
Use of UML Activity Diagram for Generation of Test Cases
1Satinder Kaur, 2Prof. Rasbir Singh

1M.Tech Student, 2Assistant Professor

1,2 Computer Science Department

RIMT-IET, Mandi Gobindgarh, PTU

Satinderkaur988@gmail.com

Rasbir.rai@gmail.com

Abstract- Object-Oriented program have changed the scenario of

software development industry in terms of software development

and its supporting technology. UML, which supports object-

oriented technology, is widely used to describe the analysis and

design specifications of software development. UML models are

an important source of information for test case design. So, new

testing techniques and practices including international

standards for specifying how systems should work - such as

Unified Modeling Language (UML) - have been established.

Therefore, a new technique is presented for generating test cases

for object oriented system using UML models. This technique is

helpful in generating more test cases which will cover maximum

aspects of the system. With the help of test cases chances of

finding a bug is more. Means, generation of test cases is the most

important issue in the software testing. Thus test cases need to be

carefully designed. Test cases can be generated manually or

automatically. Our focus is to generate test cases automatically by

using UML Activity diagram. Activity diagrams are even more

challenging for creating test cases. The test cases thus generated

are suitable for dynamic testing of system. The proposed

approach is to automate the generation of test scenarios from

activity diagram using DFS and BFS method. By using these two

methods, the useless test paths are eliminated which in turn

reduces the time complexity. This approach also helps in

synchronization between various activities. This approach was

found to be effective in reducing the time complexity also.

Keywords- Software testing, Activity diagram, UML models,

UML language and test cases.

I. INTRODUCTION

Software Testing is the process of executing a program with

the intention of finding errors [1]. Day by day with increasing

functionality of software has caused increasing the complexity

and size of software applications. Due to this reason more

emphasis has been sited on object oriented design strategy to

cut down software cost and boost software reusability [2].

Every software code has been reviewed and verified through

SQA activities but these activities are not sufficient. Every

time the software delivered to the client has been thoroughly

tested by client before sending it to the production. Thus

developer has to test the software before it gets to the client.

Testing has been generally performed by three ways: white-

box testing, black box testing and gray-box testing [3-4]. The

testing techniques discussed so far is good to test software

what it was supposed to do but it will not test what is missing

in software code. From last few years there has been slow

development made to the testing of object-oriented systems.

One innovative approach is to use UML models for test cases

generation. This approach can lead to find out faults in the

design phase prior to the development phase and thus causes

correction of faults in early life cycle stages of software. This

type of testing comes under the category of gray-box testing

[5-9]. UML models are nothing but diagrammatical

representation of specification document. UML models can be

used as a base to derive test cases and to develop testing

environments. However, using UML models to derive test

case is not an easy task [10-11]. It is cumbersome for

generating test models like control flow graph for an object

oriented system. The UML Activity diagram is used for

modeling discrete behavior of an object [12]. An activity

diagram consists of flowchart for various activities with

transition among them. It states the internal behavior of an

operation of the system. An activity diagram is used for

modeling the dynamic aspects of the system. Activity diagram

is a kind of procedural flow chart. It helps in visualizing the

sequence of activities involved in a control flow. An activity

diagram emphasize on the sequential or concurrent flow path

from activity to activity. It discusses the ordering of the

activities [13].

II. RELATED WORK

Lot of work has been done on generating test cases from UML

diagram. John D. McGregor, David A. Sykes presented a

work to generate test cases on the basis of class diagram [14].

UML diagrams are broadly classified into two:

 Structure diagrams

 Behavior diagrams

The structure diagrams mainly focus on the static structural

design of the system, so that they are used exclusively in

documenting the software architectural design. Structure

diagrams contain diagrams like class, component, deployment

etc.

The Behavior diagrams are the diagrams which are having the

dynamic structure, so that they are dynamic in nature and also

it consists of diagrams like sequence, use case, activity etc.

