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Abstract—Big Data is the most promising research 

area in the field of Cloud Computing. In areas like 

social networking applications, e- commerce, finance, 

health care, education, etc, huge amount of data is 

being accumulated. As new data and updates are 

constantly arriving, the results of data mining 

applications become stale and obsolete over time. 

Hence another approach is required for mining big 

data. Hence in this paper, a cluster based approach is 

introduced which guarantees an efficient processing 

of big data. This approach is experimented with the 

real time voting data of an election. Furthermore, the 

performance is compared with the existing data 

mining applications of big data. 
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I. INTRODUCTION 

Now-a-days, in Information communication 

Technology (ICT), cloud computing plays a vital 

role to perform complex computing and large scale 

operations. Cloud computing has the advantages 

like virtualized resources , parallel processing, 

security and data service integration with scalable 

data storage. Cloud computing can not only 

minimize the cost and restriction for automation 

and computerization by individuals and enterprises 

but can also provide reduced infrastructure 

maintenance cost, efficient management, and user 

access . As a result of the these  advantages, a 

number of applications that influence various cloud 

platforms have been developed and resulted in a 

tremendous increase in the scale of data generated 

and consumed by such applications. Some of the 

first adopters of big data in cloud computing are 

users that deployed Hadoop clusters in highly 

scalable and elastic computing environments 

provided by vendors, such as IBM, Microsoft 

Azure, and Amazon AWS. [1] 

 

In recent years, Big data is the new emerging 

concept in the field of information technology. The 

term Big data refers increases in the volume of data 

which are difficult to store, process and analyze 

through traditional database technologies. The data 

may be structured, semi-structured or unstructured. 

Big data can be characterized as four Vs. Volume, 

Variety, Velocity and Value. Thus big data can also 

be defined as a set of techniques and technologies 

that require new forms of integration to uncover 

large hidden values from large datasets that are 

diverse, complex and of massive scale.  

II. COMPARING MAP-REDUCE TO 

TRADITIONAL PARALLELIS M 

In order to appreciate what map-reduce brings to 

the table, I think it is most meaningful to contrast it 

to what I call traditional computing problems. I 

define “traditional” computing problems as those 

which use libraries like MPI, OpenMP, CUDA, or 

pthreads to produce results by utilizing multiple 

CPUs to perform some sort of numerical 

calculation concurrently. Problems that are well 

suited to being solved with these traditional 

methods typically share two common features: 

 They are cpu-bound: the part of the 

problem that takes the most time is doing 

calculations involving floating point or 

integer arithmetic 

 Input data is gigabyte-scale: the data that 

is necessary to describe the conditions of 

the calculation are typically less than a 

hundred gigabytes, and very often only a 

few hundred megabytes at most 

Item 1 may seem trivial; after all, computers are 

meant to compute, so wouldn’t all of the problems 

that need to be parallelized be fundamentally 

limited by how quickly the computer can do 

numerical calculations? Traditionally, the answer to 

this question has been yes, but the technological 

landscape has been rapidly changing over the last 

decade. Sources of vast, unending data (e.g., social 

media, inexpensive genenome sequencing) have 

converged with inexpensive, high-capacity hard 

drives and the advanced filesystems to support 

them, and now data-intensive computing problems 

are emerging. In contrast to the aforementioned 

traditional computing problems, data-intensive 

problems demonstrate the following features: 

 Input data is far beyond gigabyte-scale: 

datasets are commonly on the order of 

tens, hundreds, or thousands of terabytes 

 They are I/O-bound: it takes longer for the 

computer to get data from its permanent 

location to the CPU than it takes for the 

CPU to operate on that data 
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III. RELATED WORKS 

To perform complex computations and massive 

scale operations cloud computing is the powerful 

technology. Because it eliminates the need to 

maintain expensive computing hardware, dedicated 

space and software. Big data generated through 

cloud computing has been observed. In [2] the rise 

of big data is reviewed. The definition 

characteristics and classification of big data along 

with some discussions on cloud computing are 

introduced. The relationship between big data and 

cloud computing, big data storage systems and 

Hadoop technology are also discussed. 

Furthermore, research challenges  are investigated, 

with focus on scalability, availability, data 

integrity, data transformation, data quality, data 

heterogeneity, privacy, legal and regulatory issues 

and governance. Lastly, open research issues that 

require substantial research efforts are also 

summarized. 

