Zero –Free Regions of Analytic Functions with Restricted Coefficients

M.H. Gulzar 1 **, A.W.Manzoor** 2 *Department of Mathematics, University of Kashmir, Srinagar, India Jammu and Kashmir, India [1 gulzarmh@gmail.com](mailto:gulzarmh@gmail.com) [2 manzoorw9@gmail.com](mailto:manzoorw9@gmail.com)*

Abstract: **In this paper we find bounds for the zeros of an analytic function by putting certain conditions on its coefficients.**

Mathematics Subject Classification: 30C10, 30C15. Key Words and Phrases: **Bound, coefficients, Polynomial, Zeros.**

1. Introduction

An elegant result in the theory of distribution of zeros of polynomials is the following theorem known as Enestrom-Kakeya Theorem[4]:

Theorem A: Let
$$
P(z) = \sum_{j=0}^{n} a_j z^j
$$
 be a polynomial

of degree n such that

$$
a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0
$$
.

Then all the zeros of P(z) lie in $|z| \leq 1$.

Aziz and Mohammad [1] extended the above theorem to a class of analytic functions \sum^{∞} = $=$ 0 (z) *j j* $f(z) = \sum a_j z^j$ (not identically equal to zero) with

its coefficients satisfying an Enestrom-Kakeya type condition. In fact, they proved the following result:

Theorem B: Let
$$
f(z) = \sum_{j=0}^{\infty} a_j z^j
$$
 (not identically

equal to zero) be analytic in $|z| \le t$. If $a_j > 0$ and

 $a_{j-1} - ta_j \ge 0, j = 1,2,3,......$, then f(z) does not vanish in $|z| < t$.

Aziz and Shah [2] gave a generalization of Theorem B and proved the following result:

Theorem C: Let $f(z) = \sum^{\infty}$ - $=$ 0 (z) *j j* $f(z) = \sum a_j z^j$ (not identically

equal to zero) be analytic in $|z| \le t$. If for some $k \geq 1$

$$
ka_0 \ge ta_1 \ge t^2 a_2 \ge \dots \dots,
$$

then f(z) does not vanish in

$$
\left|z - \left(\frac{k-1}{2k-1}\right)t\right| \le \frac{kt}{2k-1}.
$$

Shah and Liman [5] extended Theorem C to functions with complex coefficients and proved the following:

Theorem D: Let $f(z) = \sum^{\infty}$ = $=$ 0 (z) *j j* $f(z) = \sum a_j z^j$ (not identically equal to zero) be analytic in $|z| \le t$. If for some

$$
k\geq\!1
$$

$$
k|a_0| \ge t|a_1| \ge t^2|a_2| \ge \dots \dots,
$$

and for some real α, β ,

$$
|\arg a_j - \beta| \le \alpha \le \frac{\pi}{2}, j = 0,1,2,......
$$

then f(z) does not vanish in

$$
\left|z - \frac{(k-1)t}{M^2 - (k-1)^2}\right| \le \frac{Mt}{M^2 - (k-1)^2},
$$

where

$$
M = k(\cos\alpha + \sin\alpha) + 2\frac{\sin\alpha}{|a_0|}\sum_{j=1}^{\infty}|a_j|t^j.
$$

In this paper we prove the following results:

Theorem 1: Let $f(z) = \sum^{\infty}$ $=$ $=$ 0 (z) *j j* $f(z) = \sum a_j z^j$ (not identically equal to zero) be analytic in $|z| \le t$. If for some $k < 1$

$$
k|a_0| \le t|a_1| \le t^2|a_2| \le \dots \dots,
$$

and for some real α, β ,

$$
|\arg a_j - \beta| \le \alpha \le \frac{\pi}{2}, j = 0,1,2,......
$$

then f(z) does not vanish in

$$
\left|z - \frac{(k-1)t}{M^2 - (k-1)^2}\right| \le \frac{Mt}{M^2 - (k-1)^2},
$$

where

$$
M = k(\sin\alpha - \cos\alpha) + 2\frac{\sin\alpha}{|a_0|}\sum_{j=1}^{\infty}|a_j|t^j.
$$

