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1. Introduction 

An elegant result in the theory of distribution of zeros 

of polynomials is the following theorem known as 

Enestrom-Kakeya Theorem[4]: 

Theorem A: Let 
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of degree n such that 
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Then all the zeros of P(z) lie in 1z . 

Aziz and Mohammad [1] extended the above theorem 

to a class of analytic functions 
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j zazf (not identically equal to zero) with 

its coefficients satisfying an Enestrom-Kakeya type 

condition. In fact, they proved the following result: 

Theorem B: Let 
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vanish in tz  . 

Aziz and Shah [2] gave a generalization of Theorem 

B and proved the following result: 

Theorem C: Let 
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Shah and Liman [5] extended Theorem C to 

functions with complex coefficients and proved the 

following: 

Theorem D: Let 
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and for some real  , , 
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then f(z) does not vanish in  
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In this paper we prove the following results: 

Theorem 1: Let 
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equal to zero) be analytic in tz  . If for some 
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and for some real  , , 
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Theorem 2: Let 
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and for some real  , , 
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then f(z) does not vanish in  
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2. Lemma 

For the proofs of the above results , we need the 

following lemma due to Govil and Rahman [3]: 

Lemma: If 21 ,bb are real numbers such that 

21 bb   and for some real  , , 
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2

 jb j


 . 

Then 

                       

 sin)(cos)( 212121 bbbbbb  . 

 

3. Proofs of Theorems 

Proof of Theorem1: Since 
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Now consider the function 
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For tz  , we have by using the hypothesis and the 

above lemma, 
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Since G(z) is analytic for tz  ,G(0)=0, it follows 

by Schwarz lemma that  

                   zMatzG 0)(     for  tz  . 
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Hence , for tz   
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It  can be easily verified that the above region is 

precisely the disk 
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Thus , it follows that F(z) and hence f(z) does not 

vanish in 
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and the proof of the theorem is complete. 

Proof of Theorem 2: As in the proof of theorem 1, 

we have for tz  , 
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Hence , as in the proof of Theorem 1,  it follows that 

F(z) and hence f(z) does not vanish in 
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and the proof of  theorem 2 is complete. 
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