 

Despite the advances in hardware for hand-held 

mobile devices, resource-intensive applications 

(e.g., video and image storage and processing or 

map-reduce type) still remain off bounds since they 

require large computation and storage capabilities. 

Recent research has attempted to address these 

issues by employing remote servers, such as clouds 

and peer mobile devices. For mobile devices 

deployed in dynamic networks (i.e., with frequent 

topology changes because of node 

failure/unavailability and mobility as in a mobile 

cloud), however, challenges of reliability and 

energy efficiency remain largely unaddressed. To 

the best of our knowledge, we are the first to 

address these challenges in an integrated manner 

for both data storage and processing in mobile 

cloud,an approach we call k-out-of-n computing. In 

our solution, mobile devices successfully retrieve 

or process data, in the most energy-efficient way, 

as long as k out of n remote servers are accessible. 

Through a real system implementation we prove 

the feasibility of our approach. Extensive 

simulations demonstrate the fault tolerance and 

energy efficiency performance of our framework in 

larger scale networks [3]. 

Data analysis is an important functionality in cloud 

computing which allows a huge amount of data to 

be processed over very large clusters. MapReduce 

is recognized as a popular way to handle data in the 

cloud environment due to its excellent scalability 

and good fault tolerance. However, compared to 

parallel databases, the performance of MapReduce 

is slower when it is adopted to perform complex 

data analysis tasks that require the joining of 

multiple data sets in order to compute certain 

aggregates. A common concern is whether 

MapReduce can be improved to produce a system 

with both scalability and efficiency. Map-Join-

Reduce, a system that extends and improves 

MapReduce runtime framework to efficiently 

process complex data analysis tasks on large 

clusters is introduced in [4]. They first proposed a 

filtering-join-aggregation programming model, a 

natural extension of MapReduce's filtering-

aggregation programming model. Then, presented a 

new data processing strategy which performs 

filtering-join-aggregation tasks in two successive 

MapReduce jobs. The first job applies filtering 

logic to all the data sets in parallel, joins the 

qualified tuples, and pushes the join results to the 

reducers for partial aggregation. The second job 

combines all partial aggregation results and 

produces the final answer. The advantage of their 

approach is joining multiple data sets in one go and 

thus avoid frequent checkpointing and shuffling of 

intermediate results, a major performance 

bottleneck in most of the current MapReduce-based 

systems.  

In recent days sensors plays a vital role and they 

are becoming ubiquitous in collecting information 

and having a great influence in industrial 

applications to intelligent vehicles, smart city 

applications, and healthcare applications, etc. but 

each and every applications uses different types of 

sensors depending upon their usage. The rate of 

increase in the amount of data produced by these 

sensors is much more dramatic since sensors 

usually continuously produce data.  It becomes 

crucial for these data to be stored for future 

reference and to be analyzed for finding valuable 

information, such as fault diagnosis information. So 

in [5] a scalable and distributed architecture is 

described for sensor data collection, storage, and 

analysis. The system uses several open source 

technologies and runs on a cluster of virtual 

servers. GPS sensors are used as data source and 

run machine-learning algorithms for data analysis  

I. MAP REDUCE 

Map Reduce is the heart of Hadoop. It is this 

programming paradigm that allows for massive 

scalability across hundreds or thousands of servers 

in a Hadoop cluster. The term Map Reduce actually 

refers to two separate and distinct tasks that 

Hadoop programs perform. The first is the map job, 

which takes a set of data and converts it into 

another set of data, where individual elements are 

broken down into tuples (key/value pairs). The 

reduce job takes the output from a map as input and 

combines those data tuples into a smaller set of 

tuples. As the sequence of the name Map Reduce 

implies, the reduce job is always performed after 

the map job.  
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II. HADOOP - A MAP-REDUCE 

IMPLEMENTATION 

The idea underpinning map-reduce–bringing 

compute to the data instead of the opposite–should 

sound like a very simple solution to the I/O 

bottleneck inherent in traditional parallelism. 