UML has another set of diagrams, interaction diagrams which

is an interaction involved. It consists of diagrams like

sequence, communication, interaction overview and timing

[15].Since UML diagrams are always more abstract and

provides ease to generate test cases than control flow graphs

so researchers have started using UML diagrams to generate

International Journal of Advanced and Innovative Research (2278-7844) / # 96 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 96

mailto:Satinderkaur988@gmail.com
mailto:Rasbir.rai@gmail.com

automated test cases from UML diagrams. Philip Samuel,

Rajib Mall and Sandeep Sahoo have presented a novel testing

methodology to test object-oriented software based on UML

diagrams [16].It is also true that sometimes testing is

mistakenly considered not a resource-intensive activity, which

does not require any supportive tools. One survey has done on

automated test case generation techniques categorized under

specification based test case generation and model base test

case generation. They also touched on few other approaches

for generating test cases as path oriented test case generation

and intelligent techniques [17].During the last 10-15 years

many studies have been conducted and tools developed, where

elements of above mentioned methods are implemented. Thus

dynamic methods with elements of formal methods were

distinguished: model driven testing, runtime verification and

passive testing [18]. The time reviews’ effectiveness is highly

dependent on experience and motivation, as well as process

organization and interaction between participants [19].Again a

method is introduced by Korel by using function minimization

method in the context of unit testing of procedural programs.

He generated test data based on actual execution of the

program under test using the function minimization method

and dynamic data flow analysis. Test data are developed for

the program using actual values of input variables. If during a

program execution an undesirable execution flow is observed

(e.g. the „actual‟ path does not correspond to the selected

control path), then the function minimization search algorithm

is used to automatically locate the values of input variables for

which the selected path is traversed. In addition, dynamic data

flow analysis is used to determine those input variables

responsible for undesirable program behavior, leading to

significant speedup of the search process [15]. But this paper

shows how test cases are generated from Activity diagram to

represent the behavior of the system. If all test cases consider

all scenario of the situation then only system can give better

results.

III. Implementation of proposed work

The proposed work is to generate test cases from UML

activity diagram using BFS and DFS method which will help

in eliminating useless test cases and generate the useful test

paths with reducing the complexity of time. This approach

also helps in synchronization between activities. This

approach is implemented on JDK 7 version and used the Net

beans framework of 6.7.1version. This approach will consider

pre conditions, post conditions, input, output and tesecase

ID’s which will include all aspects of the system to improve

the efficiency and effectiveness of the system.

First step will be implemented with the help of Unified

Modeling Language (UML).

Second step will be generated with the help of some pre

defined mapping rules. These pre defined mapping rules will

help in converting UML activity diagram into an Activity

graph.

After that, the Activity graph will help in generating the test

paths or test cases. With the help of this java code it is easy to

generate test cases of the system.

A Functional Diagram of proposed work

The Flow Chart shown by Fig 1 describes the proper working

and easy understandable of the proposed approach. Means,

how UML diagrams are helpful in generating test cases which

will cover maximum cases of failures. It also shows that how

the results are obtained from UML Activity diagrams.

Fig.1 Functional Diagram of each task

B Activity Diagram for online shopping

Fig.2 Activity diagram

International Journal of Advanced and Innovative Research (2278-7844) / # 97 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 97

C Converting Activity diagram to Activity graph

Fig.4 Activity graph

D Algorithm for test case generation

D Valid Paths

Table 1: Valid Paths

E Generated Test cases

Table 2: Test cases

IV. CONCLUSION

As the demand of the new software increase in the current

field of software engineering, new techniques and methods

are needed for fulfilling the needs of the market. In order to

make this possible in the case of design model, an approach

for using the UML Activity diagram is used. The proposed

approach can generate efficient test cases with lesser effort

using an UML activity diagram. This helps in saving time and

increases the quality of generated test cases. The overall

testing process performance can be improved using this

International Journal of Advanced and Innovative Research (2278-7844) / # 98 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 98

approach. In this activity graph is generated from the Activity

diagram by using some mapping rules . Then the proposed

technique uses only activity graph as input. It generates the

number of possible outcomes as an output which will help in

generating the test cases. This algorithm is used for traversing

Activity graph in order to extract all the possible test paths.

The proposed algorithm is based on DFS and BFS method. It

helps in reducing time, effort, and cost consumption.

