding up the proces s of FIM 

is critical and indispensable, because FIM 

consumption accounts for a significant portion of 

mining time due to its high computation and input/ 

output (I/O) intensity. When datasets in modern data 

mining applications become excessively large, 

sequential FIM algorithms running on a single 

machine suffer from performance deterioration. To 

address this issue, we investigate how to perform 

FIM using MapReduce [9]—a widely adopted 

programming model for processing big datasets by 

exploiting the parallelism among computing nodes of 

a cluster. We show how to distribute a large dataset 

over the cluster to balance load across all cluster 

nodes, thereby optimizing the performance of parallel 

FIM.The main contributions of this paper are 

summarized as follows. 

1) We made a complete overhaul toTF-FIUT (i.e., 

the TF based frequent items ultrametric trees 

method), and addressed the performance issues 

of parallelizing FIUT. 

2) We adopted the parallel frequent itemsets 

mining method (i.e., Fi
2
Doop) using the 

MapReduce programming model. 

3) We proposed a data distribution scheme to 

balance load among computing nodes in a 

cluster. 

4) We further optimized the performance of 

Fi
2
Doop and reduced running time of 

processing high-dimensional datasets. 

5) We conducted extensive experiments using a 

wide range of synthetic and real-world datasets, 

and we show that Fi
2
Doop is efficient and 

scalable on Hadoop clusters. 

 

II. RELATED WORK 

A Tree Partitioning Method[1] is proposed  for 

Memory Management in Association Rule MiningAll 

methods of association rule mining require the 

frequent sets of items, that occur together sufficiently 

often to be the basis of potentially interesting rules, to 

be first computed. The cost of this  methodology 

increases in proportion to the database size, and also 

with its density.Densely-populated databases can 

give rise to very large numbers of candidates that 

must be counted. 

 

Mining Association Rules [2]between Sets of Items 

in Large Databases is proposed. A large database of 

customer transactions is taken for analysis . Each 

transaction consists of items purchased by a customer 

in a visit. We present an efficient algorithm that 

generates all significant association rules between 

items in the database. The algorithm incorporates 

buffer management and novel estimation and pruning 

techniques. We also present results of applying this 

algorithm to sales data obtained from a large retailing 

company, which shows the effectiveness of the 

algorithm. 

Fast Algorithms for mining association rules[3] 

consider the problem of discovering association rules 

between items in a large database of sales 
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transactions. They have also presented two new 

algorithms for solving this problem that are 

fundamentally different from the known algorithms. 

Empirical evaluation shows that these algorithms 

outperform the known algorithms by factors ranging 

from three for small problems to more than an order 

of magnitude for large problems and also show how 

the best features of the two proposed algorithms can 

be combined into a hybrid algorithm, called 

AprioriHybrid. Scale-up experiments show that 

AprioriHybrid scales linearly with the number of 

transactions. AprioriHybrid also has excellent scale-

up properties with respect to the transaction size and 

the number of items in the database. 

 

Algorithms for Computing Association Rules using a 

Partial-Support Tree [8]New algorithms for the 

extraction of association rules from binary databases. 

Most existing methods operate by generating 

―candidate‖ sets, representing combinations of 

attributes which may be associated, and then testing 

the database to establish the degree of association. 

This may involve multiple database passes, and is 

also likely to encounter problems when dealing with 

―dense‖ data due to the increase in the number of sets 

under consideration. Our method uses a single pass of 

the database to perform a partial computation of 

support for all sets encountered in the database, 

storing this in the form of a set enumeration tree. We 

describe algorithms for generating this tree and for 

using it to generate association rules. 

 

An Efficient Algorithm of Frequent Itemsets Mining 

Based on MapReduce [4]Mainstream parallel 

algorithms for mining frequent itemsets (patterns) 

were designed by implementing FP-Growth or 

Apriori algorithms on MapReduce (MR) framework. 

Existing MR FP-Growth algorithms cannot distribute 

data equally among nodes, and MR Apriori 

algorithms utilize multiple map/reduce procedures 

and generate too many key-value pairs with value of 

1; these disadvantages hinder their performance. This 

paper proposes an algorithm FIMMR: it firstly mines 

local frequent itemsets for each data chunk as 

candidates, applies prune strategies to the candidates, 

and then identifies global frequent itemsets from 

candidates. Experimental results show that the time 

efficiency of FIMMR outperforms PFP and SPC 

significantly; and under small minimum support 

threshold, FIMMR can achieve one order of 

magnitude improvement than the other two 

algorithms; meanwhile, the speedup of FIMMR is 

also satisfactory. 