Theorem 2: Let $f(z) = \sum^{\infty}$ $=$ $=$ 0 (z) *j j* $f(z) = \sum a_j z^j$ (not identically equal to zero) be analytic in $|z| \le t$. If for some

$$
k\leq 1,
$$

$$
k|a_0| \le t|a_1| \le t^2|a_2| \le \dots \le t^{\lambda}|a_{\lambda}|
$$

\n
$$
\ge t^{\lambda+1}|a_{\lambda+1}| \ge \dots \dots,
$$

\nand for some real α, β ,

$$
|\arg a_j - \beta| \le \alpha \le \frac{\pi}{2}, j = 0,1,2,......
$$

then f(z) does not vanish in

$$
\left|z - \frac{(k-1)t}{M'^2 - (k-1)^2}\right| \le \frac{M't}{M'^2 - (k-1)^2},
$$

where

$$
M' = (2t^{\lambda} \left| \frac{a_{\lambda}}{a_0} \right| - k) \cos \alpha + k \sin \alpha + 2 \frac{\sin \alpha}{|a_0|} \sum_{j=1}^{\infty} |a_j| t^j + t^{\lambda+1} \{ (t | a_{\lambda+1} | - | a_{\lambda} |) \cos \alpha + (t | a_{\lambda+1} | - | a_{\lambda} |) \sin \alpha \} + \dots
$$

2. Lemma

For the proofs of the above results , we need the following lemma due to Govil and Rahman [3]:

Lemma: If b_1 , b_2 are real numbers such that $b_1 \geq b_2$ and for some real α, β ,

$$
\left|b_j-\beta\right|\leq\alpha\leq\frac{\pi}{2},\,j=1,2\,.
$$

Then

$$
|b_1 - b_2| \le (|b_1| - |b_2|) \cos \alpha + (|b_1| + |b_2|) \sin \alpha.
$$

3. Proofs of Theorems

Proof of Theorem1: Since $f(z) = \sum^{\infty}$ \overline{a} $=$ 0 (z) *j j* $f(z) = \sum a_j z^j$ is analytic in $|z| \le t$, we have $\lim_{j \to \infty} a_j z^j = 0$. Now consider the function

$$
F(z) = (t - z) f(z) = (t - z) (a0 + a1z + a2z2 +)
$$

$$
= ta_0 + (ta_1 - a_0)z + (ta_2 - a_1)z^2 + \dots
$$

$$
= ta_0 - a_0z + ka_0z - (ka_0 - ta_1)z + \sum_{j=2}^{\infty} (ta_j - a_{j-1})t^j
$$

$$
= ta_0 - a_0z + ka_0z + G(z)
$$

where

$$
G(z) = -(ka_0 - ta_1)z + \sum_{j=2}^{\infty} (ta_j - a_{j-1})z^j.
$$

For $|z| = t$, we have by using the hypothesis and the above lemma,

$$
|G(z)| \le |ka_0 - ta_1| + \sum_{j=2}^{\infty} |ta_j - a_{j-1}|^{j}
$$

$$
\leq t(t|a_1| - k|a_0|)\cos\alpha + t(t|a_1| + k|a_0|)\sin\alpha
$$

+
$$
t^2
$$
{ $(t|a_2|-|a_1|)\cos\alpha + (t|a_2|+|a_1|\sin\alpha$
+ t^3 { $(t|a_3|-|a_2|\cos\alpha + (t|a_3|+|a_2|\sin\alpha) + ...$
+ t^3 { $(t|a_3|-|a_{\lambda-1}|\cos\alpha + (t|a_{\lambda}|-|a_{\lambda-1}|\sin\alpha)$
+ $t^{\lambda+1}$ { $(t|a_{\lambda+1}|-|a_{\lambda}|\cos\alpha + (t|a_{\lambda+1}|-|a_{\lambda}|\sin\alpha) + ...$

$$
= t|a_0|[k(\sin\alpha - \cos\alpha) + 2\frac{\sin\alpha}{|a_0|}\sum_{j=1}^{\infty}|a_j|t^j]
$$