However, the devil is in the details, and 

implementing a framework where a single large file 

is transparently diced up and distributed across 

multiple physical computing elements (all while 

appearing to remain a single file to the user) is not 

trivial. Hadoop, perhaps the most widely used map-

reduce framework, accomplishes this feat using 

HDFS, the Hadoop Distributed File System. HDFS 

is fundamental to Hadoop because it provides the 

data chunking and distribution across compute 

elements necessary for map-reduce applications to 

be efficient. Since we’re now talking about an 

actual map-reduce implementation and not an 

abstract concept; let’s refer to the abstract compute 

elements now as compute nodes. 

 

HDFS exists as a file system into which you can 

copy files to and from in a manner not unlike any 

other file system. Many of the typical commands 

for manipulating files (ls, mkdir, rm, mv, cp, cat, 

tail, and chmod, to name a few) behave as you 

might expect in any other standard file system (e.g., 

Linux’s ext4). The magical part of HDFS is what is 

going on just underneath the surface. Although it 

appears to be a file system that contains files like 

any other, in reality those files are distributed 

across multiple physical compute nodes. When you 

copy a file into HDFS as depicted above, that file is 

transparently s liced into 64 MB “chunks” and 

replicated three times for reliability. Each of these 

chunks are distributed to various compute nodes in 

the Hadoop cluster so that a given 64 MB chunk 

exists on three independent nodes. Although 

physically chunked up and distributed in triplicate, 

all of your interactions with the file on HDFS still 

make it appear as the same single file you copied 

into HDFS initially. Thus, HDFS handles all of the 

burden of slicing, distributing, and recombining 

your data for you. 

 

I. SYSTEM DESIGN 

All the Indian citizens should vote. It is very 

difficult to count and process the voting data in 

order to reveal the results as the population gets 

increased. Hence this cluster based data processing 

is introduced to process the big data. This work is 

performed in the Hadoop open source framework 

and with the help of eclipse. Initially the real time 

voting data is moved the HDFS which is installed 

in four machines. Then the data is splitted and 

passed to the mapper function and converted into 

key, value pairs (K, V). The key is unique whereas 

value may have repeated values. This key, value 

pair is given as input to the reduce function so that 

the reduced output is represented as the final result. 

This can be represented in figure 3. 

 

Once a map-reduce job is initiated, the map step 

 Launches a number of parallel mappers 

across the compute nodes that contain 

chunks of your input data 

 For each chunk, a mapper then “splits” the 

data into individual lines of text on 

newline characters (\n) 

 Each split (line of text that was terminated 

by \n) is given to your mapper function 

 Your mapper function is expected to turn 

each line into zero or more key-value pairs 

and then “emit” these key-value pairs for 

the subsequent reduce ste 

That is, the map s tep’s job is to transform your raw 

input data into a series of key-value pairs with the 

expectation that these parsed key-value pairs can be 

analyzed meaningfully by the reduce step. It’s 

perfectly fine for duplicate keys to be emitted by 

mappers. 

A. The Reduce Step 

Once all of the mappers have finished digesting the 

input data and have emitted all of their key-value 

pairs, those key-value pairs are sorted according to 

their keys and then passed on to the reducers. The 

reducers are given key-value pairs in such a way 

that all key-value pairs sharing the same key 

always go to the same reducer. The corollary is 

then that if one particular reducer has one specific 

key, it is guaranteed to have all other key-value 

pairs sharing that same key, and all those common 

keys will be in a continuous strip of key-value pairs 

that reducer received. 

Your job’s reducer function then does some sort of 

calculation based on all of the values that share a 

common key. For example, the reducer might 
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calculate the sum of all values for each key (e.g., 

the word count example). The reducers then emit 

key-value pairs back to HDFS where each key is 

unique, and each of these unique keys’ values is the 

result of the reducer function’s calculation. 

IV. CONCLUSION 

As the population increases the process of counting 

and processing the number of votes also gets 

difficult. Thus Big data plays the major role while 

considering the applications such as social 

networking applications. Iterative mining is 

required to obtain the updated data. This is 

performed in this work. The real time voting data 

of an election is taken for year of a particular area 

and the operations are performed. The big data is 

processed iteratively so that resulting in an accurate 

mining of the updated and new growing data. The 

person who got more number of votes is declared 

as the winner. This proposed cluster based big data 

processing process is fast and efficient when 

comparing with the existing approaches. 
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