
Cluster based approach for processing Voting Data

Using MapReduce Approach
*1

R. Dhanalakshmi,
*2

S. Kalaiarasi,
*3

K. Sivagangai,
*4

J. RamyaRajalakshmi(Asst. Prof.,)
Department of computer science and engineering

Sri Aravindar Engineering College, Sedarpet, Villupuram Dist,.

Abstract—Big Data is the most promising research

area in the field of Cloud Computing. In areas like

social networking applications, e- commerce, finance,

health care, education, etc, huge amount of data is

being accumulated. As new data and updates are

constantly arriving, the results of data mining

applications become stale and obsolete over time.

Hence another approach is required for mining big

data. Hence in this paper, a cluster based approach is

introduced which guarantees an efficient processing

of big data. This approach is experimented with the

real time voting data of an election. Furthermore, the

performance is compared with the existing data

mining applications of big data.

Key words— Cloud computing; Big Data; MapReduce

I. INTRODUCTION

Now-a-days, in Information communication

Technology (ICT), cloud computing plays a vital

role to perform complex computing and large scale

operations. Cloud computing has the advantages

like virtualized resources , parallel processing,

security and data service integration with scalable

data storage. Cloud computing can not only

minimize the cost and restriction for automation

and computerization by individuals and enterprises

but can also provide reduced infrastructure

maintenance cost, efficient management, and user

access . As a result of the these advantages, a

number of applications that influence various cloud

platforms have been developed and resulted in a

tremendous increase in the scale of data generated

and consumed by such applications. Some of the

first adopters of big data in cloud computing are

users that deployed Hadoop clusters in highly

scalable and elastic computing environments

provided by vendors, such as IBM, Microsoft

Azure, and Amazon AWS. [1]

In recent years, Big data is the new emerging

concept in the field of information technology. The

term Big data refers increases in the volume of data

which are difficult to store, process and analyze

through traditional database technologies. The data

may be structured, semi-structured or unstructured.

Big data can be characterized as four Vs. Volume,

Variety, Velocity and Value. Thus big data can also

be defined as a set of techniques and technologies

that require new forms of integration to uncover

large hidden values from large datasets that are

diverse, complex and of massive scale.

II. COMPARING MAP-REDUCE TO

TRADITIONAL PARALLELIS M

In order to appreciate what map-reduce brings to

the table, I think it is most meaningful to contrast it

to what I call traditional computing problems. I

define “traditional” computing problems as those

which use libraries like MPI, OpenMP, CUDA, or

pthreads to produce results by utilizing multiple

CPUs to perform some sort of numerical

calculation concurrently. Problems that are well

suited to being solved with these traditional

methods typically share two common features:

 They are cpu-bound: the part of the

problem that takes the most time is doing

calculations involving floating point or

integer arithmetic

 Input data is gigabyte-scale: the data that

is necessary to describe the conditions of

the calculation are typically less than a

hundred gigabytes, and very often only a

few hundred megabytes at most

Item 1 may seem trivial; after all, computers are

meant to compute, so wouldn’t all of the problems

that need to be parallelized be fundamentally

limited by how quickly the computer can do

numerical calculations? Traditionally, the answer to

this question has been yes, but the technological

landscape has been rapidly changing over the last

decade. Sources of vast, unending data (e.g., social

media, inexpensive genenome sequencing) have

converged with inexpensive, high-capacity hard

drives and the advanced filesystems to support

them, and now data-intensive computing problems

are emerging. In contrast to the aforementioned

traditional computing problems, data-intensive

problems demonstrate the following features:

 Input data is far beyond gigabyte-scale:

datasets are commonly on the order of

tens, hundreds, or thousands of terabytes

 They are I/O-bound: it takes longer for the

computer to get data from its permanent

location to the CPU than it takes for the

CPU to operate on that data

International Journal of Advanced and Innovative Research (2278-7844) / # 89 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 89

III. RELATED WORKS

To perform complex computations and massive

scale operations cloud computing is the powerful

technology. Because it eliminates the need to

maintain expensive computing hardware, dedicated

space and software. Big data generated through

cloud computing has been observed. In [2] the rise

of big data is reviewed. The definition

characteristics and classification of big data along

with some discussions on cloud computing are

introduced. The relationship between big data and

cloud computing, big data storage systems and

Hadoop technology are also discussed.

Furthermore, research challenges are investigated,

with focus on scalability, availability, data

integrity, data transformation, data quality, data

heterogeneity, privacy, legal and regulatory issues

and governance. Lastly, open research issues that

require substantial research efforts are also

summarized.