= $t|a_0|M$

Since G(z) is analytic for $|z| \le t$, G(0)=0, it follows by Schwarz lemma that

$$
|G(z)| \le t |a_0|M|z| \quad \text{for} \quad |z| \le t.
$$

Hence, for $|z| \leq t$

$$
|F(z)| = |ta_0 - a_0z + ka_0z + G(z)|
$$

\n
$$
\ge |ta_0 - a_0z + ka_0z| - |G(z)|
$$

\n
$$
\ge |a_0|[|(k-1)z + t| - tM|z|]
$$

\n
$$
> 0
$$

\nif

if

$$
tM|z|<|(k-1)z+t|.
$$

It can be easily verified that the above region is precisely the disk

$$
\left|z-\frac{(k-1)t}{M^2-(k-1)^2}\right|<\frac{Mt}{M^2-(k-1)^2}.
$$

Thus, it follows that $F(z)$ and hence $f(z)$ does not vanish in

$$
\left|z - \frac{(k-1)t}{M^2 - (k-1)^2}\right| < \frac{Mt}{M^2 - (k-1)^2}
$$

and the proof of the theorem is complete.

Proof of Theorem 2: As in the proof of theorem 1, we have for $|z| \leq t$,

$$
|G(z)| \le t(t|a_1| - k|a_0|)\cos\alpha + t(t|a_1| + k|a_0|)\sin\alpha
$$

+*t*²{
$$
(t|a_2|-|a_1|)\cos\alpha + (t|a_2|+|a_1|\sin\alpha
$$

+*t*³{ $(t|a_3|-|a_2|\cos\alpha + (t|a_3|+|a_2|\sin\alpha) + ...$
+*t*³{ $(t|a_3|-|a_{\lambda-1}|\cos\alpha + (t|a_3|-|a_{\lambda-1}|\sin\alpha) + t^{\lambda+1}\{(|a_{\lambda}|-t|a_{\lambda+1}|\cos\alpha + (|a_{\lambda}|-t|a_{\lambda+1}|\sin\alpha) + ...$

$$
= t|a_0|[2\frac{t^{\lambda}}{|a_0|} - k)\cos\alpha + k\sin\alpha + 2\frac{\sin\alpha}{|a_0|}\sum_{j=1}^{\infty}|a_j|t^j]
$$

= $t|a_0|M'.$

Hence , as in the proof of Theorem 1, it follows that $F(z)$ and hence $f(z)$ does not vanish in

$$
\left|z - \frac{(k-1)t}{M'^2 - (k-1)^2}\right| < \frac{M't}{M'^2 - (k-1)^2}
$$

and the proof of theorem 2 is complete.

References

[1] A. Aziz and Q. G. Mohammad*, On the Zeros of Certain Class of Polynomials and Related Analytic Functions,* Journal of Mathematical Analysis and Applications, 75(1980), 495-502.

[2] A. Aziz and W.M. Shah, *On the Zeros of Polynomials and Related Analytic Functions,* Glasnik Mathematicki, 33(1998), 173-184.

[3] N. K. Govil and Q. I. Rahman, *On the Enestrom-Kakeya Theorem,* Tohuku Mathematical Journal, 20(1968), 126-136.

[4] M. Marden, *Geometry of Polynomials,* Math. Surveys No. 3, Amer. Math. Soc., Providence RI, 1966.

[5] W. M. Shah and A. Liman, *On Enestrom- Kakeya Theorem and Related Analytic Functions,* Proceedings of the Indian Avademy of Sciences(Math Science), 117(3) (2007), 359-370.