 

 

III. TF-FIU TREE BASED AND  

PARALLELIZE 

In light of the MapReduce programming model, we 

design a parallel TF based frequent itemsets mining 

algorithm called Fi
2
Doop. The design goal of 

Fi
2
Doop is to build a mechanism that enables 

automatic parallelization, load balancing, and data 

distribution for parallel mining of frequent itemsets 

on large clusters.After the root is labeled as null, an 

itemsetP1, p2, . . . , pm of frequent items is inserted 

as a path connected by edges (p1, p2), (p2, p3), . . . , 

(pm−1, pm)without repeating nodes, beginning with 

child p1 of the root and ending with leaf pm in the 

tree.  

 

An FIU-tree is constructed by inserting all itemsets 

asits paths; each itemset contains the same number of 

frequentitems. Thus, all of the FIU-tree leaves are 

identical height. Each leaf in the FIU-tree is 

composed of two fields:named item-name and count. 

The count of an item-name is the number of 

transactions containing the itemset that is the 

sequence in a path ending with the itemname. A non-

leaf node in the FIU-tree contains two fields: named 

item-name and node-link. A node-link is a pointer 

linking to child nodes in the FIU-tree T. The 

following algorithm is used for TF-FIU tree 
generation. 

 
1: function ALGORITHM 1(A): TF-FIUT(D, n) 

2: h-itemsets = k-itemsets generation(D, MinSup); 

3:for k = M down to 
1
do 

4: k-TF-FIU-tree = k-TF-FIU-tree generation (h 

itemsets); 

5: frequent k-itemsets Lk = frequent k-itemsets 

generation (k-TF-FIUtree); 

6:end for 

7: end function 

8: function ALGORITHM 1(B): K-FIU-TREE 

GENERATION ((h-itemsets)) 

9: Create the root of a k-TF-FIU-tree, and label it as 

null (temporary 0 th root) 

10: for all (k + 1 ≤ h ≤ M) do 

11: decompose each h-itemset into all possible k- 

itemsets, and union original k-itemsets; 

12: for all (k-itemset) do 

13: ··· build k-TF-FIU-tree( ); here, pseudo code is 

omitted; 

14: end for 

15: end for 

 

                                                                 
 

Algorithm TF-FIUT 
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IV. MAPREDUCE FRAME WORK 

MapReduce [5] is a promising parallel and scalable 

programmingmodel for data-intensive applications 

and scientific analysis  which is depicted in Fig 1. A 

MapReduce program expresses a large distributed 

computation as a sequence of parallel operations on 

datasets of key/value pairs. A MapReduce 

computation has two phases, namely, the Map and 

Reduce phases. The Map phase splits the input data 

into a large number of fragments, which are evenly 

distributed to Map tasks across the nodes  of a cluster 

to process Hadoop one of the most popular 

MapReduceimplementations isrunning on clusters 

where Hadoop distributed file system (HDFS) stores 

data to provide high aggregateI/O bandwidth. At the 

heart of HDFS is a single NameNode—a master 

server that manages the file system namespace and 

regulates access to files. The Hadoop runtime system 

establishes two processes called JobTracker and 

TaskTracker. JobTracker is responsible for assigning 

and scheduling tasks; each TaskTracker handles Map 

or Reduce tasks assigned by JobTracker. 

 
Fig.1 System Architecture 

 

The decompose() function of the third MapReduce 

job accomplishes the decomposition process. If the 

length of an itemset is m, the time complexity of 

decomposing the itemset is O(2m). Thus, the 

decomposition cost is exponentially proportional to 

the itemsets length step toward balancing load among 

data nodes of a Hadoop cluster is to quantitatively 

measure the total computing load of processing local 

itemsets and optimization approach to boost the 

speed of processing high-dimensional data. The flow 

of map reduce framework is depicted in fig 2. 

 
 

Fig.2 Flow diagram 

V. MAP REDUCE BASED FI
2
DOOP 

 
 I

2
MapReduce [6], a novel incremental processing 

extension to MapReduce, the most widely used 

framework for mining bigdata is used in our model. 