Despite the advances in hardware for hand-held

mobile devices, resource-intensive applications

(e.g., video and image storage and processing or

map-reduce type) still remain off bounds since they

require large computation and storage capabilities.

Recent research has attempted to address these

issues by employing remote servers, such as clouds

and peer mobile devices. For mobile devices

deployed in dynamic networks (i.e., with frequent

topology changes because of node

failure/unavailability and mobility as in a mobile

cloud), however, challenges of reliability and

energy efficiency remain largely unaddressed. To

the best of our knowledge, we are the first to

address these challenges in an integrated manner

for both data storage and processing in mobile

cloud,an approach we call k-out-of-n computing. In

our solution, mobile devices successfully retrieve

or process data, in the most energy-efficient way,

as long as k out of n remote servers are accessible.

Through a real system implementation we prove

the feasibility of our approach. Extensive

simulations demonstrate the fault tolerance and

energy efficiency performance of our framework in

larger scale networks [3].

Data analysis is an important functionality in cloud

computing which allows a huge amount of data to

be processed over very large clusters. MapReduce

is recognized as a popular way to handle data in the

cloud environment due to its excellent scalability

and good fault tolerance. However, compared to

parallel databases, the performance of MapReduce

is slower when it is adopted to perform complex

data analysis tasks that require the joining of

multiple data sets in order to compute certain

aggregates. A common concern is whether

MapReduce can be improved to produce a system

with both scalability and efficiency. Map-Join-

Reduce, a system that extends and improves

MapReduce runtime framework to efficiently

process complex data analysis tasks on large

clusters is introduced in [4]. They first proposed a

filtering-join-aggregation programming model, a

natural extension of MapReduce's filtering-

aggregation programming model. Then, presented a

new data processing strategy which performs

filtering-join-aggregation tasks in two successive

MapReduce jobs. The first job applies filtering

logic to all the data sets in parallel, joins the

qualified tuples, and pushes the join results to the

reducers for partial aggregation. The second job

combines all partial aggregation results and

produces the final answer. The advantage of their

approach is joining multiple data sets in one go and

thus avoid frequent checkpointing and shuffling of

intermediate results, a major performance

bottleneck in most of the current MapReduce-based

systems.

In recent days sensors plays a vital role and they

are becoming ubiquitous in collecting information

and having a great influence in industrial

applications to intelligent vehicles, smart city

applications, and healthcare applications, etc. but

each and every applications uses different types of

sensors depending upon their usage. The rate of

increase in the amount of data produced by these

sensors is much more dramatic since sensors

usually continuously produce data. It becomes

crucial for these data to be stored for future

reference and to be analyzed for finding valuable

information, such as fault diagnosis information. So

in [5] a scalable and distributed architecture is

described for sensor data collection, storage, and

analysis. The system uses several open source

technologies and runs on a cluster of virtual

servers. GPS sensors are used as data source and

run machine-learning algorithms for data analysis

I. MAP REDUCE

Map Reduce is the heart of Hadoop. It is this

programming paradigm that allows for massive

scalability across hundreds or thousands of servers

in a Hadoop cluster. The term Map Reduce actually

refers to two separate and distinct tasks that

Hadoop programs perform. The first is the map job,

which takes a set of data and converts it into

another set of data, where individual elements are

broken down into tuples (key/value pairs). The

reduce job takes the output from a map as input and

combines those data tuples into a smaller set of

tuples. As the sequence of the name Map Reduce

implies, the reduce job is always performed after

the map job.

International Journal of Advanced and Innovative Research (2278-7844) / # 90 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 90

II. HADOOP - A MAP-REDUCE

IMPLEMENTATION

The idea underpinning map-reduce–bringing

compute to the data instead of the opposite–should

sound like a very simple solution to the I/O

bottleneck inherent in traditional parallelism.

However, the devil is in the details, and

implementing a framework where a single large file

is transparently diced up and distributed across

multiple physical computing elements (all while

appearing to remain a single file to the user) is not

trivial. Hadoop, perhaps the most widely used map-

reduce framework, accomplishes this feat using

HDFS, the Hadoop Distributed File System. HDFS

is fundamental to Hadoop because it provides the

data chunking and distribution across compute

elements necessary for map-reduce applications to

be efficient. Since we’re now talking about an

actual map-reduce implementation and not an

abstract concept; let’s refer to the abstract compute

elements now as compute nodes.