References
[1] Myers, Glenford J. The art of software testing / Glenford J. Myers

; Revised and updated by Tom Badgett and Todd Thomas, with

Corey Sandler.—2nd ed.p.cm. ISBN 0-471-46912-2 pp 6 Vol. 2, No.

2, pp. 79–93/doi: 10.1049/iet-sen: 20060061.

[2] H.-G. Gross. Measuring Evolutionary Testability of Real-Time

Software.PhD thesis, University of Glamorgan, Pontypridd, Wales,

UK, June2000.

[3] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li

Xuandong and ZhengGuoliang ―Generating Test Cases from UML

Activity Diagram based on Gray-Box Method‖ Proceedings of the

11th Asia-Pacific Software Engineering Conference (APSEC’04) pp

284-291

[4] R. S. Pressman. ―Software Engineering: A Practitioner’s

Approach‖, 6rd Edition, McGraw Hill, New York, 2005, pp. 424,

434, 449.

[5] A. Abdurazik and J. Offutt. ―Using UML collaboration diagrams

for static checking and test Generation‖.In International Conference

on the Unified Modeling Language (UML 2000), York, UK, October

2000, pp 383- 395

[6] J. Hartmann, C. Imoberdorf, and M. Meisinger.―UML-based

integration testing‖. In International Symposium on Software Testing

and Analysis (ISSTA 2000), Portland, USA, August 2000, pp 60 -70

[7] R. Heckel and M. Lohmann.―Towards model-driven testing‖.

Electronic Notes In Theoretical Computer Science, 82(6), 2003, pp

33-43

[8] Y.G. Kim, H.S. Hong, D.H. Bae, and S.D. Cha. ―Test cases

generation from UML state Diagrams‖. IEEEProceedings Software,

146(4), 1999, pp 187-192

[9] J. Offutt and A. Abdurazik.―Generating tests from UML

specifications‖. In International Conference on the Unified Modeling

Language (UML 1999), Fort Collins, USA, October 1999, pp 416-

429

[10] MonalisaSarmaDebasishKunduRajib Mall, ―Automatic Test

Case Generation from UML Sequence Diagrams‖, 15th International

Conference on Advanced Computin and Communications. pp 60-64

[11]SupapornKansomkeat and WanchaiRivepiboon ―Automated-

Generating Test Case Using UML Statechart Diagrams‖ Proceedings

of SAICSIT 2003.

[12] Blanco, R., Fanjul, J.G., Tuya, J.: Test case generation for

transition-pair coverage using Scatter Searc. International Journal of

Software Engineering and Its Applications 4(4) (October 2010)

[13] A. Abdurazik and J. Offutt, "Generating test cases from UML

specifications," In Proceedings of the Second International Conference

Fort Collins, George Mason University, USA, 1723, 416-429, 1999.

[14] John D. McGregor, David A. Sykes ―A Practical Guide to

Testing Object-Oriented Software‖, Addison Wesley, March 05,

2001, pp. 167

[15]http://www.uml-diagrams.org/sequence-diagrams.html, 17

November 2013.

[16] Philip Samuel, Rajib Mall and SandeepSahoo, ―UML Sequence

diagram Based Testing Using Slicing‖, IEEE Indicon 2005

Conference, Chennai, India, 11-13 Dec. 2005, pp 176-178

[17] J. Dick and A. Faivre, "Automating the generation and sequencing of

test cases from model-based specifications," in Proceedings of the First

International Symposium of For- mal Methods Europe on Industrial-Strength

Formal Methods, 1993, pp. 268 - 284.

[18] S. Helke, T. Neustupny, and T. Santen, "Automating test case

generation from z- specifications with isabelle," in Proceedings of ZUM'97: The

Z Formal Specification Notation, LNCS 1212. Springer-Verlag, 1997, pp. 52 -

71.

[19] R. M. Hierons, S. Sadeghipour, and H. Singh, "Testing a system specified using

statecharts and z," Information and Software Technology, vol. 43, no. 2, pp. 137 -

149, 2001.

International Journal of Advanced and Innovative Research (2278-7844) / # 99 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 99