We adopt the i2MapReduce, an extension to 

MapReduce that supports fine-grain incremental 

processing for both one- step and iterative 

computation as shown in fig 3. Fine-grain 

incremental processing is done using MRBG-Store. 

General-purpose iterative computation with modest 

extension is used to MapReduce API. Incremental 

processing for iterative computation is also adapted. 

 

 
 

Fig.3 I2 MapReduce 

The design issues of Fi
2
Doopbuilt on the MapReduce 

framework. Recall that the intermediate results 

provided by the mappers in the third MapReduce job 

areused to construct TF-FIU trees. The first 

MapReduce job is responsible for creating all 

frequent one-itemsets. A transaction database is 

partitioned intomultiple input files stored by the 

HDFS across data nodes of a Hadoop cluster. After 

performing the combination operation, each reducer 

emits key/value pairs, where the key is the number of 

each itemset and the value is each itemset and its 

count. The third MapReduce job is highly scalable, 

because the decomposition procedure of each mapper 

is independent of the other mappers. In other words, 

the multiple mappers can perform the decomposition 

process in parallel. 
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Fig.2 MapReduce based fi2Doop 

 

VI. EXPERIMENTAL DESIGN 

We evaluate the performance of Fi
2
Doop on our in-

house Hadoop cluster equipped with 16 data nodes. 

Each node has an Intel Core i3 3.0 GHz processor, 4 

GB MB main memory, and runs on the Ubuntu 15.10 

operating system, on which Java JDK 8 and Hadoop 

2.7.2 are installed. All the data nodes in the cluster 

have Gigabit Ethernet using networkinterface cards 

connected to Gigabit ports on the switch; the nodes 

can communicate with one another the secure shell 

protocol. We use the default Hadoop parameter 

configurations to set the replication factor and the 

number of Map and Reduce tasks. 
 

To evaluate the performance of the proposed 

Fi
2
Doop, we use both synthetic and real-world 

datasets in our experiments. 

1) Synthetic Dataset: We generated a series of 

synthetic datasets (i.e., the D1000W datasets) using 

the IBM quest market-basket synthetic data 

generator, which can be configured to create a wide 

range of datasets to meet the needs of various test 

requirements [7]. The number of items in each 

D1000W dataset is set to 1000 (represents the 

number of varieties of goods);  

2) Celestial Spectral Dataset: We apply Fi
2
Doop to 

implement a parallel data mining application for 

celestial spectral data. We use the real-world 

celestial spectral dataset to evaluate speedup, load-

balancing performance, as well as the impact of 

minimum support. The celestial spectral dataset 

used in our experiments has 5000000 transactions 

and 44 dimensions. 

 
A. MINIMUM SUPPORT 

Minimum support plays an important role in mining 

frequent itemsets. We increase minimum support 

thresholds from 0.001% to 0.004% with an increment 

of 0.0005%, thereby evaluating the impact of 

minimum support of our proposed algorithm using 
both celestial spectral and synthetic datasets. 

 
Fig.3(a) Synthetic Dataset 

 

 
Fig.3(b) Celestial Dataset 

 

Fig. 3(a)–(b) shows the execution times of the 

algorithms on synthetic datasets and celestial spectral 

dataset, respectively. It is evident from these 

experimental results that the performance of 

Fi
2
Doopis improved in the case of high-dimensional 

datasets. 
 

B. Load Balancing 

Fig.4 shows the impact of workload balance metric 

on running time measured in the unit of 100 sec. 
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Fig 4 celestial spectral dataset 

 

In this group of experiments , we measure Fi
2
Doop 

workload balance metric on a low- and high-

dimensional datasets. In the case of high-dimensional 

dataset, we test our algorithms using the celestial 

spectral dataset. Recall that our analysis shows that 

the load balancing mechanism of the third 

MapReduce job substantially improves the 

performance of Fi
2
Doop. 

 
C. Speedup 

We evaluate the speedup performance of Fi
2
Doop by 

increasing the number of data nodes in the test 

Hadoop cluster from 10 to 35 with an increment of 5. 

Fig. 5 reveals the speedup of the three schemes as a 

function of the number of data nodes in the Hadoop 

cluster. 