HDFS exists as a file system into which you can

copy files to and from in a manner not unlike any

other file system. Many of the typical commands

for manipulating files (ls, mkdir, rm, mv, cp, cat,

tail, and chmod, to name a few) behave as you

might expect in any other standard file system (e.g.,

Linux’s ext4). The magical part of HDFS is what is

going on just underneath the surface. Although it

appears to be a file system that contains files like

any other, in reality those files are distributed

across multiple physical compute nodes. When you

copy a file into HDFS as depicted above, that file is

transparently s liced into 64 MB “chunks” and

replicated three times for reliability. Each of these

chunks are distributed to various compute nodes in

the Hadoop cluster so that a given 64 MB chunk

exists on three independent nodes. Although

physically chunked up and distributed in triplicate,

all of your interactions with the file on HDFS still

make it appear as the same single file you copied

into HDFS initially. Thus, HDFS handles all of the

burden of slicing, distributing, and recombining

your data for you.

I. SYSTEM DESIGN

All the Indian citizens should vote. It is very

difficult to count and process the voting data in

order to reveal the results as the population gets

increased. Hence this cluster based data processing

is introduced to process the big data. This work is

performed in the Hadoop open source framework

and with the help of eclipse. Initially the real time

voting data is moved the HDFS which is installed

in four machines. Then the data is splitted and

passed to the mapper function and converted into

key, value pairs (K, V). The key is unique whereas

value may have repeated values. This key, value

pair is given as input to the reduce function so that

the reduced output is represented as the final result.

This can be represented in figure 3.

Once a map-reduce job is initiated, the map step

 Launches a number of parallel mappers

across the compute nodes that contain

chunks of your input data

 For each chunk, a mapper then “splits” the

data into individual lines of text on

newline characters (\n)

 Each split (line of text that was terminated

by \n) is given to your mapper function

 Your mapper function is expected to turn

each line into zero or more key-value pairs

and then “emit” these key-value pairs for

the subsequent reduce ste

That is, the map s tep’s job is to transform your raw

input data into a series of key-value pairs with the

expectation that these parsed key-value pairs can be

analyzed meaningfully by the reduce step. It’s

perfectly fine for duplicate keys to be emitted by

mappers.

A. The Reduce Step

Once all of the mappers have finished digesting the

input data and have emitted all of their key-value

pairs, those key-value pairs are sorted according to

their keys and then passed on to the reducers. The

reducers are given key-value pairs in such a way

that all key-value pairs sharing the same key

always go to the same reducer. The corollary is

then that if one particular reducer has one specific

key, it is guaranteed to have all other key-value

pairs sharing that same key, and all those common

keys will be in a continuous strip of key-value pairs

that reducer received.

Your job’s reducer function then does some sort of

calculation based on all of the values that share a

common key. For example, the reducer might

International Journal of Advanced and Innovative Research (2278-7844) / # 91 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 91

calculate the sum of all values for each key (e.g.,

the word count example). The reducers then emit

key-value pairs back to HDFS where each key is

unique, and each of these unique keys’ values is the

result of the reducer function’s calculation.

IV. CONCLUSION

As the population increases the process of counting

and processing the number of votes also gets

difficult. Thus Big data plays the major role while

considering the applications such as social

networking applications. Iterative mining is

required to obtain the updated data. This is

performed in this work. The real time voting data

of an election is taken for year of a particular area

and the operations are performed. The big data is

processed iteratively so that resulting in an accurate

mining of the updated and new growing data. The

person who got more number of votes is declared

as the winner. This proposed cluster based big data

processing process is fast and efficient when

comparing with the existing approaches.

REFERENCES
[1] Q. Yang, “Introduction to the IEEE Transactions on

Big Data”, IEEE Transactions on Big data, no. 1,

vol. 1, pp. 2-14, January 2015.
[2] S. Chen, Q. Wang, G. Yu and Y. Zhang,

“i2MapReduce: Incremental MapReduce for Mining

Evolving Big Data”, IEEE transactions on

Knowledge and Data Engineering, vol. 27, no. 7,

pp. 1906-1919, July 2015.
[3] Hashem, I. Yaqoob, S. Mokhtar, A. Gani and S.

Khan, “The rise of “big data” on cloudcomputing:

Review and open research issues”, Elsevier, no. 47,

pp. 98-115, 2015.

[4] C. Chen, W. Myounggyu, R. Stoleru and G. G. Xie,
“Energy-Efficient Fault-Tolerant Data Storage and

Processing in Mobile Cloud”, IEEE Transactions on

cloud computing, pp. 28-41, March 2015.

[5] D. Dahiphale, R. Karve, A. V. Vasilakos, H. Liu,

“An Advanced MapReduce: Cloud MapReduce,
Enhancements and Applications”, IEEE

Transactions on Network and service Management,

pp. 101-115, April 2014.

International Journal of Advanced and Innovative Research (2278-7844) / # 92 / Volume 5 Issue 3

 © 2016 IJAIR. All Rights Reserved 92