 

Fig.5 Load balancing performance of Fi2doop 

The experimental results illustrated in Fig5 shows 

that the reduced amount of itemsets being handled by 

each node, increases communication overhead 
between mappers and reducers. 

D. Scalability 

In this group of experiments, we evaluate the 

scalability of Fi
2
Doop when the size of input dataset 

grows dramatically Fig. 6 clearly reveals that the 

overall execution time of Fi
2
Doop goes up when the 

input data size is sharply enlarged. 

 

 
 

Fig.6 Scalability of Fi2Doop 
 
 

VII. CONCLUSION 

To solve the scalability and load balancing challenges 

in the existing parallel mining algorithms for frequent 

itemsets, we applied the MapReduce programming 

model to develop a parallel TF based frequent 

itemsets mining algorithm called Fi
2
Doop. Fi

2
Doop 

incorporates the TF based frequent items ultrametric 

tree or TF-FIU-tree rather than conventional FP trees, 

thereby achieving compressed storage and avoiding 

the necessity to build conditional pattern bases. 

Fi
2
Doop seamlessly integrates three MapReduce jobs 

to accomplish parallel mining of frequent itemsets. 

We introduced a metric to measure the load balance 

of Fi
2
Doop. As a future research direction, we will 

apply this metric to investigate advanced load 

balance strategies in the context of Fi
2
Doop. 

 

References 
[1] S. Ahmed, F. Coenen, and P.H. Leng: A Tree 

Partitioning Method for Memory Management in 

Association Rule Mining. In Proc. of Data 

Warehousing and Knowledge Discovery, 6th 
International Conference (DaWaK 2004), Lecture 

Notes in Computer Science 3181, pp. 331–340, 

Springer-Verlag 2004. 

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining 

Association Rules between Sets of Items in Large 
Databases. In Proc. of the 1993 ACM SIGMOD 

Conference on Management of Data, Washington DC, 

pp. 207–216 1993. 

[3] R. Agrawal and R. Srikant. Fast Algorithms for 

mining association rules. In Proc. VLDB’94, pp. 487–
499 1994. 

[4] K.Jayasri, R.Rajmohan, D.Dinagaran, ―Analyzing the 

query performances of description logic based service 

matching using Hadoop‖,International Conference on 

Smart Technologies and Management for Computing, 
Communication, Controls, Energy and Materials 

(ICSTM), DOI:10.1109/ICSTM.2015.7225382, pp. 1-

7, May, 2015. 

International Journal of Advanced and Innovative Research (2278-7844) / # 138 / Volume 5 Issue 3

   © 2016 IJAIR. All Rights Reserved                                                                                138



[5] F. N. Afrati,  J. D. Ullman, ―Optimizing Multiway 

Joins in a Map-Reduce Environment‖, IEEE 

Transactions on Knowledge and Data Engineering, 
DOI: 10.1109/TKDE.2011.47, pp. 1282 – 1298, July, 

2011. 

[6] Yanfengzhang, Shimin Chen, Qiang Wang, 

―i2MapReduce: Incremental MapReduce for Mining 

Evolving Big Data‖, IEEE transaction on Knowledge 
and Data engineering, Vol. 27, No.7, 

DOI:10.1109/TKDE.2015.2397438, July 2015.      

[7] L. Cristofor. (2001). Artool Project[J]. [Online]. 

Available:http://www.cs.umb.edu/laur/ARtool/, 

accessed Oct. 19, 2012. 
[8] G. Goulbourne, F. Coenen, and P. Leng. Algorithms 

for Computing Association Rules using a Partial-

Support Tree. Journal of Knowledge-Based 

Systems pp. 141–149, 13 2000.  

[9] J.Dean and S.Ghemawat, ―Mapreduce:Simplified data 
processing on large clusters‖, in Proc. 6th Conf. Symp. 

Opera. Syst. Des. Implementation, 2004, p.10. 

[10] D.Chen et al., ―Tree partition based parallel frequent 

pattern mining on shared memory systems‖, in Proc. 

20th IEEE Int. Parallel Distribution Process. Symp. 
{1PDPS}, Rhodes Island Greece, 2006, pp. 1-8. 

 

International Journal of Advanced and Innovative Research (2278-7844) / # 139 / Volume 5 Issue 3

   © 2016 IJAIR. All Rights Reserved                                                                                139


